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REGULAR, POSITIVE DEFIKITE, TZ~ikAxY YUAURATIC FUHAS .

1. I ‘consider in this paper positive definite quadratic

forms, in three integral variables, of the type

2

f = ax2+by2+cz + ryz + szx + txy,

where a, b, ¢, r, 8, ¢ s&re integers without a common
factor. Such a form will, for brevity, be called 'simply
a form.

The form £ 1is said to be regular if it represents |
every positive integer n  for which the congruence |
£ = n (mod m) is soluble for every positive integer m.
Regularity is thus essentﬂia}ly a property of & class of
forms, equivalent under mtegrdl unimodular transform-—
ations. The simplest instance of it is the classical
three square theorem: the form %2 + yz + g does not
represent any number of the form 41(811 + 7), since the
congruence

22 + 32 + 22 = 7.4 (moad 8.41)

is insoluble; but it does represent all other positive
 integers. Hegular forms have been m.eatigated" by
Dickson* and by':/Jonea ‘and Palls; theae\writera confined
themselves almoet entirely to diagonsl forms, tinat is,

forms with r=8=t = 0,

sannals of Math. 28 (1927), 333-341.
+Acta dath. 70 {193%9), 165-191.
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"VA§ 2. I write
¢ 2a t B
. (1) @ = a(£) = &| t 2b r| = 4abe + rst - arl- bs? - ct2,
8 r 2c '

and denote by ¢/ = ¢J(£) the highest common factor of

the first minors of the determinant 2d. It is clear that

AR AT AN v v

(2) 4 = O (mod & ).

Py & v 4

In cese r, 8, t are all even, the classical invariants

D, f}, are &/4, /4.
I prove the following theoremss

e =
> N
THEOREM 1.) (2) If d4(f) is not square-free, thers

exists a form h = e “h(f) such that:

i ; RAEEA)

(1) a (f) = d(h) is square-free, and a divisor of d(f),

and ‘ ;
(i1) the regularity of h is a necessary condition for

that of f£.
(p) If da(f) is divisible by the squares of two or

T R PPRTS PR Y YAV R AR B SR PP
e iR e : : Wb 3140, 1] T aes ‘ ‘

more primes, onfof which is p, then there existe a roﬁn. x

h, = h (f) such that.

5 1 TR Y AR

(1) d(h ) # 0 (moa %) for any prime q # P»

(11) d(h,) is & divisor of d(f), -

bk i

(1i1) a(n,).end ' (/\)‘(hp) are divisible by precisely the

game powers of p as d(f) and ¢ (r) respectively, and

(1iv) the regularity of h, 1is a necessary condition for
f

that of f£.

U R s sl e
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TﬁE® Every regular form h, with square~free 4,

is equivalent to one or other of the twenty-four forms

hl;..., h24 listed in Table 1 (Aprendix) (for each of

which d is at most 78 and does not divide by 19, nor ,
by any prime exceeding 23).

TBEORif/., Suppose that £ is regular and that the

prime p does not divide c¢J(f), but p v di{videa
a(f). Then V= 04if p=l9orif p ) 29, V¥S1 if
P> 7, end Yy < 6,4, 2forp=2, 5, 6.

/“" w/"

T'onm 4., Suppose that £ ig regular and that <J(£)

is divisidble by an odd prime p, but not by pa, and’ that
py divides a(f). Then p S 23, p ¥ 19, and

2 1f p= 11, 13, 17 or 28,

<
i B Vs 3 if p=bBor?7,

o)

Er B T T e,

@ If £ 1is regular, then L) ie not

divisible by 27, nor by the square of any prime greater

than 3; and  4(f) 1s not divisible by 3°.

0:&-@_&5;’1,-;
[

Ffepr § Gongdiga oo ¢
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THEOREu\sf If £ 4ie regular and classic (that is,

f5 4
#isl

ry 8, ¢ are all even), then JZ {f£) cannot be divigidble
by 25, nor D(f) vy 212,

| 4
Theorems 2 to 6 show that, if £ 1is regular and p

(V2 1) aivides a(f), then p and v are both
bounded, It easily follows that there ie only a finite
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number of classes of regular forms. A complete enumer-

ation would be very laborious, but Téblea I to III in the
Appendix show all possible ones with 4 not divisible by
4; including two whose regularity I have not been able to

prove.

3. The letters £, g, h denote forms. All other letters
denote ratibnal integers, n being positive, while

pPs q» P, Q, with or without accenf:s and surfixéé. aré
primes. For odd p, <;) is thé Legendre symbol, and
R, Hn ran through éllP integers :n ’rrmn ltop~-1.
for w;xich (p,) a2 1, -1 respectively. In cese p divides
&, 1t 1e I;gn known that (3) hss the same v'alue, de-
noted as usual by ), for ? all n representable
by £ and not ~ divisible by pe.

The solublility of the congruence £ = n (mod m)
need only be considered for m n_pk. p being a factor
of 4y end k = 1, 29 3 ces T{loae n for which the
congruence '

(3) £2 n (mofa p¥)
is, for a given p end some k, inscluble will be said
to oonstitute ‘
zxiing the p-progressions of f. Thegy p-progressions,
collectively called the progressions of f, 'm. as is |
well known, an infinite s&stm of arithmetical bx;ogz"ess-.-.,. :
1ons.

