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EXCEPTIONAL INTEGERS FOR GENERA OF INTEGRAL
TERNARY POSITIVE DEFINITE QUADRATIC FORMS

RAINER SCHULZE-PILLOT

0. Introduction. In [2] it was shown that in a certain sense most integers repre-
sented by some form in the genus of a given integral ternary positive definite quadratic
form are represented by all forms in this genus. More precisely, let (L,q) be a Z-
Jattice of rank 3 with integral positive definite quadratic form. Then all sufficiently
large integers a that are represented primitively by some lattice in the spinor genus of
(L, q) are represented by all lattices in that spinor genus (see corollary to Theorem 3
in [2]). The theorems of that article actually imply a slightly sharper characterization
of the set of exceptional integers that are represented by some forms in the genus
of L but not by all of them. Since there seems t0 be some interest to have available
a characterization of this set that is as sharp as possible, I give such a description
and some examples in this note. I also comment on the question of effectivity of the
results and on results for primitive representations.

As in [2], a special role is played by the integers ¢ in the square class of a primitive
spinor exception, that is, in the square class of an integer represented primitively by
some but not by all spinor genera in the genus of (L,q). The Fourier coefficients
of the spinor generic theta series at integers tp?* for primes p in certain arithmetic
progressions do not grow for growing p. In view of the positivity of the Fourier
coefficients of theta series, this implies that the Shimura lift with respect to such
a square class of the difference of the theta series of lattices in the same spinor
genus omits these primes in its Fourier expansion. One might therefore be tempted
to speculate about a connection to CM-forms. By looking at an example, we see,
however, that this is not the case; in general one has to expect that one is looking at
the sum of a cusp form and of its quadratic twist.

Acknowledgement. 1 thank Peter Sarnak for stimulating discussions on the ques-
tions mentioned above.

1. Exceptional integers. Let (L,q) as above be a quadratic lattice of level N, that
is, for the dual lattice L¥ we have q(L#)Z — N~!Z. Let d denote the discriminant of
(L,q). Let T denote the (finite) set of primes p for which (L, g) Temains anisotropic
over the p-adic completion Q) (for p € T, we have p | N) and write g(L) for the
set of numbers represented by some lattice in the genus of (L,q) (or equivalently,
locally everywhere by (L,q)), gr(L) for the set of t € g(L) that are divisible at
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most to the rth power by the primes in T, and g*(L) for the set of t € g(L) that
are represented primitively by some lattice in the genus of (L,q). For t € g;(L),
there is an integer m (which is bounded) consisting only of primes in 7 such that
t/m? € g*(L); all statements about representation of sufficiently large t € g, (L) are
therefore immediately reduced to the corresponding statements for sufficiently large
teqg*(L).

Recall the following facts about representation of numbers by spinor genera of
ternary lattices (see [3], [8], [10], and [11]):

o There is a finite set of square classes #;,Z? (the spinor exceptional square classes)
such that numbers in g (L) outside these square classes are represented (primitively
if they are in g*(L)) by all spinor genera in the genus of L (i.e., in each spinor
genus, there is at least one lattice representing the number), and all spinor genera
have the same measure of representation (or DarstellungsmaB) for such an integer.
An integer t whose square-free part does not divide d is not in any of these exceptional
square classes.

e For each of the spinor exceptional square classes, the set of spinor genera In
the genus of (L, q) is divided into two half-genera containing equally many spinor
genera such that all spinor genera in the same half-genus (primitively) represent the
same numbers in that square class (and with equal representation measures). The
numbers that are (primitively) represented only by one of the half-genera are called
the (primitive) spinor exceptions of the genus; if ¢ is a primitive spinor exception and
m is an integer prime to the level N, then tm? is a primitive spinor exception too. The
sets of (primitive) spinor exceptions have been explicitly determined in {10] and [4].

e For each #; from above, let E; = Q(./—dt;). If p is a prime that splits in E;/Q,
then for all ¢ € #;Z?, the integer tp? is a (primitive) spinor exception if and only if
t is a (primitive) spinor exception and ¢ and zp? are represented by the same spinor
genera in the genus of (L, g).

e Let #;, E; be as above and let p be a prime that is inert in E;/Q. Let ¢t €
1,77 be a primitive spinor exception of the genus of (L, g) represented by the half-
genus of spn(L). If p /N, then tp? is primitively represented by the other half-
genus not containing spn(L) (but not by the half-genus of L). In particular, the tm?
with (m, N) = 1, for which at least one prime factor of m is inert in E;/Q, are
primitive spinor exceptions but not spinor exceptions. If p | N, then either there 1s a
vo depending on N such that 1p?¥ is not a primitive spinor exception for v > vg or
the tpz" behave in the the same way as in the case p/N.

e Let t;, E; be as above and let t € ;Z2, p be a prime. If p is ramified in E;/Q
and p?” divides ¢ for v € N large enough (depending on N), then ¢ is neither a spinor
exception nor a primitive spinor exception.

