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28 STEFAN BERGMAN.

Kp(5,D) =1 i’ | @1 S 1@ PP S oo,

which yields the inequality (5.1).
We note that using other inequalities for Kg(z, ) and for its derivatives
(see [2] § 9) one can obtain other inequalities similar to (5.1).

BrowN UNIVERSITY.
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ON A PROBLEM OF RAMANUJAN.*
By Arxorp E. Ross.

1. It was apparently known to Diophantus and first proven by l.agrange
(8) that the form 2® 4- y* - 2* +- u* represents all positive integers. Examples
of other integral forms
& = qz? 4 by® + c2® + du?

which represent all positive integers, were first obtained by Jacobi (3),
Liouville (9), and Pepin (13). Ramanujan (14) proved that there are only
54 sets of positive integers @, b, ¢, d such that (1.1) represents all positive
integers. Dickson (2) called such forms wniversal. Universal quaternary
quadratic forms with cross products were studied by Dickson (2) and Morrow
(11). ‘ . :

" In the above mentioned paper Ramanujan proposed another problem, viz.,
the problem of determining the conditions under which positive quadratic
forms (1.1) represent all except a finite number of integers. Kloosterman (7),
employing the methods of Hardy-Littlewood succeeded, save for a finite number
of exceptions, in solving that problem. ’

Tt is natural to ask Ramanujan’s question concerning general positive
quaternary quadratic forms. Should Tartakowsky’s theorem (19) concerning '
the representation of large integers by positive quadratic forms in n =35
variables hold also for n = 4, then one would expect the answer to that ques-
tion to be found as an elementary corollary of this theorem and to be expressed
in terms of the generic characters of quadratic forms. It is of interest to note

" that, although Tartakowsky’s theorem does not carry over unconditionally to

forms in four variables, still for forms of odd determinants and certain orders
of even determinants, the answer to Ramanujan’s question may be obtained as
an elementary extension of the results of Kloosterman and some other ele-
mentary considerations, and that, moreover, save for a finite number (of
classes) of exceptions the conditions are given in terms of the generic charac-
ters. The results here obtained suggest conditions which the generic characters
of a genus of quaternary forms should fulfil in order that all forms of that
genus should represent the same large integers.

The method employed may be summarized as follows: Through the use
of the canonical form of Section 3, the problem of the representation of in-

* Received August 3, 1942 and June 14, 1945.
29



30 ARNOLD E., ROSS.

tegers by the original form is reduced to that of the representation of integers
hy a certain quadratic form without the cross products (Section 4.1).
Kloosterman’s conditions (7) applied to this last form (Section 5§) yield a set
of generic character conditions which assure the represcntation of all large
integers by the original form. Upon closer examination of these conditions
one notices (Sections 6 and 7) that some of these are necessary but that the
failure of the remaining merely implies that a form represents all lurge integers
only if it represents all integers or all even integers. In view of the results
in Section 2, the determinants of such forms do not exceed a fixed number.
Thus, outside of forms in Section 5, there is only a finite number of classes of
forms representing all large integers. A study of some of these classes (Sec-
tion 8) yields interesting examples of representation of mtegers by positive
quaternary forms in a fixed genus.

2. An upper bound for determinants of classic universal positive
quaternary quadratic forms. Among the 54 universal forms of type (1. 1),
the form 2° + 2¢% + 42% - 14u? has ! the largest determinant 112. A simple
extension of Ramanujan’s argument yields ? the more general and quite useful

TarorEM 2. The determinant of every classic universal positive quater-
nary quadratic form is = 112,

We write
4
(2.01) ' B, (z) = T Az =, 04;T:x;
© 4=
where ay; are integers. If ®,(z) represents all positive integers, it represents 1

properly, and hence is equivalent to a form of type (2. 01) with a;; =1 and
a5 =0 for j=2,3,4. Thus

4 .
@, (2) ~ P(y) = 9% + $2(Y2, Yss ¥a) = 93" +”2_2b6iyi?/i-

Tn order that ®, and, hence, ®, should represent all positive integers, the
minimum a of ¢. must be = 2. For otherwise ®., and therefore also ®,, would
not represent 2. Since the minimum a is represented properly by ¢.

(2.02) o~ by = 0227 + b2s® - €24° 4 Rr2924 + R820224 + Rl202s,
where

(2.03) 0<s<a and 0=t <a, a=1 or 2,
and hence

(2.04) O, ~ O3 =2, + ba(22:%3, 24).

1 Cf. Dickson (4), p. 115.
2 Ross (13), Theorem 8.
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9.1. We let, first, a = 1. 'Then, in view of (2.02)-(2.04),

(2.11) &= 22+ 2.2+ bzg? -+ cz® A rzezy = 2,7 4 227 - Y (2, 24).

jn order that ®; should represent 3, the minimum 2/ of ¢, should be =3.
Then

(2.12) Ya ~ s = Mu,® + 2Nusu, 4+ Lus,
(2.13) — (M/2) < N= M/R, M=1,2, or 3,
and

(2.14) B~ By = u,* + w." + Y.

The form ®, would represent all integers only if M®, should represent
all multiples of 3. But in view of (2.12)-(2.13)

Mo, ~ M®, — Mu,®> + Mu® + (Mus + Nuy)® + Du,®

where D — ML — N2 is the determinant of ®@;. Thus in order that M®, sheuld
represent all multiples of M, D must not exceed the smallest multiple of M
not represented by ’

Fur (uy, w2, Us) = Muy® + Mus® + Uq
It M=1, fy =u,*+ .+ Uy* 5= 7 and hence D =17.
If M =2, f = 2u,®> + 2u,® + Us* = 28 and therefore D = 28,
If M =3, fs = 3u,® + 3u,® + U.® 5= 18 and therefore D = 18.

Thus, in case @ — 1, there is no universal form &, of determinant > 28.

2.2. Next, let a = 2. In order that &, should be universal 2®, should
represent all even integers. But in view of (2.02) and (2.04),

2B, ~ 2d; = 22,% 4 (222 -+ 25 + 524) % + Ya(2s, 24)
where
W3 (25, 24) = (ab ——1*) 2, + 2 (ar — st) zsz4 + (ac — %)z
Since 22,2 4 Zgz =4 10, the minimum M of y;(2s, 24) is = 10. Also,

Wy~ g = Mus® + RNuauy + Luy®

2D, ~ 2d, = 2u,% 4 (Ru. -+ fus + s1uy) 2 - s (s us)
and '

RM®, ~ 2MP, = 2Mw,® + M (2u. + tyus + s u4)?
—+ (Muz + Nu,)® 4 (ML -— NHu,l,

In order that @, should be universal 2M®, should répresenf all multiples of

%M. Hence ML — N? does not exceed the smallest multiple of 2M not repre-
sented by

far (1, Uz, Us) = 2Mws® + MU + U2,
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Since by a well known theorem on determinants the determinant D of &, is
equal to 3(ML—N%), we have the following results which we state in a
schematic form:

M fy—2Mul+ MU+ Ut~ 2Mk ML—N*<2Mk D=
1 2u? + U2+ Ul 14 < 14 = 7
2 du? + W2+ Ui~ 56 < 56 < 28
3 6u? + 3.2+ U4 30 < 30 < 15
4 Su? + 4U2+ Uz~ 56 < 56 =< 28
5 10u? + 5U.2 4 U= 50 < 50 = 25
6 12u? 4 6U2 + Us2 == 120 =120 =< 60
i 14u? + W24 U2~ 98 = 98 < 48
8 16u,2 + 8U.2 + Ug?5< 224 =224 =112
9 18u2 + 9U.2 + Ut 5= 126 <126 < 63

10 20u,% -+ 100,24 Us? == 200 < 200 =100

Thus in every case the determinant D does not exceed 112.

2.3. We have just seen that there is but a finite number of classes of
classic universal positive quaternary quadratic forms. We inquire next whether
the same would be true of forms which, although not universal, do nevertheless
represent all even integers. We show that

TaEOREM 2.3. The determinants of classic positive quaternary quadratic
forms which represent all even integers, do not exceed a fived upper bound B,.

Let ®; () in (2.01) represent all even integers. Let a:, be the minimum

of ®;. Then

(2. 31)
Next

= 2.

%, = &y =12,%+ 4’3(22; 23, z4)

where ¢ is given by (2.02). Let a be the minimum of ¢;. Then, it is easily
seen that .

(2.32) o = B(au)

where 8(a,;) may be taken as the least multiple of 2ai, which is not a square.
Proceeding further we see that

aa,, P = auy® 4 w2 4 Wo(us, us)
where ¥, is given by (2.12). Let M be the minimum of ¥,. Then

(2. 33) M < A(an,a)
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where A(, @) may be taken as the least multiple of 2a,,a which is not repre-
sented by ew,? + u.®. Next

Maa, &, = Mau,® + Mu.® + U + (ML — N*)u,?

where

(2.341) ML — N? = aa,,°D, D=ai|,
and

(2.342) D<ML—N*=<BM,a,a,) =B,

where B(M,a,a,:) may be taken as a multiple of 2} -a-a,, which is not
represented by

(2. 34) - Mauy® + Mu.® + U,°.

We are now ready to prove that B, in (2. 342) is an absolute constant.
One may easily verify that B(1) =2 and B(2) —8. Examining the
form au,? + u.® we get the following values for A(a,;,a) in (2.33):

a1 1 1 2 2 - 2 2 2 2 2 2
o 1 2 1 2 3 4 5 6 T 8
A(a,a) 6 20 12 40 24 48 40 48 84 160

To extract the best value of B, out of the above inequalities one should
determine the best value of B(M,a,a:,) for each set of values M, a;, anx
permitted by this table. Although this presents no difficulty, the computation
is somewhat lengthy and we shall therefore merely prove the existence of such
an upper bound. To do this it suffices, in view of the above discussion, to show
that in every case the ternary form in (2. 34) will fail to represent a multiple
of 2Maa,,. This last follows at once from a result due to Hasse.?