I denote by C = 4ab — t2 the negative of the
diseriminant of the binary form £(x, y, O). Clearly
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(¢) ©>0, C =0o0r3(a0d ), C =0 (mad).

e The genersl plan of the worz is as follows:

(1) Vie prove Theorem 1, maxing systematic use of =
method, by which tl;e regular;ty sf & form with non
square-free d can be shown to imply that of a2 simpler
form. The prineciple of th:_ta method is iell knowne,

(11) Theorem 1 reveals the fundement=l importance of
forms with square-free d, which acca#rdm.ly we next
investigate (Theorem 2). The task ia made easier by the
simplicity, and low density, of the p-progressions of
these forms, espacially for p = 8, '

(1i1) 'Ee now come = . back to the forms with non
square-free d, and prove Théorems 3 to 6, In ao doing
we may assume that no Prime g ¥ p is n repested fagtor'
of d4; for if it were, we could by Theorsa 1(b) work
with hp(f) instead of £, The work is further sinpli-
fied by what we know from Theorem 2 about the g-»ro-
gressions of f. In fact, if p 1is the repsated orime
factor of d, and  q # p  is a simple factor of .4,

*® Seey eegy, Burton W. Jones, An extension of Heyes's

‘theorem on indefinite ternary quadratic forms,

Cenadien Journgl of Mathematigs, 4 (13852,, 120-8

(definition of p-related form, p. 120)
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then we know q \< 23, #'19. Purther, Teble I shows thsat
there are no 23-progressions, unless p =23, while if
p # 11, 17 there are either no 1l-, 1l7-progressions or
no others (except p=).

The work is thus considersbly simplified. It hes how-
ever o be done in essentially three different cases,
corresponding to the three ways by xwhich a repeated
factor of d cen be removed.

(1v) The detailed method of investigating regular forms
£ /. with invarients 4, () satisfying given conditions
depends on considering the successive minima of f. Ve
first seek a number n  for which we know that (3) can
never be insoluble, and which is square-free. We may
then suppose & << n; for the form mey dbe so transrormed
a8 to have its minlmum a8 leading coeffictéent. It may

be necessary to ugse alternative values of n, HNow we
seek a number n’ satisfying the same conditions as n,
but not equal to n§ we mey supoose n'> n, and so,
being squere-free, n' is not expressible as ax<, so that
it gives z bound for the second minimum of £ (whioch may
be taken es b). Lastly, a number n*, satisfying the
same conditions as n, n', and further, not representable
by f£{x, y» 0), gives a bound for the third minimun of

£y and so for 4.

> Do 14) arties and m'o. sslions o

It is easily shown that, for an odd >rims P and arbit-
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rary positive Kk, we mey transform £ so thet r=8gz=

[
t = O (mod pk), that‘is, we may have
(8) £ = ax® + by® + o2z2 (mod p*).

It p =2, (b) may still be possible; if not, we may have
either
(s6) £ = ax® + by2 + byz + 02 (mod ?.k).

with b even, 1f ¢ is cléssic. or
(7) £ = ax2+txy+by2 + o2 (modzk).

if £ 1is non~classic. In case (7) we note that 1f
e - and b are both odd, that is, if G = 3 (mod 8),
f(z;. 7+ 0) will not represent 2 (mod 4) nor 8 (mod 16);
whence, if further ¢ = 2 (mod 4), £ will not represent
¢ + 8 (mod 16). In this case we have d= 8 -0 (mod 16);
thus £ fails to represent numbers = -d (mod 16).

From the foregélng xésultaf we mey readily deduce
the following:

IM 1.)(a) The p-orogressions of ¢

(1) do not exist if p does not divide d, mor if (

l&

)

o

= 41 (for odd p), or C = 7 (mod 8) (for p=2),

*These results, and the Lemma, are contained in substance
< 7\

in Minkowski's Paris prize essay: Kgmoigg présentés 8 -
1'Acedémie des Scienges, 29 (1834), No. 2, or Ges. Abh.,

I’ 3"1440
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(ii) include no integers not divisible by p, unless

o) divides &J .

(v) If p divides &, then the : numbers not divisible

by p that belong to ﬁgg p-progressions are those

congruent 1o

(1) either Rp or K _, but not both, if p 1is odd,

(i1) three at moat of 1, 3, 5, 7 (mod 8), if p = 2.

(c) If p divides 4 and (ac) = =1 (for odd p),\or
b
G = 3 (mod 8) (for p = 2), then p-progressions exist; if

further pa dnés not divide 4, then they consist of the
nunbers = -pgkapd (moa p2X*2) or -2%%a (moa 82%*4),
for all k ;? 0, and no others.

6. %e shall now deduce Theorem 1 from the following

<;£§§;g:§;> Suppose that d(r)‘g_o_(mod pg). Then there -

exiets a form g = gp(f) such thet:

(1) a(e)/a(g) = p, p° or p%,

(11) ((£)/w(g) = 1, p or p?, =nd

(111)  the regularity of- g is a necessary condition

for that of f.

Proof. Ve first transform f so that (6), (6) or (7)
holds, with a sufficiently large®* Kk, énd thenconsider

several capes.

# g doea not devend on Kk, 2nd is indeed unique up to
equivalence. Eﬁ%(?e need not take k greater than 2.)
But we do not need this fact, and the properties (i) and

k

(11) are clearer if we suppose K so large that p— does

t divide a(f).
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Case 1, p odd, pz divides & . e mey suppose in (5) that

b=sc =0 (mod 92), g8 £ 0 (mod p); then we define

(8) | g(x, ¥y 2) = p~2¢(ox, ¥, z),

giving
(9) g =zax® +bp7%® 4+ o072®  (moa p°77).

It is clear from (8) end (9) that da(g) = o~%a(f), tNXg) -
= p"gw(f). To prove (iii), suppose £ is regular. If
g = n (mod m) 1s suluble for every m, then so too is

£ = pen (mod m), as we see from (8). By the regularity
of £, £ =p°n must be soluble. But with our hypotheses
(5) shows that £ = p°n can only be soluble with x = 0
(mod p). Thus by (8) g = n must be soluble. Hence if

r‘ is regular g must be, and (111) holds.

Case 2, p an odd, simple factor of ¢J) . Vie may now

suppose in (5) that b = c = 0 (mod p), b # O (mod pz),,
a ¥ O (mod p). We define

(10) glxy vy 2) = p"lf(px. Vs .3}
= pa.x2 + bp-lyz + <.ar.~”lz2 (ood _pk"l).