We proved in [2] for positive definite (L, q) that all sufficiently large integers
that are primitively represented by the spinor genus of (L,q) are represented by
all lattices in that spinor genus and gave an asymptotic formula for the number of
representations. However, we made no statement about the representation behaviour
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of those integers that are primitive spinor exceptions but not spinor exceptions: If
they are sufficiently large, they are represented by all lattices in the spinor genera
representing them primitively and by at least one lattice in each of the spinor genera
in the other half of the set of spinor genera in the genus.

The following theorem shows that most of these integers are also represented by
all lattices in the genus with possibly (and usually) infinitely many exceptions.

THEOREM. There is some constant ¢ depending on N andr such thatall t € g, (L)
with t > ¢ are represented by all lattices in the genus of (L,q) unless one of the
following conditions is satisfied:

(i) t is a spinor exceptional integer, in which case it is represented by all lattices
in the half-genus representing t and by no lattice in the other half-genus;

(ii) t/p? is a spinor exceptional integer for some prime p that is inert in the
quadratic extension E /Q associated to the square class of t, in which case t
is represented by all lattices in the half-genus not representing t/ p? and by
precisely those lattices in the other half-genus that represent t p? (hence by
all of them if t | p> > ¢ holds).

Proof. We assume without loss of generality that r € g*(L). By the results of [2],
there is a constant cg depending on N such that all integers t > cg in g, (L) that are
primitively represented by some lattice in the spinor genus of (L, ¢) are represented
by all lattices in the spinor genus of (L, g). Choosing ¢ > co, we therefore have only
to deal with ¢ that are represented by the spinor genus of (L, g) but are not represented
primitively by that spinor genus. Let E/Q be the quadratic extension associated to
the square class of 7. Let 7 € g*(L)Nt(Q*)? be such that all representations of 7 by
the lattices in gen(L) are primitive; we call such a number a primitive element of
g*(L) and notice that such numbers are almost square-free in the following sense:
There is some constant ¢; depending on N such that primitive elements of g*(L)
are divisible by m? only for m < c¢; (this is an easy consequence of the well-known
representation properties of local lattices [9]). Hence there is a constant ¢, depending
on N such that 7 < ¢, holds for all primitive elements t of g*(L) that are in one
of the spinor exceptional square classes. We can choose 7 such that it divides our
given ¢, write t = tm?, and decompose m = m,m,m;ms, where m, is the largest
divisor of m consisting only of primes p for which L, is anisotropic, m, is the largest
divisor of m consisting only of primes ramified in E/Q and prime to m,, and m; is
the largest divisor of m consisting only of primes inert in £/Q and prime to m,. By
assumption, the “anisotropic part” m, of m is bounded, and we can restrict ourselves
to the case m, = 1; in particular, we can assume ¢ € g*(L). Since, by assumption, 7 is
not represented primitively by the spinor genus of L, it is a primitive spinor exception.
The results of [4] quoted above imply then that m, is bounded as well, and we can
restrict to m, = 1 (the restrictions made being justified by suitably enlargening cp).

Let K be a lattice in the genus of L representing 7. The integer # := tAmg2 is then a
spinor exception that is primitively represented by some lattice K’ in the half-genus




354 RAINER SCHULZE-PILLOT

of K it is (primitively) represented by all classes in that genus if # > ¢g by the results
of [2]. We are left with the case that 11 < ¢ and m; # 1 hold. We choose ¢ > ¢2. If m;
is composite, it has at least one proper divisor m; such that tlm’,'2 > ¢ holds. Hence
fnm' ,2 is represented (primitively) by all classes in one half-genus Hj in the genus of
L, and for any prime p | (m;/m’), we see that tlm’?pz is represented (primitively)
by all classes in the other half-genus H> of the genus of L and represented (but not
primitively) by all classes in Hj. Then, of course, ¢ is represented by all classes in
the genus of L as well, and our assertion is proved. O

Remark 1. An anologous result is true for representations with additional congru-
ence conditions. The proof is the same as above.

Remark 2. The result we gave in [2] is not effective. It would be no principal
problem to make the estimates on the error term in our asymptotic formula effective; in
fact, for the estimates of Fourier coefficients of modular forms of half-integral weight
greater than or equal to 5/2, this was done in the Diplom thesis (or Diplomarbeit)
of M. Bienert [1]. However, as already remarked in [2], the growth of the main term
in our asymptotic formula is of the same order of magnitude as the growth of the
class number of imaginary quadratic fields. The effective bound of Goldfeld [5],
following from the work of Gross and Zagier, for the class number is much too weak
for the present purpose. It is, however, well known that under the assumption of
the generalized Riemann hypothesis, the class number bound #(d) > d'/2~¢ can be
made effective. In fact, we have (from Siegel’s proof of his class number estimate),
for any 0 < ¢ < 1 for which the Dedekind zeta function tp(s) of Q(+/=D) satisfies
{p(1—€/2) <0, the estimate
w D1/2—€(1-2¢)

4 e
(where w is the number of units of Q(+/— D). Under the assumption of the generalized

Riemann hypothesis, our asymptotic formula (and the sharpening in the theorem

above) therefore becomes effective too.
The author is frequently asked whether the results of [2] also hold for primitive

representations. We take this occasion to state this fact in a corollary.

h(D) >

COROLLARY. There is some constant ¢* depending on N and r, such that all
t € qr(L) with t > c* that are represented primitively by some lattice in the spinor
genus of (L, q) are represented primitively by all lattices in the spinor genus of (L, q).