8. The canonical form (C,). We shall find the following normalization
useful in the subsequent discussion.

. THEOREM 3. Every properly primitive classic quaternary quadratic form
with integral coefficients and invariants* ox is equivalent to a canonical form

(3' 01) ' f=2a;,x,-x,-=z’fix

of determi . .o L
f determinant | A | =1 ai; | whose leuding principal minors are
s @ sy Q12 (3
11 12
Q1 = A1, P == 0, A, A1 Gz2 oy | == 0,20,44
21 22
Q31 @32 Q3a
—_—

* Hasse (6a), §11.
! After Minkowski and Smith, We employ the notation of Minkowski.

3



34 ARNOLD E. ROSS.

where
(Cp) Ay or }Ay is an odd prime not dividing | a1; | AxAs
(:‘"': k, l) = (17 2, 3): (2: 1, 3); (3) 1, 2)

Since our form is properly primitive we may assume at once that a,; i3
an odd prime not dividing | as; | Write 0,%0.44; for the algebraic complement
of aij in | a¢; |. Then F = S44;XX; is the reciprocal ® of f. In view of the
choice of 4, the ternary section F (0, X», X5, X,) of F is a primitive ternary
{orm of invariants®
(3.03) Q=o0, and A= 0:01.

This ternary, however, is equivalent to a form whose third coefficient A4,
(= 4,) and the leading coefficient (= A,) of whose reciprocal are distinct

odd primes not dividing 010:0s4; or doubles of such primes.” Replacement -

of the ternary section hy this canonical form does not disturb ® the choice of ai1.

4. The associates of a given quadratic form. In this section we assume
that our quadratic form (R.01) is a canonical form (Cp). Multiplying
through by a,, = 4, we obtain

4
(4.01) Af=X>+o0 ? ai; Mz,
1,§=2
where .
a ayj '
(4. 02) 0194 = atl au G0t = Ao, X1 == anay + 01Tz 1 015%s -+ 0144
1 Gij .

Next .

4
(4.03) - A A f=A.X* ~+ 0 (X2 + “1102{? D iy)

1§=8

where, in view of a determinant theorem of Sylvester,

010022 0109V

(4.04)

122(1) {Zg,‘(l) \ 1

TR a“u) 0,° Olaw“) Olaiiu)
2 QA1j ’
- a1 Q2 aj ___0,110120«_»&”(2) @
=—r| Qo1 @z Q2j |55 7 “0—2__=auozau
U g @iz 45 *

(4.05) @3s® = Ay and X,= tgo My 4 Gz M5 s WV T4

Finally

s Of, Dickson (3).
s Minkowski (10), Ch. XVIIL

TRoss (16). The precise statement of the theorem referred to implies that. if

Q, A are odd A, and 4, may he {aken as odd primes.
8 Cf, Dickson (3).

_ whence

i
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(4.086) A A A f = 434,82 4 0,43X.% 4 0,004, X% + 0104054, 4,7
since

2 2
£07) A | 1 012028452 0,205003,19
( * a3 a (2) 2 2 2 (2) 2 2
13 14 (0,202)% 1012020042 ®) 0,%0,004,"*
_ 0202 | A | __ Az0,%0,%; A
014022 - 014022 = 02l

Here

(4. 08) Xy = a5 P35 4 94, P7y, Xy=—12,

We now introduce the form

(.4:. 09) G(X1, 4¥2, Xa, X.;) == A3A.2X12 + 01A3X22 + OlogA.l‘Ygg + 010203/11[].2.’ 4"’
in the independentr variables X, X», X5, X,. We shall call G the assoctate of f.

4.1. The form G is of interest by virtue of the following:

THEOREM 4. 1.  Let f be a properly primitive quaternary quadratic form.

Employ the notation of Theorem 3 and assume that f is in the canonical form
of type (Cp). Then if f represents an integer m its associate G in (4.09)
represents A,A.Asm. Conversely, if the form G represents A A;A.m and
(4.14) and (4.16) hold, then the ortginal form f represents m.

i The first part of the theorem is trivial, for if z,, @,, 3, ¥4 are integers,

!:hen by (4.02), (4.05), and (4. 08), so also are Xy, Xoy X5, Xy and A,4:4,m
is represented by G in view of (4. 06).

Now let G(X,, Xz X5, X) — A A A m. We seek integers m, T, T3, T4
such that f(@,, @2, @5, 7,) = m. We take z, =X, By (4.09),
(4.11) A4, 44m = A, 4.X;* + 0,45X,% + 0,0.4, X% + 0165034, 4,747,
and hence

0,0, 41X % | 010,034 4.7, =0 (mod 43).
But, by (4. 07), '

(4. 12) 034 =1 — [@34 P ] = —s* (mod 4,),

010,4, (X3? — §%z,%) =0 (mod 4,).

(4.14 i

then ) (0102A.1, Ag) = 1,
(Xs—s2) (X5 + s2,) ==X — 5%, =0 (mod 4s),

Since A, is either an odd prime or double' such a prime, we have

Xy==sz, or — X,=sz, (mod 4,),
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whence, replacing s by its value in (4.12), we get
+ X, = Adats + g2y
with integral z;. Substituting the resulting value of X;? into (4. 11) we get

(4.15) Agd,Adim = Agd X" 4 0:14:X,*
+ 0102A1[ (Aszs + a3 P2y) % 0311’33;‘12]‘

Replacing 054, by its value in (4. 07), squaring the expression in the paren-
thesis, combining the similar terms, and dividing both members of (4.15)
by the factor A5 common to all terms, we get

4
(4.151)  Asdam = 4,02+ 0K + 010040 (2 00 wems)-

% j=8

This equality, in turn, implies that

4
0, X2 4 010241 ( X s Paixy) =0 (mod A:).
_— 1,§=8
But, by (4.04), :
OgA 10:;;‘2) = aggu)azj @ (mod Az) s
and hence ’

4
0,4, X agyPeiry — OzAx(ass(z)fl?sz + Ratay D25y -+ asaP3s?)

4,§=8 .
o= — [(aza(l))2x32 + eyt sV 5Ty + (a“u))zx‘z]
' (mod 4.)
= — (ags(l)za + a34(1) z4)2 (mod Az).
Thus, (4.151) becomes ' '

0:[X.?— (o2 Wy + 24 (MN2,) 2] =0 (mod 4,).
If
(4.16) (01, 42) =1,
then A

(X.— s Ny — Upa M) (X5 4 s ® gy 4 24 M)
= X,*— (os™M s 4 M xy)2 =0 (mod 4,),

and since 4, is a prime or a double of 2 prime, we have

X, = Az, + s + o, Pz, or — X, = Az + ans Vs 4 L

where z, is an integer. Substituting the resulting value of X.* into (4.151), 4

we get
(4. 17) A Aym = AX* 40y (422, + s Pas - s MT,)

4
4 0,024, ( 3 o5 D 2izs) -
$,§=8

Replacing A,0,2¢;® by their values in (4. 04), squaring the expression in the
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parenthesis, combining similar terms, and dividing both members of (4. 17)
by the factor A, common to all terms, we get .

4
(4.171) Adym =X+ 01‘§ oy Mgz,
,§=2

¢ Again, the last equality implies that

4 . -
(4.172) X2+ 01”2 aijMzz; =0 (mod 4,).
Ji=2
But, by (4.02), 0,a;;'") s==—a,.a,; (mod 4,) and hence
4 4
) P . -
. oliézati TiTy = g:zauauxm:; = — (@122 + 01325 } 014%,) 2 (mod 4,).

Thus, (4.172) becomes

(Xl — 322 —— (13T -— 01149—'4) (X1 ~+ @222 + 1‘7,131123 + aum.,)
=X, — (@1:%2 + GsTs + @147,) 2= 0 (mod 4,).

Since 4; is a prime, we have

X, or — X, = A2, + a2, + 21375 + 41474

for an integer z,. Substituting the resulting value of X,? into (4. 171), we get
- 2
(4.173) Aym = (di2 + 102 + G1e%s + 1424)° - 0y i oy D zezy.
4,4=2

Replacing olau(”' b‘y their values in (4.02), squaring the expression in the
parenthesis, combining similar terms and dividing both members of (4.173)
by the factor 4, common to all terms, we get

4
m == 2 Q4 jT4T 4
i,§=1

with integral z,,- - -, 7. Thus m is represented by f.

FORMS OF ODD _DETERMINANTS.

i 115. A set.of sufficient conditions in terms of generic characters. We
Od:il now r('estnct ourselves to the study of properly primitive forms (2.01) of
férindziezmman(ss. W,e shall assume tha..t such a form f is already in a canonical
i (Zp;( 7s). 'Then, since in this case 4, 0y, 0., 05 are all odd, the con-
s § . T; axfd (4.186) ‘of Theorem 4.1 hold in view of the choice of
th; 2, 4. us if the associate G of f represents the multiple 4,4,45m of m
n f represents m. Consequently should G represent all integers = K, and ~
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therefore all multiples 4,4.4.m = K of A,A,A, then f would represent alt
integers m = K/A;A.4;. But the form G is of the type considered by
Kloosterman (7). We may therefore apply to the form G Kloosterman’s
conditions 1°-5° assuring representation of all large integers.’

We note that 4; is an odd prime.
of A, and A, by the proof of Theorem 3.0. Our choice of A, A2, 4, implies
that 4° and 5° hold. Condition 3° becomes

(5.1)

and, if we write o, for an odd prime factor of o, condition 2° becomes

0, =1

(5.21) (dalon)=(—1]oz) or (Az]wr)—=(—0s[0), or both, if ws*f o and o:fog

(5.22) (dz|wr)=(— 1w, if either (1) w®loz 0r (2) we| 05
(5. 23) (_"03- 2|Aa)=1: ('—02A1A3‘A2)=1’ (—'AZlA!):l'

The condition (5.23) is satisfied by all forms, for, by virtue of (4. 07),
(4.02) and (4.04), we have ' '

—_ O3A2 = (a34(2))2 (mod Aa), L — ‘42 = alf (mod Al),
_ OgA1A3 = (ags(l))z (mod Ag) .