(1) and (11) are . again clear; the first or second case
of (i1) arises according as p2 doee or does not divide ¢,
that is, according se 95 does or does not dj:vide d. Tue
proof of (1i1) is similar to that in caee 1.

Cese .3, p o04d &nd not a factor of ¢J . We assume in (5)

ab £ O (mod p), ¢ =0 (mod p ). We define
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(11) g(x, ¥y 2z) = p~2£(px, Dy 2)

2

3 8ax o+ by2

+ cp~22° {mod p©2),

The results (1) and (ii) are again clear. If we assume
eb to be & non-residue of p, then £ can reprgsent a
number pzn. if at all, only with x'g ¥y =0 (moa p),
and so we prove (1ii) as in case 1. ‘

But if [gp| = +1, the argument to prove (111) is
different: wepeee from (11) that g represents every
integer represented by f, hence g must be regular
with £ if it has the gﬁxiﬁsame'progreeaions as 1,
Now by Lemna 1(a)(1), néither' f nor g has any p-
progressions, while by (11) it is clear that they have
the sams 'prPOgPSBSIOHB for any - q # P.

Case 4, p = 2, £ classic. We ;ﬁﬁﬁximay‘suppose a odd,

-

and we write f£(2x + by + ez, y, z) = 4g or 2g, according
as the coefficients of this exnreesion, which are clear-
ly all even, are or are not all divisible by 4. The
proof is as in case 1 or 2,

Case 6, p = 2, f non~classic. Ve have ¢ = 0 (moga 4)'1n

(7) and we define

(12) g(x, y.'é) = if(2x, 2y, z)
- ax2'+ txy + by® + }cza_ (moa 25-2),

Distinguishing the cases C = 3, 7 (mod 8), we argue as

in case 3.
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to all, or all but one, of the repeated pri.ie factors .f

Theorem 1 follows on applying Lemns 2 repentedly

da(e).
7. Reduction of formsg.

<::;f§§§5:§i> Every form f 1is equivalent to one satisfying

(13) f) a, if x, y, z # 0, 0, O,
/ b, if Ye 2 F O, O,
Cy }_g. z A& O;

(14) o<t <a, ls[ga, | }rfg bj
(15) d <Ce < 4abe.

Ir (1:5)1..-.. (15)2 and,'(14)l hold, then

(1s) £ } 4/C, for z F O.

Proof. The inequalities (12) express thet the form is

reduced 80 8s to have a, by, ¢ as its succeasive minimai
this is well known to be possible*. The inequalities

b | (14) are obtainsble by putting x, y, z = 1, +1, O;

I 1, O, #1; O, 1, #+1. The possibility t< O can be

) avoided by the transformation Xy ¥y 8 = x', -y", g'. Then

. (16) follows from

= *It is not easy to find a reference, but the result is
easily obtained by the method of Korkine and Zolotareff,

Meth. Annslen, 6 (1872), 336.
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Cc -d= ar® - trs + be? = #(r, -5,0)} O,

How (16) follows from (15)5 and (15)1; but it clear-
ly remains true for any eguivalent form with the same ;
8, b, t. %e shall work mainly with (1551, (13), and it
(16); we often find a more convenlent form of the cless

8. Reduced ar fo with “ = 1, The lemmas of

this section are required for the proof of Theorem % 3,
but as we shall not need the full foree of the hypothesis
of that Theorem that 4(f) is square-free, they will also

. be used in Theorem 3.

-

e T
e

= )
QLE&M\;\ Suppose f 1s regular and satiefies (13);, (13

—

and (M)l, (f) = 1, and neither 4 nor 9 divides a(r). '

Then & = 1l; and if t =0, b= 1lor 2, while if t = 1,

bﬂl’gg 5,01’5.

Proof. By Lemna 1(a)(ii) and the hypothesis (J = 1, £
must represent 1; hence by (13) we have a = l. Simil-
arly we see that £ represents 2, and deduce b < 2,
unless £ has ‘z-progreaaiona, end 4 = 14 (mod 16)
(Lemma 1(a) and (o)),

| Assuming that 4 = 14 (mod 16), the 3-progress—-
ions of £ 4o not include the number 6, while by
Lemma 1(c), the 3-progressions of £ do not ineclude
both 3 and 6, and neither 3 nor 6 can by Lemma 1{a)(ii)
belong to a p-progression for p > 3. Thus f must




§1

if regular represent either 3 or 6, and 80 by (13)2
b < 6. |

I£ ¢t 7 == 1, 1t remains only to show that wé
cannot have b = 4 or 6; vut if so, C =27 {mod 8), so.
there are no 2-progressions by Lemna 1(a)(1), whereas
by (13) £ = 2 is insoluble, and 80 f is irregilar.

It &t = O,-ue have still to exclude the four
poesibilities b = 33 4 5, 6. The first case b=3
-is inconsistent with a= 14 (mod 16) = 2 (mod 4). If
b = 4, £ represents 8 but not 2; but by Lemma 1{c)

8 would, with 2, belong to the 2-progressions. If
b= 5y 6, £ does not, by (13), represent 3, 5, al-
though by Lemca 1(a)(i) thers are no 3-, b-progressions;

so f would be irregular. Thus the proof is ccmplete.

LiMMA 5. ) In the six cases of Lemma 4, assuming the

hypotheses of that Lemna and elso that 4(f) has at

most one repeated prime factor (>3), we have the

following upper bounds for a(£)1

Cm 3y, 4 7, s, 11, 19,
a e, 60, 42, 168, 66, 114.