The same is true for representations with additional congruence conditions. More-
over, the primitive representations of t satisfying these conditions by (L, q) are asymp-
totically equidistributed in the sense of [2, Theorem 3] on the ellipsoid surface

{xe LR |g(x)=1).

Proof. Denote by r(L,q,t) = #{x € L | g(x) = t} the number of representations
of # by (L,q) and by r*(L,q,t) the number of primitive representations. By the
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Mébius inversion formula, we have

g =Y wdr(L.g.5).

42|t

As usual, we denote by

Z{K}V(Kvat)/|0(K)l
2 k) 1/10(K)]

(where the summation goes over a set of representatives of the classes of lattices in the
spinor genus of L and where |O(K)| is the order of the group of units or isometries
of (K, g)) the weighted mean of the representation numbers of ¢ by the lattices in the
spinor genus of L and analogously for the averaged primitive representation number
r*(spn(L,q),t). Obviously, we then have

P*(spn(L,@).1) = Y uldyr(spn(L.a), th)

r(spn(L,q), 1) :=

d2|t
and hence
r*(L,q.t)—r*(spn(L,q).1) = Zu(d)(r(L,q, %) —r(spn(L,q), ég))
d?t

The number of terms in the sum on the right-hand side is at most the number
of divisors of ¢, hence O(t¢) for all € > 0. Each summand u(d)(r(L,q,t/dz) —
r(spn(L,q),t? /dz)) is estimated as a cusp form coefficient in the same way as in [2],
and the main term r*(spn(L, ¢), ?) is at least of the order of magnitude of t1/2=€ a5
in [2]. This proves the first assertion; the remainder of the corollary is proved in the
same way as in [2]. t

2. Shimura correspondence. As usual, #(K,z) = > ek €Xp(2mig(x)z) 1s the
theta series of the lattice K, and

¥ k1 9K, 2)/10(K))
>z /10K

(where the summation goes over a set of representatives of the classes of lattices
in the spinor genus of L and where |O(K)| is the order of the group of units or
isometries of (K,q)) is the theta series of the spinor genus of L. We proved in [11],
[12] that the Shimura lift with respect to any t' of ®(L,z)—®(spn(L), z) is cuspidal.
Let us consider the following example taken from [7]: We look at the lattice K giving
the quadratic form 4x? 4 48y% +49z% +48yz +4xz and the lattice K’ giving the
quadratic form x2 + 48y% + 144z%. The forms are in the same spinor genus, with
another spinor genus in the same genus consisting of the lattice L with quadratic

#(spn(L),z) =
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form 9x2 + 16y% 44822 and the lattice L’ with quadratic form 16x2 +25y2 +25z2 +
14yz+16xz+ 16xy.

The exceptional square class is just the set of integral squares, and the associated
quadratic extension is E = Q(+/=3) by [10]. Write f(z) = 9(K’,z) — ?(K, z) and
8(z) =9(L,z) —9(L’, z). By results from [12], /. & are “good” cusp forms, that is,
forms whose Shimura lifting is cuspidal. The explicit calculation of T'( p?) acting on
theta series given in [12] also shows that T'(p?) f is a scalar multiple A, f of f for
p=1mod3and A,g of g for p = —1 mod 3, and vice versa with A p replaced by
some (i, for g. This follows from the fact that T(p?) f is in the first case, a cusp
form in the one-dimensional space of cusp forms generated by ¥(K,z), 9(K',z),
and in the second case, a cusp form in the one-dimensional space of cusp forms
generated by ¥ (L, z), 9(L’, z). In fact, an explicit (computer-assisted) calculation of
the theta series and their T (p?)-images for the first few primes p shows that we have
T(P)f =rpf, T(p?g = 4pg (respectively, T(p2g = A, f, T(p?) f = A,g) with
Ap =-2,0,—4,-2,4 for p =5,7,11,13,19. But since for p, p’ = 1 mod 3 and
q.q9' = —1 mod 3, we have Aplig =Agup and Ay g = Hghy, by the commutativity
of the Hecke algebra, we see that A p = Mp holds for all p # 2,3. The associated
eigenforms f+g, f — g and their Shimura lifts are thus finally seen to have Hecke
eigenvalues X, x (P)Ap, where x (p) = (=3/p) is the quadratic character associated
to E/Q, that is, they are quadratic twists of each other. In general, the situation may
be slightly more complicated, but the apparent lacunarity of the Fourier coefficients
of #(spn(L)) — ¥ (L) in the square class of a primitive spinor exception is also caused
by adding up character twists of cusp forms for the quadratic character associated to
the square class in question.
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