The condition (5.1) restricts the value of the first invariant o, of f.
Next, in view of the choice of A, and the definition of the generic characters
of f, it is clear that the relations (5.21) and (5. 22) are in fact conditions
upon the generic characters of f with Tespect to the odd prime factors of 0.

The condition (5.21) may be modified by virtue of the following con-
siderations. If (0s]w) = —1, then (—1|w:) and (— 03] w2) have opposite
signs and (Az|w.) must be equal to one or to the other, and hence at least one
(and, of course, only one) of the relations in (5. 21) holds true. If, however, *
(0s|wz) =1, then (—1|ws) = (— 0s]w,) and the two relations in (3. %1)
coincide and, therefore, either both hold true or both fail according 88
(A2]w) = (—1jws) or (Az]0:) =— (—1|ws). Thus (5. 21) may be
replaced by . i

(5.24) (A2]w2) = (—1]ws) if w2*{0s w2} 03, (0s]w2) =1.

The part 1® (pa; Ko Po> pa) = (0,0,0,0) of the condition 1° is in fact the
necessary and sufficient condition in order that a form (1.1) with odd coeffi;
cents a, b, ¢, d should fail to represent zero properly modulo 8. In view of
the choice of As, Az, As and the formulae (4.02), (4.05), (4.08), the form f
S —

® (7), Section 4. 6, p. 453.
10 Kloosterman (7}, P- 453.

The same may be assumed in this case ~ '
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in (3.01) and its associate G in (4.09) either both represent zero properly

modulo 8 or both fail to do so. The above mentioned conditions

(5. 25) a=be=c=d (mod 4)

u+b+c+d=4(mod8)

as applied to G, yield conditions

(5.26) o0,==0s (mod 8), 0z4.==1 (mod 4), 0,4,4;==1 (mod 4).

For, 515- 251) becomes Azd, =0,4:5=010.4,=0,0.0,4,4, (mod 4), and

» = g == S = ) ’
hence A.=o0,, As.._ 0244, 1=034, (mod 4). The first and the third of these
last congruences imply o, ==o0, (mod 4). Moreover, (5.252) becomes

As(d: 0 + 0,0:4,(1 + 0,4,) =4 (mod 8).

Since {12 +0,=R20,=2 and 1 4 0;4.=2 (mod 4), each of the two terms
above is double an odd integer and the last congruence together with
As=o0.4, (mod 4) implies 45(4. 4 0;) == 0,45(1 4 054.) (mod 8). The
fo‘re A, + 0,=0, + 0,0,1, and 1==0,0, (mod 8). o . o
djtions (5.26) iniply that ( satisfies (5.25).

" The conditions (5.262) and (5.263) are equivalent to

(5.27)

It is easily seen that con-

V= (_ 1)%(03,4:_»1) AlopdAs+l) — 1

i imce the ternary. form F (0, X 2 X3X,) in Section 3, has invariants Q =0,
== 0,4,, and since 4, and A, are represented simultaneously by this

- ternary and its reciprocal we have *

W+ (dg]0's) (42| 024,) == (~— 1)lor1) Bloadrt),
Her — TP Y ) .
e 0; = 0;/0;”%, and 0;”? is the largest square dividing o:. In view of (4.02),
' (42]4;) = (— 0, 4;) = (— 1) ArD/2. L) /2 (4, | 0,”)
3
and therefore '

(4e]0':A)) = (Ao o2) (4] 0) (— 1)3ArDiEnD),

Since (5.261) implies that 3 (o
; s + 1)3 (034, —
S (5.301) impies et § $(0sdy 4+ 1) 4 3(0 +1)3(4: —1)

(5. 2R) (“1a|0'3) (Azl 0'2) (4,]0")) = ¥ (— 1)dlosD) — '_ (-— 1)3eart)

~in view of (5.27).

©"We see that conditions (5.26) are equivalent to (5.261) and (5.28)

1]1 View Of th 0' 1 ]
e C‘h 1ce Of A 3 A- 5 A. C()ndi tio i € t 1 upo i
- I 3 I (;). 28) 18 a Tes l‘lctlon p n ,he

—

1 Smith, vol. 1, p. 470.
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If (5.1) holds, then, in view of (5.261), (5.28) becomes
(5. 29) (A.alol(;) (Aglolz) ———=1.

Employing the notation of Minkowski,?® we may state our conclusions in

the following form:

TuroreM 5. Lel ¢ be a properly primitive quaternary form of odd de-
terminant and the tnvariants 0y, 02, 05. Let w3 be an odd prime factor of 0.
Let finally '
(5.1)

(5. 31)’ (¢2)wz) = (— 1] ws) for ws such that 02?1 0204, (0s]we) =1,

0, =1,

(5.32) (¢pz|w) = (-—1)ws) for w. such that P
(5.83)  (¢s|0%s) (¢2]0’:) =1, if og==1 (mod 8).
Then the form ¢ represents all but a finite number of integers.

The truth of this theorem follows at once from the fact that conditions
(5.1), (5.81)-(5.33) imply that (5.1), (5.22)-(5.24) but not (5. 26) hold
for the associate G of a canonical form f of type (Cp) in the class of ¢ and
hence G represents all but a finite number of integers.

6. The necessity of conditions (5.1) and (5.32). We ask now if the
conditions (5.1), (5.31), (5.3%), (5. 33) are necessary in order that ¢ should
represent all integers with but a finite number of exceptions. We find at once
that (5.1) and (5.3R) are necessary. Tor, should there be an odd prime
divisor w; > 1 of 01, ¢ would not represent integers m such that

(6.1) (m]o) =— ($1]w1)-

(in view of (4.11)). Next, suppose that (5.32) should fail. Then (¢po]w2)
— — (—1]ws). First let w:?|0.. Then, in view of (4. 11), with 0, =1, and
the choice of As, 4, ¢ would not represent integers m such that

(m, ) =1,

m = 0.M,, (my, 02) = 1.

(6.2)
Next let w,?{0s, but w.]os. Then by (4.11), with 0, =1, ¢ would not

represent integers m such that

(6.3) m = w.my, (m,, w) =1, (m, lwz) = (¢3lw~z) (¢2|w._,) (ézlwz);

where 0, = w.0,.
One sees without any difficulty that there are infinitely many integers of
any one of the types (6.1), (6.2), and (6. 3).
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7t The conditions (5.31) and (5.33). The condition (5.31) differs
essentl.ally f.rom (5.1) and (5.32). TIts failure does not directly imply that
there is an infinity of integers not represented, but rather that if there is one
integer not represented, then there is an infinity of such integers. More

precisely: let ¢, and therefore f, represent an integer w.?m where w, is an odd
prime factor of 0, such that ) ‘

(7. 1) 0?0203, (0s]02) =1 and (gs]ws) =— (—1]we).
Then the condition (5.31), and hence (5.24), fails and we have
(7.11)  (Aafor) = — (—1lo) and (ds]w) = — (—o0sus).

Since A;A4:4,0.%m is représented by G we have, in view of (4.11) with 0, = 1,

A Aoy AuX2 =0 (mod us),

‘and, since (A4, wp) =1,

AZXJ.Z _|_ X22EO (mod (Dz).

Therefor’e, by (7. '111) X, =X,=0 (mod w.). Replacing X, and X, by w.X",
and u.:ZX = Tespectively, in (4.11), and dividing every term of both members
of this equality by ., we see that :

0-2A1X32 + 6203A1A2X42 =0 (mOd wg),

and, since (0;4;, w2) =1,
X2+ 0,4.X,2=0 (mod ).

‘I?Vuif by (7. '112),, (—0s4:|w:) =—1, and hence Xy=X,=0 (mod u.).
rite X'y = 4,X7%3, Xy = 0.X’,. Then, dividing once more every term of both
nembers of (4.11) by w., we get

A4 Asm = G (X", X, X, X'y).

L4

fl'llllus G represents 4,A4.4;m, and hence f, and therefore ¢ represents m. It

i; .:WS, t‘herefore, that if a form ¢ should not fulfil condition (5.31) then
it does ;not represent an integer m it also does not represent w.?m and in

i,':n'eral wz*m for every integer x. This proves the above statement in italics.

inf;s seen then tpat -such a form ¢ either represents all integers or there are

int nitely ;nany wntegers not represented by ¢. We shall speak of the set of
egers of t z ) *

andgm. of the form w,*m as the fower w,*m or the tower generated by o.

il In view o-f'the discussion preceding the statement of .Theorem 5, the
lure of condition (5.33) implies that if f does not represent an even integer
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2m, then it does not represent the whole tower 2%*1m, that is, it does not repre-
sent an infinity of integers.

8. Forms representing all large integers and not covered by Theorem
5. Such forms may be divided into two types. Type P,, for which (5.31)
does not hold, and type P. for which (5.31) holds true but (5.33) fails
to hold. '

Forms of type P; must represent all even integers. For, if such a form
{ails to represent an even integer 2m then it fails to represent the whole tower
92%+1m;  Tn view of Theorem 2.3, the determinant of such a form does not
exceed B.. Thus, there is only a finite number of classes of forms of type P

Forms of type P, must represent all integers. For, if such a form fails
to represent an integer m then it fails to represent the whole tower w®m.
Therefore, by Theorem 2. 0, the determinant of such a form does not exceed 112,

We shall determine all forms of type P;. The only odd determinants
D <112 which permit such forms are given together with the desired in-

-variants 0s, 05 ((03]ws) =1) by the following table.
D 9 63 25 49
(8.01) w;=—o0, 3 3 5 7
05 1 7 1 1
Since every form ¢ under consideration which does not represent 1 also

does not represent w,**, we need consider only forms which represent 1. Such
forms are equivalent to :

(8.02) ¢ = & + ax® + by* 4 c2® + Rryz + 2saz2 + 215:1:‘1/'=§2 + p(z, ¥, 2).