L3

Proof. The last case is easiest; the proor of Lemna 4

shows that f must represent 2, 3, or 6, but £(x, ys 0)
2 x5+ Xy + 5y2 represents none of these integers. 80
one of them (necessarily 6) must be represented with

s # O, whence by i (16) a g 6 = 114.
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Again in the fifth cese f must represent 6, which
£(xy, ¥y 0) = x2 4 xy + 352 cannot, so d\<60 = 66. For
there are no 3-progressions, and so a modification of
the argument of Lemna 4 shows thet £ represente 2 or
6, clearly not 2. Incase C = 7, f(x, y, O0) =
x° 4 Xy + zrgg ;ntfl a similar argument to the foregoing
shows that though f£(x, y, O) representa neither 3 nor
6, £ nmust represent one of these integers, hence
again d <60.

Incagse C =4, £(x, ¥, 0) =x° +32, £ has no
b6-progressions, hence it represents either 3 or 16, and
a T 15C = 60.

Ir € = 8, éuppose rirgt that & d;ea' not divide
by 72. Then since (.é’z) = -1, and there are no 3-
progressions, Lemua l(cr)’ shows that f{ represents
either 7 or 21, but f£(x, ¥, 0) = x2 + 2y° does not,
s0 d $21C = 168. If however 4 divides by 7%, then
by hypothesie d does not divide by 6%, and by con~- -
sidering the numbers 6, 156 we obtain a better result.

Lastly, if G = 3, £{x, ¥, 0) =x2 ¢ xy + ¥2, we
have 4 <6 unless £ fails to represent 2. Lf so,
neither 10 nor 22 can belong to a 2-progression, and
w obtsin the result by oomsidering the mumbers 11, 92

2
2 4 divides by 11 , in which cese we use 6, 0 in-
stead. Thus the proof is complete.
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Assume the hypotheses of Lemms by and further

that in case of ambiguity the least possible value of
C is considered. Then the only possibilities for C,
f(xy yo O0) end d are:

C | £(x, ¥, 0)‘ a

3 | x2 4+ xy + y° 2, 3, 5, 6, 14, 30.
4 | x° + g2 6, 7, 10, 11, 15, 42.
7 | x2 + xy + 25° 10, 13, 17, 21, 33,
8 | x2 4} 2y | 1s, 21, 22, s0, 70.
11 | x° & xy + 3y2 30, 46.

19 | x2 » xy + By 78.

Proof. In case C = 3, we note first that 4 =
S¢c ~r? +ra-8° = 0org (mod 3). Next, 1f £ re-
presents 2, we have 4 < 6, while 1f not, d = 14 (mod 16)\,
es we have seen. With the bound 4566 of Lemma 6, it
remains only %o show that 4 # 46, 62. For either of
these 4 however, we should have no b~progressions,
whereas £ would not represent 5 except, by (18), with
2z = 0, which is clearly impossitle.

Incese C a4, d=dc - r2 - 82 = 2 or 3 (mod 4).

%e exclude the cases 4 = 2, 3, because there are
equivalent forms with C = 3. If p = -1 (mod 4),
x2 » y2 does lnot represent p, but £ must do so,
giving by (16) a <4p, unless d = O (mod p). These
argnmenté, with 4 (60. exclude all cases other than
those stated, except d = 14. If however 4 = 14,
£= x°+32 + 22+ y2 + 422 is irregular; it does not




s

represent 7.

Similar arguments in the other four cases exclude all
unwanted values of d, except the following, for which we
exhibit in each case an integer n, in no nrozression of

£, iui which is not representable by £

i+ a o n
14 x° + xy + 2y2 + ( 22°
19 | gxz + 325 10

g | o5 | x2+zy2e [ yz o+ oasd 23
26 | xz + 2yz + 422 5 y
291 Xz + Yz + 422 87
30 xz + 4%° A
3l vz + 422 31
34 Xz + 2yz + 555 10
37 XZ + Yz + 62 185
38 im Xz + 622 | 1a
39 | \ yz + 5z2 - 91
66 vz + ?zg 16

11| 62| =2 + xy + 352 + 2yz + 63° 26

[It simplifies the calculation to note that in case C = 8
we have 8L = (4y + rz)e + 2(2# + 8z)2 + dz2:]

9. Proofs of Theorems 2, 3. Excluding the case 4 = &0,
each of the twenty-four other casss of Lemma 6 gives Just

one class of forms with square-free d, which are those
shown in Table I. Thus Theorem 2 is proved. We shall see

later that these twenty-four forms are all regular.
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To prove Theorem 3, we may, by Theorem 1(bj, assume

(17) a(f) £ O (mod ¢2), ir a # p.

Then 1if p}? 5 the hypotheses of Lemns 6 are satiafieé,
and the conclusion of the Theorem may be verified from
the table in that Lemma,
If howsver p = 2 or 3, we have to rework Lemmas

4 to 6 on the new hypothesis (17). To do this in the
firat place wonld have been difficult, but now it is
made easier by the_results of Theorem 2. Note for exasmple
that, by (11) and (12), h(f), shich must be one of the
forms in Table I, has preéisely the same q-progressions
as f, forany q # p. Now every form in Table I re-
presents either 2 or 7, so.on reworking Lemma 4 for e
form with d = 0 (mod 9) and setisfying (17), we have
a =1 and b(%

I omit the necessary calculations, here and in much
of what follows, as:they are long and the principle hes

been made clear enough.

10. Proof of Theorem 4. Under the hypotheses of this

theorem, the prime p is deslt with solely by cese 8 of
leimna 2. Hence after repeated epplications of that Lemmnsa,
P remains a simple ractor of 4 (r), tnat is, of one of
the 4 in Table 1, 80 p cennot be 18, nor > 23,

The bounds for the exponent )/ can be obtsined by
the method of section 4; we have always to distinguish




= 1, and for the smaller p it proves

the cases ( £

. D , o .
necessary to conaider; separately the wvarious possibilities

for h(f). There are regular forms, shown in Tables 11,

IIX, which show that these bounds are best possible.