If ¢ is a form of one of the determinants given in the table (8.01) and
it it possesses the indicated invariants 0, and o then u(z,y,2) is a properly
primitive form with invariants @ =0, and A —o; and odd determinant
Q%A = 0,%,; — D. Since (7.1) holds, we have

(8.03) (woz) = — (—1w2)

for the generic character (u|w:) of p. For, if we choose a to be any integer
prime to w. and properly represented by u then, in view of (8.02),

(p2]w2) = (a]wz) = (p]w2).

We may assume next that p in (8.02) is a reduced form and we need to con-
sider all forms (8.02) in which p is a reduced form of the above mentioned

‘

invariants and genus satisfying (8.03). We list such forms in the following
table.
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) Q=w0, A a b c r S t (,u.'(»g) (_‘1|U)2)
9 3 1 2 1 3 3 0 0 0 1 —1
25 5 1 p® 2 3 b 0 0 —1 —1 1
49 7 1 p® 17 v 0 0 0 1 —1
p2 4 7 0 0 —1
63 3 Top® 1 3 21 0 0 0 1 —1
p® 1 6 12 —3 0 0’
w3 3 7 0 0 0
We write
¢(i)=$2+“(t) (i=1,. . .,7)‘

Fach of the forms ¢, - -, $" satisfies the conditions (5.1), (5.32),
but not the condition (5.31). Hence each of these forms either represents
all integers or fails #o represent an infinite number of integers (Cf. 7). One
sees at once that

(8.1) P 3, $O A£G, $O0E3, ¢ A2

and therefore these forms belong to the second category, i.e., they do not
represent an infinity of integers. The form ¢ = ¢ -+ 2* + 3y* + 32° as 1s
well known,!? represents all integers. Consider next the form

¢(2) (é) %Y, Z) = Ez + Rz? 'II" 3?/2 + 52° — 2’53/

Its ternary section v = ¢ (& x,9,0) = & + 22° 4 3y* — zy belongs to a
genus of one class ® of determinant 5. Its invariants are @ =1, A=15, and
its character is

(¥]5) = (2]5) =—1=— (—2]5)

where ¥ is the reciprocal of y. Therefore ** integers not represented by ¢ are

(8.11) 51 (5n - 1), 52 (5n 4 4).

In order to prove that ¢(® represents all integers we need only prove

that it represents all integers of the form (8.11). But these integers are

represented by the ternary section ¢*(£,2,0,2) = £ | 2x% 4 52° which

represents all integers not of the form !* 5%*'(5n + 2), 5%**(6n 4 3) and

hence all integers of the form (8.11). Thus ¢(® represents all integers.
Finally, consider the form

¢ = & 4 2w + 4y + T2° — 2y,

** Ramanujan (14), Dickson (4), pp. 111-113.
13 Jones (6), Borissow (1).

4 Ross (17), Lemmas 1-3,

** Ramanujan (14), Dickson (4), pp. 111-113.
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Since 2™ = 2£2 + (22 — y)* 4 Ty* 4 142%, the form ¢ will represent all
integers if
Y == X2 4 287 4 Ty? + 1427
will represent all even integers. The ternary section
X426 4 Ty?

represents 1 all even integers =0 or 1 (mod 3) which are not of the form

(8.12)

(8.13) 71(14m 4 R);  R=10, 12, and 6.

If an integer is ==0 or 1 (mod 3) and is of the form (8.13), we need
concern ourselves only with those of type I = 7(14m -+ R). Since at least
one of the integers

L—14-32=17[14(m—1) + (B—4)]
or
L—14-62=7[14(m —35) + (B—2)]

is not of the form (8.13) and neither one is =2 (mod 3), one of them is
represented by (8.12), and hence L, and therefore 7*L, is represented by ¢,

Finally, let an integer be of the form 3n 2. If 25%0 (mod 3) then
3n+2—1422=58n+2—2=0 (mod3). We may again assume that
72{8n 4 2. If (7,8n + 2) =1, then 3n - 2 — 14 is not of the form (8. 13)
and hence is represented by (8.12). 1f 7|3n -2, then

Sn4 2="(14m -+ M), Ms=0 (mod?).
In this case at least one of the integers

Y(14m + M) — 14— 7[14m + (M —2)],
7(14m 4+ M) — 1422 = 7[14m 4 (M —8)],
or
T(14m + M) —14- 4> = 7[14(m—2) + (M —4)]

is not of the form (8.13). The only numbers for which the above differences
are negative, are < 560 and are easily seen to be represented by ¢¥. Thus
¢¥ represents all integers.

We may now supplement Theorem 5 by

TrroREM 8. Eacept for forms given in Theorem 5, there is only a finite
number of classes of forms of odd determinants representing all large integers.
These consist of a finite number of classes of forms of type Ps and exactly

18 Pall (12).
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three classes of type Py, viz., the three classes containing ¢, ¢ und ¢,
The classes to which ¢V and ¢'*) belong may be completely described by
their generic tnvariants, for they are the only classes in their respeclive
general™ T'his is not true of the class of ¢,

9. One observes that ¢® — £ 4 u® and ¢ =&+ u® (Cf. the
table in 8) do mnot represent the same large integers even though they belong
to the same genus. For, ¢*) represents all large integers, whereas ¢ does
not represent integers in the tower 3 - 72, Similarly the forms ¢, ¢(8), ¢
do not represent the same large integers in view of (8.1). It appears that
when a quaternary form f fails to represent zero properly modulo p* where
=2 and p is a prime, then the behavior of f for large integers depends not
only upon the values of its generic invariants but also upon its accidental

. behavior for small values of the variables. For, should f fail to represent a

smalll integer p*m, it would not represent the whole tower mp**. In our
case when p — o, then v =0 and when p — 2 then v = 1.

_ The failure of (5.31) or (5.88) implied that our form was not a zero
form modulo w,? or modulo 8 respectively.

ST. Louis UNIVERSITY.
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91. H. W. Turnbull, The Theory of Determinants, 3 atrices, ond Invariants:

THE COMPLETION OF A PROBLEM OF KLOOSTERMAN.*

By GorpoN PALL.

1. Introduction.  The Euler-Lagrange proof of the theorem that every
positive integer is a sum of four squares employed the fact that the form
#® + y* + 2* + ¢ is multiplicative. Hence Liouville [1] * examined the multi-
plicative forms 2® - ay® - b2° + abt?, and found the positive integers a, b,
for which these forms ‘represent all positive integers. Ramanujan [2]
examined in similar fashion the forms

(1) f= (a;b,c, d) = ax® -+ by? + ¢2* - dt?,

\"vhere a, b, ¢, d are positive integers, and a<b=c¢=d. Hefound that there
are 54 such forms which represent all positive integers; actually he had 55,
and Dickson later pointed out his error [3]. More recently, Halmos found

. the 88 such forms which represent all positive integers with one exception -[4].

Ramanujan, in the spirit of the analytic number theory which was then
becoming popular, proposed and partly solved the more interesting problem
of determining all forms (1) which represent all but a finite number of posi-

tive integers. Kloosterman [5] later solved this problem of Ramanujan, save

that he was unable to decide whether the four forms

() (1,2,11,88), (1,2,17,34), (1,2,19,22), (1,2,19,38)

:‘ﬁpresé'ﬁt gll;\positive' integers. In 11-13 we shall complete the problem by

showing that these four forms do in fact represent all large integers. The
te(':hm"que used for this purpose is based on the fact that quadratic forms in
lih'g ‘saime genus have rational transformations into one another, which can be
?nployed in particular cases to investigate the numbers represented integrally
by the individual forms. Earlier similar attempts by the writer (6) failed
bi'!cause he did not then realize that Kloosterman’s asymptotic formula could
be adapted to settle the problem for numbers involving a limited power of 2,
80 that it is only necessary to consider, say, multiples of 4.

" 1 - -However, the most interesting. feature of this paper consists in the elegant

formulation of the conditions for a form to represent all large integers. This
——

' *Received July 17, 1945.
* Numbers in square brackets refer to the references at the end of the paper.
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formulation we owe largely to reading a manuscript of Arnold E. Ross, in
which he considers the extension of Kloosterman’s results to non-diagonal
forms. Also, whereas much earlier work on quadratic forms’ is complicated
by many cases involving the numerous invariants of the forms, we obtain our
results here directly and simply by appealing to the arithmetical properties
of the forms themselves. Although our Theorems 1, 2, and 4 are true, precisely
as stated, for non-diagonal forms as well, this will not be proved here.

2. The pertinent properties of f. If f is to represent all large integers,
then evidently the congruemce f==n (mod k) must be solvable in integers
x, ¥, 2, t, for every pair of integers n and k, k5= 0. If pis any prime we shall
say that f is p-adically untversal, when

(3) az? + by? 4 c2? + di*==n (mod p"),

is solvable in integers z, ¥, 2, and {, for every n and 7, 7 == 0. Hence a necessary
condifion for f to represent all large integers is that f be p-adically universal
{for every p.

We shall later (Lemma 1) give precise criteria for such universality, as

also (Lemma 2) for p-adic representation of zero.
We shall say that f fails to represent zero p-adically, if

(4) az® + by? + ¢z* + dt*==0 (mod p")

implies, for some 7, that r=y= z=1=0 (mod p). If, however, (4) is
solvable for every positive integer 7 in integers @, y, 2, t not all divisible by p,
we say that f represents zero p-adically. The connection with our problem is
this. If f fails to represent zero p-adically for some p, suppose for a certain s,

that f==0 (mod p*) implies r=y=2= t==0 (mod p). Then the number.
of representations of p****n is. the same as that of p*n in f, for every positive

integer k. Hence if f does not represent one integer of the form p*n, f does
not represent infinitely many integers. And in any case the number of repre-
sentations of the large number p*** is bounded, so that, in the asymptotic
formula soon to be encountered, x(p, p**%) is near zero when k is large.

3. The principal theorems. XKloosterman’s results are expressed iD
rather complicated fashion in terms of conditions on the coefficients of f-
Interpreting his results by means of the notions of 2, and using Lemmas 1
and 2, we get the following two theorems. ’

TueorEM 1. If (a) f is p-adically universal for every p, and (b) f repre-
sents zero p-adically for every p, then f represents all sufficiently large integers.
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It will be observed that (a) is a necessary, and (h) is not a necessary
condition.

THEEOREM 2. Of the forms f which are p-adically universal for every p,
there are only a finite number of forms which fail to represent zero p-adically
for some prime py, and yet represent all large integers. :

We shall in fact prove

THEOREM 3. There are precisely 199 forms which fail to represent zero
P-adically for some p,, and yet represent all large integers. They are as
follows, the first two hdving p, = 3 and 5, the others p, = 2:

(A) k (1,1,3,3);

(B) ' ‘ (1,2,5,10);

(©) (1,1,5,5), and (1,1,1,8) (t=1,9,17,25);

(@) (1L,4,5,5), (1,1,5,20), (1,1,4, £y, (1,1,1,4);

(B) (1,1,10,10), (2,2,5,5), (1,7,2,26), (1,17,2,2s), and (1,%5,2,2r),
(r=1,9; s=1,9,17);

@) (1,1,10,40), (5,5,2,8), (L,7,2,8t), (1,7,82¢t), (1,17,2,8s), -
(1,17, 8,2s), (1,25,2,8r), (1,25,8,2r);

@ (1,41010), (2,2,5,20), (1,4r,2,20), (47,22, (1, 68, 2, 2s),
(4,1%,2,2s), (1,100,2,2r), (4,26,2,2r);

(H) (1,4,10,40), (2,8,5,20), (1,4r,2,8t), (1,4r,8,2t), (4,7,2,8t),
(4,7,8,2t), (1,68,2,8s), (1,68,8,25), (4,17,2,8s), (4,17,8,2s),
(1,100,2,8r), (1,100,8,2r), (4,25,2,87), (4,25,8,2r);

(I)‘ (1,%,2,2v), u,v=3,11, and 19;
J) (1, 44,2, 2v), (4,4,2,20);
(K) (1,,2,8v), (1,u4,8,20);

(L)  (1,4u,2,80), (1,4u,8,20), (4,4,2,80), (4,u,8,20).

Ff}ri;hermore, we shall give in 4 a surprisingly easy proof of a theorem
of which Theorem 1 is obviously a corollary:

THEoREM 4, Let n denote any integer such that f==n (mod k) 1s

:Zlvable ff)r every modulus k. For each prime p such that f fails to represent
; T0 p-adically, impose an upper bound to the power of p in n. Then f repre-
ents every sufficiently large n (> 0) thus restricted. "

4



50 GORDON PALL.

3a. Modification of the asymptotic formula. Kloosterman’s formula [7]
for the number of representations f(n) of » by f is

—_ __1.2___._ . 17/18+
() F(n) = gy S () + O (i),
To prove that f(n) > 0 for n large, it suffices to show that

(6) 8(n) > K/loglogn,

where K is a positive constant depending only on f and the positive number .
Kloosterman expresses S(n) as a product over all primes p, namely

(7) S(n) =1}x(p),
(8) x(p) =x(p,n) =14+ 4(p) +4(*) + -,
(9) praA(p) =2 z;zz teXP[farih(afvz + by + c2* + di*—n) /p7],

where z, y, z, t Tange over all residues mod p”, and h over all such residues
prime to p. To put x(p) into a more significant form, note that if r =1,
the right member of (9) is

S exp[ewih(az? 4 by® + c2? + dt* —n) /p*]

hazysz tmodp”
T g 3 explamiha(ag® + byt + 0 4 d —n) /p7]

k22, t mod p™t

= prf(n: Pr) - pr»,af(n’ pr-l),

where f(n, k) denotes the number of solutions of

(10) f(z,y,2,t) =n (mod k).
Hence )
(11) x(p) =3i_)lgl7‘3"f(n, ),

where it should be observed that if p? is the precise power of p in the determi-
nant of f, p~*f(n, p") is independent of rif r = &8 3 [8]. This interesting
form of expression for x(p) will be found in a paper by Tartakowsky [9],
and in the work of Siegel. ‘

We note that it is easy to prove by (11) that

¥
(12) if pt2abed,  x(p) = (1—eap™) ’znnji)",

where ¢, = (abed|p), n = p*ny, n, prime to p.

X(p) Z ) ems®,
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A sketch of Kloosterman’s application of (5) is now in order. lle proves
easily that the product of the x(p) over all primes save the finite number
dividing Rabed, exceeds K/loglogn [10]. He then narrows the problem to
forms whose coefficients satisfy certain conditions. Comparison with our
Lemma 1 will show that these are the conditions for f to be universal for
every p. Next, confining himself to such forms, he shows that for primes
of a special kind, which by our Lemma 2 we now recognize as those for which
f fails to represent zero p-adically, x(p) is so near zero when = is divisible by

a high power of p that (6) will not hold. This is to be expected from the
last observation of 2.

4, Proof of Theorem 4. We shall formulate the proof so as to apply
to any m-ary quadratic form f for which a formula like (5) holds; x(p) is
then lim p~tmrf(n, p*). Except possibly when p =2 (see below) any f can
be expressed modulo p” as a sum of terms p*a,z:®, say

(13)

pra,alxlz + [N + pama‘mzmz,
2

0 =--

A

33

lIA

"= am, @ - ‘@m prime to p.

To prove the theorem it is evidently sufficient to show that x(p) is bounded

away from zero for all large n, for each prime p dividing the determinant -
of f, and for the prime p = 2.

Case 1. Suppose n to be such that f==n (mod p***) is solvable with
some x; prime to p. We shall prove that x(p) = p~("-*}(@=*3), For, proceed-
ing by induction, suppose r = @ + 3 and that f==n (mod p") is solvable
with, say, z; prime to p. The residues zi, 2., Ty,* * -, %m (mod p”) expand
into p™* sets of residues mod p7**. For each of these we can choose % so that
if @, is replaced by z; + p™9sh if p > 2, or by =, + 2"%*h if p—2, then
f==mn (mod p™) [11]. By repetitions of this process we see that fe==n

(mod pr) has at least pmram=8)  solutions, if r= am+ 3. Hence

C'ani 2 Let the power p” of p in n be bounded. Then if fe==n (mod p")
hag p» dividing every z; but not p#*!, then 2p = v and the number of solutions

off==n (mod pr) is p™ times the number of solutions of f=n/p* (mod pr—*°).
Hence by Case 1,

f(n, pr) = pmpp(m-x)(r—zrﬂm-a)’ X(p) = p-;(m-z)y-(m-l)(a,,.+a).

Jase 3. TFinally, let f represent zero p-adically. The fact that x(p) is ~
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bounded away from zero follows from Case 2 if e~ n. Let then et n
Now, f==0 (mod pe~**) is solvable with an z prime to p. Ilence f=n
(mod po+3) is similarly solvable, and Case 1 applies.

Although not needed in this article the remaining case with p =2 will
be rtesolved. We then have f==2¢(jz,® + 2., + jz.°) + terms in other
variables (mod 27), and j = 0 or 1. Hence, if f=n (mod 2") is solvable with
(say) 2, odd, and s=a+ 1, we can replace 7, by @, + 2°*h and z. by
x; 4 2#9k, and obtain f==7n (mod 2%') if 28Q + 28 (hws + kx) =0
(mod 2¢**), where @ denotes an integer; i.e. with arbitrary 7 and unique &
mod 2 ; thus again there are 2™ times as many solutions of f==n (mod 2%*)
as of f="n (mod 2¢), with any @ odd; and x(2) = 2wV (a1,

This completes the proof of Theorem 4, hence of Theorem 1.

5. The criteria for p-adic universality and representation of zero.
For any prime p we can number the variables so that (13) holds, with m = 4.
Detailed proofs of the following three lemmas will be found in a forthcoming
book by the author. Since their verification is not difficult we leave it to the
reader, noting merely that the easiest proof of Lemma 2 amounts to a direct
application of the conditions of Hasse [12] for p-adic representation of zero
in rationals 2. '

LevMa 1. If p > 2, f is p-adically universal if and only if
(14) ay=0a,=0; and either @; =0 or (—-—aqale) =1 or o= ay = 1.

If p =2, the necessary and sufficient condition 1s:

(15) oy =0, =0 or 1, ag—a; =0 or 1;
(16) if @s =0, then either ay— a3 =2 or ¢c*.=1;
(16) if ag =1, then either as—az =1 or c*,=1.

Here c*, denotes the unit
¥, = (Zlalag)ﬂ-a(z |a1a3)¢2(__ 1)5“1:02*'1) -3(aaae+l) |

We may observe that c*; is the invariant ¥ of Smith [13], or the in-
variant ¢, of Hasse, for the ternary form g = ama,* + 2020, 7,% 4 2%aszs®. I
has the property that if ¢*. =1, then g represents zero 2-adically, and f does

likewise.

§
%

ST
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LeMMa 2. If p>2 and (14) holds, then f fails to represent zero
p-adically, if and only if

A mm =0 a = a1, (—ae]p) = — 1= (] p).

If p=2 and (15) holds, then f fails to represent zero p-adically if and only
if 0182040, =1 (mod 8) and any of the following cases (18)-(23) holds:

(18) dy=ty =3 =04 =10, a=a,=a3=a, (mod 4);

(19) m=a— 0, ay=ay;=1, and
either (i)A a4 =a., ay==a, (mod 8), a,=ua,; (mod 4),
or (ii) .= 5as, as==5a, (mod 8), a,==—«a; (mod 4),
or (#i) a,==3a., a;==3a, (mod 8);

(20) @y

O

=10, ¢y =2, e =@a:=as==a, (mod 4) ;

(2'1) oy =0, =0, a3=1, a,=3, and three cases as in (19);
(22) o, =0, ay=1as =1, @, =2, and the three cases of (19) with sub-

scripls in the order 1423

(23) o, =0, ax=1, az=2, a,=23, and the three cases of (19) with sub-
. scripts in the order 1324.

. The least index s for which, in the cases of Lemma 2, f==0 (mod p*)
implies that all z; are divisible by p, is given as follows.