11. Proof of Theorem 5. We assume

(18) w(n[ = 0 (mod p?), -

\

for some odd p, and also (17), and we have to show that
f umat be 1rzegular 11‘ p)/ 5. For p = 3 this 15 not
true withont ‘some further hypothesia, but if we asaume '
that N(f) divides by 27, or a(f) by 38 (the latter of
which is implied by the fox'mér). then we can prove f
:l.rregular, and this gives us what is vanted- for the cases
with ¢J(f) not divisible by © have been dealt ‘with in
Theorems 3 and 4. .

The main diﬁ‘iculty 13 tc find some bound for p, for
the application of Lemma 2, case l, may lead to a form
with 4 no 1onger d;yigible by p. The required bqu.nd
is.given by the following three lemmas, and we omit Tor
brevity .the routi;xé calculations needed to comp]:ete the
proof. . ,' : . , T

Sl

I% Assume (17) and (18); then for P25, ¢

is ..imgular ie (}5 = +l.

Prooft. Aasuming f to be regular, it must represent

1, so, working with a reduced fy we have a = 1.
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; Q LEMA \9 With the hypotheses of iLemua 7, except that

piret suppose p > 13, Then there exist q'< ¢" § 11
< p, such thet neither q' mor q" divides d,{f); since
Table I shows that do(f) divides. by at most three primes.
Then by (17) neither of ¢', q* divides d(f), so £ has
neither q'-'nor q*~progressions. Therefore f if reg-
ular must represent g' or Qs 1f either of them i8 a
quedratic residue (mod p); and ;i‘ not, then £ mast e
present q'q". But this gives us, by (15) -2 S q'q%
whence © <’4§'q"‘ = 369. Now by {(4) and (18} G) ap®

/ 607, which is a sontrediction. |

In case p w 11, must repreaent 37, ir regnlar,
since (%) = 1 and h(t), ‘ so f, ean not have 87-
pmgtesslonn. Blm.tlarly, if p = T7e £ mpx*esente 29, e
Thue in these two ceses we have b < 37, 29, c<l48, 116;
6 < 2p?, end sgain we have a contradiction.

Por | p= 6B, we bave b <n, unless R{f) 18 hyy in
which case alone lluprogreas;lons exist; in this cese r{6,
Hence the result egain follows.

L <
I —

(;) = «l, lot P = P(p) be the least prime non-residue
> ‘ N
of p; then £ "15 irregular if P> 17,

Broof, Snppose P, 19, f is regular, and Q is the

° pext least primo non-residue (md p)e Then £ c¢an liava '

neither P- nor Q-progressions, and so must represent both
P end Q. This gives a P, b © { 4P3. ¥e have




N ;‘

1

a contradiotion with C 2 3p 1if we can prove

P < 3p/4y 9 < ps

But these inequalities hold, since if not, the ¥(p - 1}

non-»x‘-ae'ldﬁ\es of p lying betvegn _1 anéd p - 1 are
oither all multiples of : P, or all exceed 3p/d.

e

\

(I:GH&IA. 9,) #ith the bypotheaee of Lemmne 8, £ is irregular

Y

it P 17 enéd p>25¢

'Pmor.‘ ?irst auppase P(p) = 2 and p> 29. Then onah

. of each of the pairs of Mtegera 19, 38; 23, 48; 29, &8

is a qnadmtic non-residue of p.. &ence, sincc h(f) and ~
£ can have no 19-. 23~ or 29-progreesicns, while st most
one of these six integers can be = -4 {mod 18), tvo of them

mst be represented bj f+« This gives a@lﬁ, b \<58. o
9?2 S o/s (aays 4460883 < 60%, p (60,

ir £ ie regular. 3 oo
' p> 31,
I 1‘ ie regula:;/and P=sj3, representa sithar
19 or 67, and either 31 or 93, unlosa a(r) = 3 (md 9),
in which case we use insteed the four mumbers 235 69.29.87.
This glves us p/ < 90, - ) ' _

Similar arg\mente in the ceses ‘P 5, ssey 1? give

bounds for p in no case exceeding 560; end we note that
if p) 3, p = 21 (mod 34).

80 we may suppose 29 <p <560 Lp = 81 (mod 24) if
97 80, It is not difficult to verify that for such p we




can satisfy

10 $g'<q%  a'g" < B, (n’ = [g") = =1,
p P

whence the resulit by.the method of lLemiaa 8.

4% 12. Proof of Theorem §. We investigate separately
the four cases possible for s classic form by Lemua 1{b)(11)

We heve in thess cases, for a redueed 'r.

av L 41;' 11, 19;' 13, 29; 25, 31,

on noting that S an& llv-. g and l:i-pmgraaaiona do mt
both exist. In each or the rather AUMercus Ceses We hma
to Beek & number n“ with the pmyertiaa mentionsd m
section 4.(“). I omit the details.

13+ __MAEL&_. hys eess Bp,s Genersl
methods of proving the regularity of a form have teon
discussed by Jones and Pall (loc. ,, ), and they have »
proved the regularity of our form . The regularity of
all but three of the other forms in Table I follows from
the fact that they represent genera each of a single class.
These three (and hgl belong to twe-class genars, and I.
prove them x-egula;?'by showing that sach rqpmunts avery’
positive -mtege;?"/ represented by any x;om in ite companion
clams. | , o
Begulgrity of h... Write 'h = hyg and dencts by b’ & :
representative of the companion class. Then

E%’ h=x2+2y° ¢ yz o 2e2,




h' = x2 + xy + y2 + B2

A solution of h' = n gives one of

2

u2 + Av +532 = Ny

with u, v = X + 3¥» 5v; ¥ + #x, ix; or ix - ¥)» 2{xey),

according as ny. x or neither is even. Then we have
“n=h(uy z - v, 5+ v)e

W_Lhua With & aimuar notation,

s’j; hnx9¢n¢213¢275+553g o
hnxa-n-xy‘kyeofyzfﬁzz.
A solution of h' = n gives

ion = uS + 3v2 ¢+ 6825, uw 3y + 28, V= 3x + Yo

Kow u = v (mod 2); and u' u, v are odd, we may replace
them, without eltering the value of u? + 3v%, vy 4(u¢3\').
¥(u ¥ v), which with proper esign are both even. We can
tlierefore solve ,

R sna X4+ 312 » 1752,
Now we may supposgﬁ by putting if necessary =X for X,
that X = -% (ma 3), 80 that w= (X -@2£)/3 18 an
integer. Them \n find

no- h(\Y - 8, B8, '}o

Regulaprity of hls' ¥We have
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Q h = x2 4 xy + 25° + 32°,
Jtzq-xy-ryzd"m.