LemMma 3. When (17) holds, f =0 (mod p*) tmplies that p divides cvery
If p=2 and a,a.0,0, =1 (mod 8), then f==0 (mod 2¢) implies every
Ty even, as follows: when s =3 in (18), when s =4 in (19), when s =15 wn
(R0), when s — 6 in (21)-(23).

6. The forms which fail to represent zero p-adically for an odd p,
and yet represent all large integers. By Lemma 3, if f does not represent n

it does \not represent p*n. Hence such forms f must represent all integers.
By (17), f has the form ‘

GTy® + 4Zo? + p(asms® 4 0424%), (— @12 p) = — 1 = (— awa4|p),

ind We can suppose ¢, = a2, 43 = a4, p = 3. In order that f shall represent
ind R, a, =1 and @, =1 or 2. If p=7, f cannot represent 6. If

P=3, (— t8.|p) =—1 implies that a,=1; then if f represents 3,
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a5 =1 and ¢,=1 (mod 3); it f represents 6, a, = 1. There remains form
(A) of Theorem 3, which is known to represent all positive integers. Ifp=>5
then a, =2 in order that (— tae|p) = —1; a5 =11t f represents 5, and
g, =2 or 3 (mod 5);as=2 if f represents 10. We thus obtain the form (B),
which was overlooked by Kloosterman, and represents all positive integers.

7. The forms satisfying (18) which represent all large integers. DBy
Lemma 3 such forms must represent all even positive integers. Let

f= (ay, @z, @y, (4) 5 U, = =03 =04 (mOd 4), @ as=1 (mOd 8):

a; é a2 _<—: as é Q4.

Ifa >1,orifay=1 and a, = 5, then f 2. $a=—a—1and e =9
f=%6. If 4, =a. =1, as =5, as =9, then fs=12. If Uy == o = U3 = |
and @, = 33, then f = 28. There remain forms (C), treated in 10.

8. The forms of type (20). We need only consider the forms (C)
with a coefficient multiplied by 4, thus getting the nine distinct forms (D).
By Lemma 3 it suffices to prove that these represent all multiples of 8. Since
the forms (C) represent all large integers, their products by 4 represent all
large multiples of 4. Hence the forms (D) represent all large multiples of 4;
but none of these forms can fail to represent a number 8n, since it would then
not represent the large numbers 4% - 8n. Hence the forms (D) represent all

large integers.

9. Further cases in Lemma 9. Next, consider case (19), (i). We use
¢ to indicate that no multiple of 4 less than 200 is not represented:

(1,1,2,2) ?; (1,1,2,=66) 7 56; (L1, 10,10) ?;
(1,1,10, = 26) = 24; (1,1,= 18, = 18) 7 12; (1,9,%,28) ¥
(1,9,2, = 66) 7 56; (1, Z 9, = 10, =10) 7~ &;

(1,17,2,2) ? if s =1,9,17; (1,17,2, = 50) 7 40;
(1,25,2,2r) ? if r=1,9; (1,25, 2, = 34) = 20;

(1,= 38,2, = 2) 7~ 283 (23,_2_3,?_—2,_2_6)%4;
(5,5,2,2) 7; (25, >52%8) #*12

There remain the 15 forms (E), treated in 10-12. .

Case (21) (i) is got by multiplying one of the even coefficients in the
preceding case by 4, yielding the 24 distinct forms (F). To represent all
large numbers they nced only represent all multiples of 16, and the fact thab
they do so follows, much as in 8, from their connection with (F).

e

B e T

4
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Cases (i) of (22) and (23) lead similarl

: 2 arly to the 24 + 39 forms (G :

(H), which represent all large numbers. () and
Next, take the case of (19) (ii):

(1L,Z5,Z6,=14) #£8; (Z3,=7,=2,210) 44,

Hence no such form represents all large integers. The same conclusion follows
for cases (i) of (21)-(23).

Lastly, consider cases (iii). By (19) we h .
> - By ave: th
treated in 10-13; ) e: the nine forms (I) to be

(1,u,2, 2 54) 7 40; (1,2 3,2 6,=10) % 8;
(1,2 27,2,=6) 5£20; (=3, 23,22 26) 44

Extending these to (21)-(23) we get the 72 forms (J), (K), and (L).

10. The method of ternary sections. To complete the proof of Theorem
3 we I}eed only prove that the forms in (A), (B), (C), (E), (I) représent all
large integers. 'The investigation of such problems is usnally made to depend
on & knowledge of the numbers represented by a ternary seétion obt'line}()l by
putting one of the variables equal to zero. We know th(; number; rep(resentezl
by a genus of ternary quadratic forms, and (with a few exceptions) it is only
when a ternary form helongs to a genus of one class that we can tell rc;cisel’
what numbers it represents. For example, the forms. (1,1,3), Fl 2 5)y

(1,1,58), (1,1,1), (1,1,2), (1,2,2), (1,%,3), (1,2,6), (needed in (A),

(B), (O), (E),. a.nd.(I)), are in genera of one class, and so are known to
I;Ergzent all positive integers except those of the respective forms 3*(9q - 6)
4k<(169+1o or 15), 4(8q+3), 45(8g + ), 4(16g + 14), +(3q+ 1),
3 q-+10), and.4"(8q + 5). The forms (1,1,10), (2,2,5), (1,2,9), and
re, ,18) (nee'zded in (E)) are not in genera of one class. However, (1 1, 10)
~p;'esents 2-7} 1f. (1,1, 5) represents n; (1,2, 9) represents 2n if go = y, —}’— 2z
sentzz + 52% (in a genus of one class, representing all £ 4k (8¢ + 7)) repre
S n; i l .
- if‘n, (2,2, 5) represents 4n if (1,1, 5) represents n; (1, %, 18) represents
cum-b g};, represents #. Only the forms in (2) and (1,2,11,22) fail to suc-
, by means of these facts. to the followi : i 1 '
by the fonms (1,25, 2, 18). ) e following treatment which we illustrate
The form (1,25
Now. o (1, 25,2,18) must be. shown to represent all multiples of 4.
(s _{,_ ,) ) represents all multiples of 4 except 4%'(8¢ 4 7). Also
V) 4k 25 — 4k (8 o T o 1ay
5 = 4%1(8q — 18), and this is represented by (1,2,18)

unless g =0, 1, or 2. Fi ;
60, andt 92, s . Finally, (1,25,2,18) is verified as representing 28,

~
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11. The forms (1,2,11,22), (1,211, 38), and (1,2,19,22). The
form (1,2,11) represents on if g, =1+ 23° — 2z + 62> represents n.
Now g, is in a genus of one class and represents all positive integers not of
the form 4%(8¢ + 5). Hence (1,2, 11) represents all evens 5= 4¢(16g + 10).
Also, 4%1(16q + 10) — 29 - 4% — 4%(64g + 18), which is represented Dby
(1,2,11). Again, 4%+1(16q + 10) — 38~ 4% — 4% (64q + 2), also represented
by (1,2,11). Tence the forms (1,2,11,22) and (1,2, 11,38) represent
all large multiples of 4; that they represent all large numbers not divisible
by 4 follows from Theorem 4. Similarly, (1,2,22) represents every
4n 5= 441 (8q - 5) ; hence- (1,2,22,19) represents every 4n.

12. The form (1,2,17,34). The form 2 -+ 2y + 172° represents 2n
if g, = y° + Ra® — Rz + 922 represents 7. Now g. is not in a genus of one
class, but is in a genus of fwo classes, the other class containing the form
by = 2%+ y* + 172% Together, g: and h, represent all positive integers
£ 4%(8q + 7). However, the identity

(24) 4y 4 177 — 2t £ 2307 —239) (v +9)/3 + 9Ly + 2) /3

shows that if n is represented in h. with either y + 2 or  + 2 divisible by 3, -

then n is represented also in ge. This can be arranged unless z*==y* 5= 7
(mod 3), whence n==2 (mod 3). Thus:

g. represents every 3s and 3s 4 1 not of the form 4%(8q + 7).

Hence (1,2,17) represents every 6s and 6s-+2 not of the form
4(16q -+ 14). In view of Theorem 4 we need consider only multiples of 4
1f 6s or 6s + 2 = 4 (169 + 14), then 6s — 34 - 4* — 4*(64q -+ 22)

=2 (mod 6), or 6s o __34-9- 4k — 4k(64g — 50) =2 (mod 6), and -

thus is represented in (1,2,17);: except, in the last case when ¢ =0 or 3.
But (1,2,17,34) represents 56 and 248. )

Finally, there remains 6s 4+ 4= 4(3s1 + 1), say- Subtracting 34 we get
12s, — 30, which has the form 4*(16q -+ 14) only if s, = 4s. + 1, whence
4(3s, + 1) = 42(3s2 + 1) We proceed by induction. If 4%(3su+ 1)
__ 34932 op 4%1(12sp — 30) is of the excluded form, then sp = 4sn« 4+ 1;
and so on. If 4% (12sy— 30) is negative, ss is 0, 1, or 2, and 4"(3sn 4 1) 18
4r 4w or 44 7, all of which are evidently represented by (1,2,17) it A = 1.

13." The form (1,2,19,38). The form (1,2,19) represents 2n if
gs = 2° + 2° + Ry2 4 102° represents n. Also, ga and ks — 227 -+ 2y + 17
4 2yz + R2x + Ry constitute a genus, representing all positive integers

R T

i)

‘results hold if 10s - 8 — 4% (16¢ + 10) with k even or odd.
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# 4 (8¢ + 5). This time, transformations of denominator 3, as in (24)
. . ’
do not suffice, and we use denominator 5.
matrices T/5, where

The transformations with the

6 4 —3 6 2 9

4—2 7
T—=1{1 4 7], 1—3—6 |, —4 —33
1—1 2 1 2 —1 1 23

replace gs by hs. Hence if n=2R2s®+ 2y° + 72" + 2yz + R2x + 2zy in

integers @, ¥, #, then g, also represents n if any of the following congruences
holds:

r—y+2 =0, z+2-—z=0,
z—y—Rz2=0, 2 +y—2z2=0,

z+ Ry —22=0,
2¢ 4y — 22==0, (mod 5),

the last three being got by interchanging « and y. Introducing X =y -z
Y=zt Z=2z+y, wesee that these conditions reduce to

€-25) 2 X=Y orZ,or 2¥Y =2 or X, or 22=2X or ¥ (mod 5).
Ifn=0,1, or 4 .(mod 5), then hs = n implies X? 4 Y* 4 Z%=0, 1, or 4
whence (X, Y, Z) is a permutation of the following residues mod 5: (0, 0, 0)
(0,0, = 1), (0,0,2), (0,=1,x2), (=1,x1,=xR8), (=1,x2,x2).
In all cases, (25) is seen to hold (e.g. 2-2=—1,2-1=R). Hence:

gs represents every 5s 4+ 0, 1, 4 nof of the form 4%(8q + 5);

and (1,2,19) represents every 10s +- 0, 2, 8 not of the form 4%(16¢ 4 10).
senteldf ;fs(T24k;;(16q + 10), then 10s —- 38 - 4* — 4¥(64q 4 2) and is repre-
. wlos;-,z )2),811;;103 —?— 2 — 4%+1(16g 4+ 10), then according as k is odd
M ,4 . : . =4"(6i}q 4+ 2)=0 (mod 10), or 10s - 2 — 38 - 4k+*

(4g—7) =0 (mod 10) ; in the last case ¢ cannot be 0 or 1. Similar
_4"12‘11(13&11_);_, 1gve have‘ 4(5sy = 1) to consider. Now 4(5s; + 1) —38
-42(5sq_ s ) %Irlly if s, = ;‘1 (mO(.i 4) respectively. Then 4(5s, + 1)
- 4"_1(220:_ +.4 e proceed by induction and have 4*(8sp == 1) — 384"
o on T ;;3(_)_ :38) of .the fOI‘l’Y.l 4%(16q 4 10) only if s» = 4sw = 1; and
(L2 10,50 sy &= 4 — 38 is negative, then s, is 0, 1, or 2; and we see that

%13, 38) represents 4, 16, 24, 36, and 44.
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AN EXTENSION OF A PROBLEM OF KLOOSTERMAN.*

By ArnoLD E. Ross and GORDON PALL.

1. Introduction. In the previous article [1],' Kloosterman’s problem of
determining all the positive quaternary forms az® 4 by* 4 c2* 4 di* which
represent all large integers was completely solved. Ross [2] has proved the
following lemma, which makes it possible to extend the solution to cover the
general positive integral quaternary form 3ai;ziz; in which the ai; and Ry
(1,7=1,- - -, 4) are integers.

LEM'MA 1. The determinant of any positive integral quaternary quadratic
form which represents all positive integers cannot exceed a certain constant B,.

o We make use also of an extension to a general positive m-ary form
(m = 4) of Kloosterman’s asymptotic formula [3] for the number of repre-
sentations of 7. Such a formula has been given by W. Tartakowsky [4], who
used the Hardy-Littlewood method. 1t is interesting to see (2) how ’easilv
this .extension can be made directly from Kloosterman’s special case, by il;-
duction, making use of Ross’s [5] technique of employing primes represented
by 8 primitive form, and the fact that every primitive form in two or more
variables represents infinitely many primes.

References to the preceding article will be prefixed by P. The definitions
of the terms “f is universal for p,” and “ f represents zero p-adically,” given
near P(3) and P(4) evidently extend to any integral forms f. 6nce the

:?ylljllptotic formula (1) is established, Lemma 2 and the proof of Theorem P1
pie

Lt TI;EOREM 1. Lel f be any posttive integral m-ary quadratic form, m = 4.
o :d ; su.ch that‘f(a'l,- <+, on) =nmod p is solvable for every p and r.
ch prime p (if any) such that f fails to represent zero p-adically z:mposc

an .
8% upper bound to the power of p which may divide n. Then [ represents

every such n sufficiently large.

I .
t should be observed that if m = 5, every f represents zero p-adically for

eve
l'5’\P|6._]?ence we can conclude (as Tartakowsky did) that all forms in a

* Received July 17, 1945,

* Nu; i
mbers in square brackets refer to the references at the end of the paper
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genus of positive quadratic forms in five or more variables represent the same
sufficiently large mumbers. It m — 4, f can fail to represent zero p-adically
only for a few primes appearing in its determinant (the conditions [6] are
easily applied and are given partly in ‘our Lemma 4).

Tt tollows that if f is universal for every p, and represents zero p-adically
for every p, then if m = 4, f represents every sufficiently large positive integer
n. In 4 we shall, using Lemma 1, obtain

TreoreM 2. The number of integral positive quaternary quadratic forms
which represent all large numbers, and yet fail to represent zero p-adically for
some prime pi, is finite. In fact the determinant of any such form cannot
exceed By if po > 2, 266R, if pr=— 2.

Theorem 1 does not extend to m = 9, since binary classes in the same
genus, which are peither properly nor improperly equivalent, do not represent
the same primes 7. The theorem .does not extend without modification to
m — 3, as was shown by an example in 1939 [8]. The example consists of

the forms

f=a*4+y+ 162%, = 2% + 2¢° -+ 52° — a2z — 242,
which are easily seen to represent equally often every positive integer not
an odd square. If sisodd, a result of Jacobi’s [9] shows that

F(2) —g(s?) = (— 1),

where f(n) denotes the number of representations of n by f. Also,

F(s?) 4 g(s*) = 4Ty (p, @),
where

y(p,a) = (P —1)/(p—1) — (—1]p) (pr—1)/(p—1);

and the product ranges over the prime-power decomposition s = IIp". From
this it is easily seen that g(s®) =0 if every prime p in s satisfies p = 1 mod 4
This example is especially interesting in that f and g are two forms in the
game genus, and we are able to give exact simple formulas for the number of
representations of any number in either form.

However, the theorem is true when m — 3 for a large variety of forms [101;
and, if we may make a conjecture, it is probably true for squarefree numbers

n and every ternary f.
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2. The asymptotic formula for the number of representations of n in f

f 'EI‘HEOREM , 3. Let m=4. For any positive inlegral m-ary form
f=3ai;T; 1? here aii and 2ai; (1,j=1," - -, m) are integers, the number
of representations f(n) of n by f is given by the formula

» rimidniS (n)

I'(4m)ad + O (nim-1-1/18+e)

where A denotes the determinant | ais | of f,

@ Sem=_IL x(»),

PR

X(P) = X(P, f: n) =lim P'("'"l)rf(": Pr)f
* rex

and f(n, p*) denotes the number of solutions =z, - -

f=mnmod p". ©, Zm mod p of

Proof. We can write f==02,"+ - + 4 bo1Zsi® 4 did(2s," * *, Tm)
w}}ere ¢ is primitive. Let A, denote the determinant of ¢; then s’A — b7 '" ’
beady™2+1A,. Suppose, then, that (1) is known to be tr’ue if s, = sl<
Kloosterman’s case is of course s, = m. Now let s =35, — 1. Lelt=q de——x_u::e;

an odd prime represented by ¢ and not dividing A. We can write ¢ = § @i TiT5
a.‘ _ q. Pt (3 >

Case I: the a,; all integers. By completing squares we have the identity

3 —
8) qf = gbsz:® + + * + gbesZes® + di(gzs + § (ess) * + duyf,
j=8+1

where ¢ (Zgpq, - - - -3
| Y (Tesa, s T ) H:ZM(qa” — @issj)Ti%;. We introduce two forms:
(4).

fi=qby®* + -« -+ gbe_syes® + days® + Ay (Ysers* " "5 Ym),

an
iod the form f, got from f, by changing the coefficient of y.2 to ¢°d,. Now
T every representation of gn in f, we have i

(o ) z
Y (Yss1, > Ym) = 3 Gigle Gays == ( X asy;)? (mod g).
1

4, 5=8+1 =8+

lien Dy ==
Ce: ¥, ==Zayy; mod ¢ holds only by choice of sign of y, if ¢1y. and

always if g|y,. Accordingly,

f(n) =N(n=f)=N(gn—=qf) =N
=N @f) = N(qn = f1; ys==Zas;y; mod
=3{N(gn=Ff1) —N(gn=1.)} + N(gn=f), thatyisl,no K

5
(5) f(n) = 3f1(qn) + 3f:(qn).
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It ps% g, f, and f. are derived from g¢f by transformations of determi-
nants prime to p, whence f(n, pr) = fi(qn, p") = f2(qn, p7). Hence

(6) x(p, s ) = x(ps f1, gn) = x(p; fo ), i P72 ¢-
1 p = g, we have (counting solutions of the congruences with care) :

f(n, q) = q"f(qn, ¢'*) = g™ N (gn= f. mod g™ ; ys == Say;y; mod ¢)
— q-mM%{N(qn == fl mod qr+1) — q—lN(qn == fz moa qr+1) }
N (g=fimod @),

whence
™ £(n, g7). = {3 (qn, ) + 32 (gm 7))
(8) X(q7 f’ ’I'L) = 2X((1; .f1,lq7l') + %q’lx(q, fz, qn)

Hence as (1) holds for f, and f, we have by (5),
() = (L (3m) orsmacinins T x(p) A O(gui0),
where :
A= 3 (g™ 2% (. fur n) + (M)A x(g o qn) = x(0: 1)
by (8). The induction is thus complete for Case I.
Case 11: some coefficient 2as; is odd. We now use the identity
4qf = 4gbyi+- 0 4qbsTs1® + d1(RqTs + 32a,525) % + duy,

where ¢ = 2 (490 — 4ai4045)i2;. Besides the two forms

(9 fe= 4gbyy® 4+ - - 4+ 4qbe-iys® + q%_gdlyﬂz + dagp (Yours" " 7 Ym)
: k= 1) 2;

we shall require the form obtained from fx by changing ys to 2¥s, the form
f obtained from fi by expressing the condition that 32a.;y; is even (e.g- if
2aem is 0dd by replacing ym in ¢ by 2@senYsrr 4 "+ 2a5m-1Ym T 2Ym)>
and the form fi’ obtained by both the preceding operations.