As inAth’e cese of h 4, a solution of h' @ n leads to one

of
n=vud s 3ve e 725 = h(u + z, -2z, V).
14 Eegular forme with sre=free, but divisible.
by ney;ggr 4 ggg "2 A repmaentative of every possible

clasa or emch roma is shom m 'l’a‘ole J.I. with the help of
?.meomm 2 to 6, almpla oalcmlationa ahmv that these 54
fum are the only posaibi.lities. 29 of these be).ong to
,nlngie-claes gcnera and 80 are regulnr I diu?uaa the

.others bﬂietly. - &3
o is dealt withxnthesamemyas hlb' In fact

1%
/‘\
gv(flg) 1ls blﬁ.@

It can easily be proved that in case 4J (£} and alr)
are diviszble precisely by the first, second powsr of p

PAC-E 76
reepectively, ao that case 2 of Lemna 2 1is aepplicable,

while gp(-f) has p—prograsnim, then the regularity
of 3;,(:) is a anfﬂeiant as well as necessary ocondition
for that ot } This romlt (vhich holds also for p = 2)
G @3 Qsy
oetabliehss the reznlaritar of fm. Tip eand L4
The minins cm u rl rl hes to represent all
n such that o)

n g 1.4 (mod ¢5*%), n = 0 (mod 25) or £ O (mod B).

For any such n, 2n is the sum of three squares, 80 we
have
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on = u° + v2 + v

and we may suppose U = V (mod 6); for if this cannot be
satiafied by permuting u, v, w and changing their signs,
we have u2, v°, w2 =2 0, 1, 4 (mod 5) in scme order,
end n = O (mod 5). But then we must have n = 0 (mod 28B),
and so we cen have u-v-wso(mods).

80 we have

an = x2 + Y2 4 9522, |
with x=u+i.¥-?t.za(u.-'-v)/5. Binoe u + Vv & W
mst be even. weo xmn X= Y= 3% r&ﬁ@d 2). So we ea_z’:,'
aausfy | | -

4n o (2:1 * i)g + 2(gy + z)z + 262 = ar;(x, vy 2)»

1

15.-Ee ; b : t not b

All possible classes of this type are represontad in Table

@ sc that Tables I to. III together show all poennxuzm
ties with 4 % O (mod 4). There are just two, marked 7,

vhosé rogulerity I have been mblMe. The proofs

i <:_m by the methods outlined in the preceding two seations.
3 # f?(g dise v ;l“f? #1004, discr 3375
16. The method onn ‘be extended to four or more vnriablea.

or to foms w!uch are mgnlar with one exception; but 4in
either caase tlw aalcclatim are formidable. Y am in-
dedbted to Pratasaorv Dnvenport for reading an earlier dx'én

of this paper, a nd making e number of suggestions. -




Appendix.

Table I; representiative forms of the twenty-four regular

972

clesses with squsre-fres d.

Primes for
1 h, d(hy) | which hy has
progresgions.
1 xg«rxy-rya*yzi-ag 2.*- 2
2 X2 s xg+ye s 22 5" 3
1 8 22 4+ xy + ¥° + Ys-bazz. B B
4 x2 r»xr-fyz » 35° 6 - 2
B I < *’,’é"’%.ﬂ -& yz ¢ 9:2 | 6 - 3
6 | 224 38 4 yu o 853 I TR
7 x2 + y2 + xz + ¥3 + 35° 10-| 2
8 x8+xy+2y2f-2yz72z2 10 5
9 x2 + y2 + gz + 32° 11 +| 11
10 12¢:y-+'2y9 +yz+0ef | 13- 13
1 22 exy+ye +yz 488 | W ‘
12 | a2 2 « yz + 48 16
13 %8 +» 27° + ye + 225 16 -
14 | 2B e wixge 250 ¢ 295 + 355 17| A7
16 22+ xy + 2y° + 32° g1 «| B
16 x2 & 2y° v x5 + ¥z + 522 g1 - 7
|27 5B o 25% 4 x5 » 358 ge-v| 2
18 :ﬁ&:;tyBc-lOzz 30 ¢ 2, 3, B
19 28 o+ xy o+ 3y + x2 + 32° S0 ¢ 2
20 38 4+ xy + 3y% + x5 + 52° L 5
21 x’-&ya+u+yz+u:2 48 ¢ 2, 3, 7
23 %2 » xy + 5y2 + Oyz + 622 | 46 | B




Yain

Tabl 80
Primes for
L et Y
23 x2+2y2+xz+952 \ 70 2 | 24 By 7
24 x2+xy+5y2+6yz+6z2 78 - 24 3y 13

Teble II. Representatives of all clesses of regular forms

ﬂ.ﬁx d& not square-free, but divieidble byA neither 4 nor 9.

q

1 xgv+v.213¢xvg+8n+?:’f BEIRER'S

2 gx® + x;* 2y2 + Bys + 522 5| 267 hy

5| xBexye+ar®sbyes0s®. | B|126-| £, by

4 ax‘o‘ + 2xy + 3y2+:z+3ys+7zg.-' i 5 1256 - ‘fz ," h, '

5| x2+xy+2y2 ¢ 78 | 7] 494 ng

6 | 2x2 + #xy + 3y2 + byz + B2 5| 60:| by

7. x9+xy+912¢10yz+1052 6 | 260~ fs.h,,

8 | 2x2 & Bxy + 352 + byz + 1622 6 | 860" rs'. h

8 x2+xy_+4y2+5yz'+552 8| 50° hg

10 | x2 + xy + 352 + 1122 11 [181:| by Lénfng

11 | 2x2 + xy + By + l3ys + 1322 |15 |169¢ hio

12 | 222 + xy + 3y2 +"i’yz+?s.2 7| 98:| by,

13 22 4 xy + 9% + 775 + 2187 7 | 686° ria,ﬁu

16 | sa®saxysbydedxzeyns1ss® 7 {686+ | £,05 hyy ’

18 | #x% » x7 + 277 + & G2 5| 750 hy,

16 | 8x2 + xy + Ty2 + 1675 + 1622 5 |376 | f15, Byg

L 4 22 + xy + 4;2 + bz2 6| 76" hlar o .y
| 18 3x% » 3xy + 6y2 +2xz +y5 +62° |17 |289°| by, Lenfn,

i aka ke




Table II, contd. 4 u,}/gf J ”/Ug |
‘Related
i 4 & |forms. '
19 22 + xy + 2y° + 2122 ‘ 71147 ¢ | hyg
20 | 3x2 + xy + 3y2 +8xz38yz+5z° 7| 147 ¢ | hyg
21 | x2 + xy + 3y° + 2222 11| 242 | B,
22 | 2x2 + By2 + byz + 52° 5| 150 . hla
25 | x° + 10y2 + xz + 192 5| 750 | f500 Mg
24 | 3x% + 3xy + 752 #1022 | B|750% | £, By Tk
25 x2 532' + Xz + ‘Syzj; + 922 6{ 160 ‘| hyq . ~_
26 512 - Xy + 5y2+zxz+2yz+2252 5 ‘?5(_)6’ f26’ hlg —f
27 | 2x% + xy + 7y° +xz+3yz+’fz2 11| 363 ¢ hog : i
28 | 5x2 + 4xy + 512+51z-5yz+52.2 7| 2949 | hoy
29 | 6x2 + 2xy + 10y° + 49x2+1332° ,/'7' 2088 ¢ | f.o, h,,
30 | 5x° + Bxy + 7y° + 46xz +1382° 23 |1068 + | hoo ' }
31 | 3x2 + xy + 8y2 + 1022 5| 360 = | hy,
32 | 322 + xy + 352 + l4s? 7| 4907 | by,
35 | x2 +xy +9y2 + 7022 | 36|2450:¢ £ T ,hzq
34 | x2 + 13y2 + 13xz + 13yz+652°|13 (1014 + | h,,
The last column shows the forms derivable from ~ o
each f; by the processas of Lemma 2 i
Tehle III. Representatives of all possible regular R
classes with 4 divisible by 9 but not by 4.
_ W & Beln
—Gh—




] f DEAR - L ‘

Teble O (Jﬁ duis (b iﬂy’ ?%}\;ﬁ? not by g, 76
Coefficients of f£j| Classes b
1 (a, by c; ry By t) [in genus L d { Related forms \
(36 | 1, 1, 55 1, 1, 0 1| aesim Ii
36 1, 2, 33 20 1, O 1 1} 18- n{ fil
37 1,1, 7; 0,1, 0 ) % 1| 27| h, I
R 38 1, 25 4; 1, 0, 1 ¥ e n,
§ 39 1,2, 7 25 0 1 1| 1 45{mg
$leo | 1.5, 2058, 0,1 1| 3 1zemyy
11 s | 28 75, 1,0 |1 |5 226 Ty 5o By | |
| RN 5, 55 77; 36, 0,8 |1} " 882s) £12:%400 hyy
s | 1,120,995 1,0 (U] 618 G g 50,40
A N L s et
(a5 | 1,7, 9; 950,01 |1 |9l 162 my : i
46 2y 6y 9 9,'-0.'_2 1|9 16'2@( h,
~ |47 1, 75 93 0, 0y 1~ 2 | 79 243 h2
48. | 2, 5, 835, 1, 2 1 | 9| 2434y
T 49 2,_3.,"'9; 9y 0, 1 ()| 9 @}ha |
Y |so 1, 7, 18; 0y O, 1 2 | o 486 n,
m 61 | 55 90 95 95 0, 3 1 | o|1184f By
" |s2 9, 9, 11; 6y 3y 9 1|9 2&3@%1118‘"
3168 Ty Ty 90; Oy 46, 4 1 | 46| 2026y f5, Tugs By
\54 5, 17.1754;'-@? ‘12/5-; sl 1 |63 7938 £100 510 Byp
56 7y 13, 375 13, 2 |1 4812160 £,.0 Tgor Dyg
~NE 1, 1,4’5'; 0, 0, 1 O A I I
§; 87 | L, 1, 65 0, 0, 1 1| 3 10 n,
“ o8 2, 24 25 =Ly 1, 2 1| g 18 b
s v (59 2, 2, 3; O, Oy 1 1| 8 48] ny,




Coefficients of £ |Classes l '|
1| (a, by 03 T 8¢ t3 {in genus| W d |Related forms |

1, 3y 45 05 2, 0 g8 | 8 | 46ihyq

1, 34 65 3, 0, O g8 | 3| 63 b

2, 2, 9 6, 0y 1 1 | 8| 63¢n,

1, 1, 30; Op Oy 1 1 | 8 | 90| by,

9, 3y B3 O 29 O 1 | 8| 99|B

2, By 55 59 14 O 1| 56| 99 by,

B3y By B; 35 39 O 1 | 8 | 1264 by,

2y 5y 113 3!_2,0 1 5 254% h24 =

1, 4, 15; 03 05 1 1 |16 |:@88 £ 16* To9, ‘hm e

By 8y 115 35 Be O 1 1156 (12267 flsﬂ 51, lf,hza ]