1f 4¢n is represented in i, we now have only s = (SRas;y;) 2 mod ¢
Hence for any integer n, .

f(n) =N (4qn = 4¢f) = N (4gn = f1; ys==32assY; mod 29)

= N (4gn = f1, ys = 320ssY; mod 2) 4 3N (4gn = f, Y ==320s5Y; mod 2)-

Hence it is easily seen that
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10)  f(n) =2 {He(4qn) — 3¢ (4qn) — 3" (4qn) + fr(4gqn)}.
If p5~q and p~2, we obviously have
f(n, p7) = fi(dqn, pr) =f/(4qn, p7) = - - = 7" (dqn, p7),

whence x(p) is the same in all cases. Evidently also x(®) i

, y x(2) is the same for
fu as Tor fa, for fi as for £, for f,” as for f.”, for ;" as for f,”’; and x(q)
is the same for all four forms fi, fi, £, f"/, and again for the forms
fz, fZ’: ”2; fz”’- Next,

f(n, @) = ¢ (4qn, ¢"**) =¢* "N (f = 4qnmod g™ ; y, = 32a,y; mod q)
= ¢"™{3f1(4qn, ¢"**) + $q7f2(4qn, ¢71) };

‘11) ’ x(g, f,n) = %X(q) f1, 4qn) + %TIX(‘L f’-’: 4qn).

Also, f(n, 27) = 4N (4qf = 4gn mod 27*?) == 2*-*»N(f, = 4qn mod 27*;
go = 32.y; mod 2) — VW, (dqn, 27) — N(fy = 4qn, ys even)
— N(f, = 4gn, 22a.;y; even) -+ 2N (f; == 4qn, y, and 22a,;y; even) whence

’ (12) X(2; f: n) == '&X(zf .fl: 49‘”) - %X(Z: fl’: 49") - -‘}X(z: flﬂ: 4‘1")

) + 3x(2 27 4qn)
Substituting in (10) we obtain the required formula for f(n) in this case also.

3. Proof of Theorem 1. This proceeds exactly as in P 8. We have onl
to convert f into a convenient form-residue mod pr; cf. Lemma 2 [11]y
Corresponding to P(12), with A in place of abed, we can use known formulas;
[12] for f(n,p") in the cases where p{2A to prove that x(p) =1 — p¥»

- it i
pin and m is even, x(p) = (1 —p*™) (1—p) if p|n and m is even,

'a . .

ogg x(p) 21—‘1{1"?" if m is odd. Hence the product of the x(p) for all

oy prl'mes not dividing A is easily seen to exceed K/loglog n. The additional
ussion for cases (14)-(17) will be found in P, 3.

. L ) 7 "
tmnsf:MMA- 2. Lvery m‘tegral quaternary form f is equivalent mod p*, by a
rmat@on of determinant prime to p, to a form of the type ‘

(13
3 ) Maa,® 4 -+ pPaaz®, mod pr,

< N
0 =0 é %2 é Q3 é Xy, A1 A2Q305 prime to P,

fop>e It is equi
' - p =2, f is equivalent mod 2 either to (13 )
one of the following residues mod 27 : (12), or fo o form with
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(14) ROy, - R%,x,® - 29 (s - RzaTy -+ RjT?),
(15) Rua,z,* 4 2% (Rjxs? + 2aws + 2j25°) 4 2%agz,?,
(16) ¥ (jon® + 0@y - j2*) + Ragmy® 4 %y,

(17) u(j:* + &@y - Jra*) A 0 (kzy® 4 wawy + kes?).

Here all a; are odd, j, k=0 or 1. Also, in (14), 0 = o, = o < %3; in (15),
I=a<ae<a; i (16), 0SS o =a; = a,; and in (17), 0= a; = a,,

4, Proof of Theorem 2. We first extend Lemmas Pl and P2 ag
follows:

Lemyma 8. The conditions that f be universal for p are as stated in
Lemma P1 if f has the residue (13). If p=2 and f has a residue (14) or
(15), f is not universal for p. If p=2 and f has a residue (16) or (17),
f is universal for p if and only if, respectively:

(18) =0, and either j=0 or a3 =0 or ey =1=a,—2;

(19) o, =0, and either j=10 or az=0 or a;=1.

LemMma 4. If f 1s universal for p, and f has a residue (13), the condition
that f fail to represent zero p-adically is given in Lemma PR. If (16) and
(18), or (17) and (19), hold, then f fails to represent zero p-adically +f and
only if, respectively: ' '

(20) o0 =0,7=1, ay=1, a,=1 or 3, and a;z,=3 mod 8;
(21) @y =0,j=1, ag=1, k=1.
. Again, Lemma P3 extends to the cases coming under (13). Also,
LemMMA 5. 2¢|f implies 2|all @i, if s — 3 -+ a, in (20), if s = 2 in (21).

If p>2, or if p=2 and the cases corresponding to (21) hold, then
if f does not represent one number n, f will not represent p®*n, by Lemmas 5
and P3. Hence if f represents all large integers, det f = R,.

Let p =2 and § be given by (13). (a) If P(18) holds and f represents
all large integers it must represent every 2n, by Lemma P3. Now if f =2n,
Sz; is even. Hence the transformation @, =y, Zo = ys, T3 =1ys, Ta =9y, + ¥

-+ ys + 2y, replaces f by 2¢, where g is an integral form and ¢ represents’

every n; by Lemma 1, detg = Ry, detf = 4R,. (b) If P(20) holds, f is
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obtainabie (by changing #, to 2z,) from a form under case (a). llence
(ietf < 16R,. (c) £ (19) holds, and f represents all large integers, f repre-
gents every 4n. In subcases (1) and (ii), f==4n implies =, =y + ¥,

2p=Y1— Yz, Ta=1ys, ©2=7Y1 -+ Y2+ ¥ + Ry, where the y: are integers;

. and f becomes 4g where g. represents all #; hence det f = 16R,. In subcase

(iil), 21 =% + Yo, To= Y1 — Y2, Tz = Y + Y4, To = Y3 — ¥, yields the same

result. (d) As in case (b), forms coming under I’(1)-(23) lead to

detf = 64R,, 64R,, 256k, respectively.

Next let p==2 and f correspond to (20) with «,=—1. Then f must
represent every 4n. If f == 4n, @, = 2y, T2 = Y2, Ty = Y3 < Ys, To = Y — Y4,
and we get det f = 4R,. TFinally, if «, — 3 instead, det f = 16F,.
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(14) g, 2,2 - 2%2,2,° -+ R (Rjxs® + Raawy + 2577),
(15) 20g,x,? 4 20:(2jz.2 + 2oz -+ Rxs%) - R%aum,,
(16) 2 (jz,? + 1@, + jT.°) 4 R%a.zs” + 2Hazs?,

(17) 2u(ja,® + @z + j.°) + s (kxs® 4 Taxy + kzy®).

Here all a; are odd, j, % =0 or 1. Also, in (14), 0 = a1 = @ < %55 1 (15), -
I=Sa, << ag; in (16), 0 =0, = 0s = a,; and in 1w, 0= =a,

4. Proof of Theorem 2.

follows :

We first extend Lemmas Pl and P2 ag :

LemMva 3. The conditions that f be universal for p are as stated in

Lemma P1 if f has the residue (18). If p=2 and f has a residue (14) or .
(15), f is not universal for p. If p=2 and f has a residue (16) or (17),

f is universal for p if and only if, respectively:
(18) ozl'= 0, and either j=0 or az=0 or ag=1=0a,—2;
(19) a, =0, and either j =0 or a3 =20 or og == 1.

LeMMa 4. If f is universal for p, and f has a residue (13), the condition '

that f fail to represent zero p-adically is given in Lemma P2. If (16) and |

(18), or (17) and (19), hold, then f fails to represent zero p-adically if and K
only if, respectively: , ’ 3

(20) @, =0, j=1, ay=1, as=1 or 3, and a.a,=3 mod 8;
(21) 0, =0, j=1, az=—1, b=1.
- Again, Lemma P3 extends to the cases coming under (13). Also,
LeMMA 5. 23|f implies 2|all @i, if s = 8 4 a5 in (20),1f s—2n (R1)-

If p>2, or if p—=2 and the cases corresponding to (21) hold, then
if f does not represent one number n, f will not represent p*n, by Lemmas §
and P3. Hence if f represents all large integers, det f = R..

Let p = 2 and f be given by (13). (a) If P(18) holds and f represénté
all large integers it must represent every 2=, by Lemma P3. Now if‘f —2n,
S, is even. Hence the transformation &, = 41, Tz == Y2, Ta = Ys, Ta = Y1 + 2
+ 5 + 2y, replaces f by 2g, where g is an integral form and g represents’
every n; by Lemma 1, det g = Ry, det f = 4R.. (b) If P(20) holds, f is

3
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obtainabie (by changing 2. to 2x,) from a form under case (a). Hence
detf = 16R.. (c) If P(19) holds, and f represents all large.integers, f repre-
gents every 47. In subcases (i) and (ii), f=4n implies z, =1 + ¥z,
”__f gr— Yz Ta=Ys 4= + 92 + ys + Ry, where the y: are integers;
and f becomes 4g where g. represents all »; hence det f = 16R,. In subcase

. (m)’ 2 =Yr + Yz, Tz =Yr— Y2, Ts=1Ys + 94, T4 = ys — ya yields the same

result. (d) As in case (b), forms coming under. P(21)-(23) lead to
detfé 4R, 64R,, 256R, respectively.

. Next let p—2 and f correspond to (20) with a@,=1. Then f must
represent every 4n. If f == 4n, &, — 1, T2 == 2Y2, Tz = Ya + Y1, Ty = Ys — Yo,
and we get det f = 4R.. Finally, if ¢, =3 instead, det f = 16R,.
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