2, 2 163 0y Oy 2 g |16 | 826¢ rn’rw,nm

5, 6y 73 05 09 8 g |81 | 4627 £100f0 ol o

2, 8, 213 21, 0y 1 1|21 | 442 £ 000ty

Gy, Gy 65 Op Oy B 1 |15 | 460° £ o0f by 1o

3y 7» 30; Os Oy 3 1 |16 (22807 S, . .oy "‘13 o

1, 19, 305 04 Oy 1 1 |16 (22609 5, 0 (o "‘m

3, 7, 10; 10, O 3 1 |15 | 4509 foge Tgq vByp | E

9, 9y 655 45, 0, 3 1 |15°(88503 £,0 ¢ s ohyg |

6y 7y 663 Oy 33, 6 1 |z3 |1089. gg.?.fsﬁ, boo

2, 11, 21; 1, O, 8| 1 |@1 | ese setal

i1, 11, 15; a.'a.’,/e' 1|1 lsivar f’ gy - "’21
8| 3 17, 89; 39, O, 3 1 |39 3048 £5,.T, ,,.n‘“é:'
Lo na oo :
;;Hs 83 1y 39 35 3, 0, O
IR 84| 2, 2,2 1, 2,2 1




7g

Coefficients of £y |Classes
1] (a, b, 0} ) 8, t)|in genusii/ l Related forms
861, 1, 18; 0, 0, 1 1 |3 |7 54|fgns ;’h4
86| 1y 45 63 65 0 1 i |3 ] b4 raa, h‘B
87| 2, 3, 53 3, 0, O 1l |3 | 54 fﬁ?' h4
88 | 3, 3y 5; "l' 1, 2 1 3 |° 84 faa. lya
89 2) 6' 5: 5' l‘_ 2 i 3 |¢ 136 fsg' nlg
90| 1, 3, 12; 34-04-0 2 |5 |°338|fgor Byg
'\ . . .
93| 2, 35 85 05 1, O ‘B |3 |<189|fg3s Byg
931, 4,185 6, 0,1 | 1 |5 |189eg,, ny
\J y : . ’ @ V - .
N 94| 2, By 93 fgt.:oﬂ‘ i 3 = 189 t@ﬂ' hlﬁ 2
;{ 95| 34 3, 115 8y Oy 3 1 8 [+270f.0 g
l 86 1, 6 13} 69.1,.0 1 | 3,270 r“,' hlg'
~N( %98} 1, 6, 135 6,-1,.0 3 |3 897t 0 by
1006| 1, 9, 13; 9, 1, O. 1|3 (-378 fﬁ&' hay
I 10; 2. 5' 1«5‘ 9‘ 0. 2. 1 3 |-378 rsa. hgl
:'T 102| 6, 5y 9}5' 3’ 4 i 3 (3708 rﬁ?' hﬂ‘ *e-
1] e |
7104 2. 153 52; 151 1’ 2 |1 33?_5 %,‘”“‘qﬂ 'hlz -
3 1o 2 ~—— " A 'Y
6| 1, 4 ‘53 3) Or-} : |38 (2678 :17,(9,-7991 ehys
106| &, 8y 65 By Oy O 8 |15 |-675 fp,( 60)7b;¢o LT
107 2, 8, 21: 0, 0. 1 g |21 91323 f1q ‘, 71 92 ;hm »
108| 6, 7, 10} 7, 3, O 1 |214{133s £20,62,72,1% .h,16
109 6, B 62' 1, O 1961 t. '
+ B ;3- n‘& ,__1 g 3882052’7149_ _
110} 7, 7, 163 1.5,.0. i 1l {16 @11550% fz&,”’ vs 45 ‘hla




Coefficlients of £, |Clesses
1 |{{a, b, 63 7y 8, t}|in genug W d |Helated forms

N 113 |9, 11, 21; 3y 9, 6 1 (15 [6760, ru’u,‘,’.,;.,t,,’,m.hm
;\: 114 |3, 17, 3B; 6, 0, 3 1 15 6750, al,l‘l; “,73,75;45;110’1118
N 118 |6, 1T, 333 27y Oy & 1 16 6?50‘- rjf,l‘,‘f,7"71,1'zﬂz’h19
\i llﬁ ". .IZ:; 105; -o" 45, 7 1 15 67505. gslzl‘l‘q'w)m’é”/‘blg
117 |7y 10, 133 6, 14 4 1 |33 |3267|f, .

: i | p AUy 13} Oy 7 atd 3'7,.65‘,78,‘34 hﬂﬂ
e 3 119 |56y 6y 363 9, 7, 8 1 (21 |2646 58,"36, 24, o1 yhgl
é | 120 (9, 14, 489; 117,.0, 8 | 1 |39 |91e6 r_,,c o7, 81,1 ;z.-,bg;
I L 8T 0y 1, O 3|3 |e8lifg. o elig,

> . ‘ .o}
?:' 122 1’ 4' 6,7 5. 0'. 1 3 ¢ 81 rg‘ﬁ st C 'hai‘
- _ : 123 |1, 6, T3 0, 1, O 3 |- 168 £87,S7‘ . rh‘
~ |184 |25 20 125 3, 0y 1 723 3 1168/ Tg, 55 B
°§ 126 |24 35 85 34 89 O } 3 | 168 296,,8 Ry
:} 126 3‘ 5. 5}6. 011 S 153 fgglsg . ’hﬁ
‘.; 127 |15 Te 335 95 0y 1 3 | 810/ 45 ¢35 LT
: h
128 |8y 11,31 35 Oy 5 L |18 (4000 T, 110,95 47 1028
3@ 189 |2, 3, 115 S, 1, O 3 |3 | 2430355 g4,56" B
- . !
Y% 150 [g, 5, 545 15, 0, 2 4-| & | 4882194 84,85, Ps

+
[N o4 SRR

Sy PR T . i . L.
B R e I ARr S T CR SRR IR TR
AL o ety TR | oy
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