ON GENERALIZED QUATERNIONS

BY
GORDON PALL

1. Introduction. In this article we shall present a basic investigation of
the arithmetics of generalized quaternions, as they arise naturally out of the
study of integral ternary quadratic forms. It was, indeed, out of the theory
of quadratic forms, that (perhaps unnoticed) generalized quaternions first
originated, in a form suitable for use in arithmetic. Thus, in 1854, Hermite
[6](*) obtained a general expression for the automorphs of a ternary quadratic
form. He found it simpler to express the automorphs, not of f= ) @esX.Xs
(@apg =88a; @, B=1, 2, 3), but of its adjoint adj f =EAapx¢.x5, where the 4 ,s are
the cofactors of the a.s. (Asthe automorphs of f are the transpose of those
of adj f, this involves no loss.) Hermite expressed the automorphs of adj f
(cf. §2) by means of four parameters, say £, &, £, I3, subject to the condition
t02+EAapt¢tﬂ= 1. Now a product of two automorphs is, from their very na-
ture, again an automorph. He'mite found that the product of the two auto-
morphs corresponding to the parameters #; and #; is given by v;, where

M 0 = Uolo — 2, Aaglials,

Ve = Uola -+ %abo + (Usls — Usta)a1e + (Ushy — trfs)a2a + (trde — %al1)Csa.
Further, under (1), there holds the “composition identity”
(2) (o> + D Augatis)(bo® + D Aaglats) = (02 + 3 Aapvats).

This formula for mulizplying the quaternion (%o, %1, %2, %#3) by (fo, b, 2, 15)
to obtain the product quaternion (ve, 1, 72, v3) is the essence of a quite gen-
eral, linear, associative, quaternion algebra. U. V. Linnik [11] proposed to
call the elements of this algebra hermitions. The author developed some fac-
torization properties of these algebras in 1938 [12], in the special case where
the matrix (@.g) is integral. These results are perfected in the present article,
and extended to the case where the form f=_a.x.%s is integral, that is, the
Gea and 2a.p are integers.

With each form f, where the a.g are rational numbers and | aas| #0, is as-
sociated the quaternion algebra defined by (1). The elements of this algebra
can be written as # =wug-4101+7%2%2 -+ 1s%3, where the #; are rational numbers
and the 4, satisfy the multiplication table of §2(1). If we apply the rational
transformation U= (#.5) to (@.s), then by Theorem 1, the basal elements i,
are replaced by k.= Utet1-} Usatz+ Usats, where the U,g are the cofactors of
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the #.5. Thus the algebras associated with (2.5} and U’(g.s) U are rationally
equivalent. Indeed, the correspondence between elements %o+ 4. and
Ty +Ev,,,k¢ becomes actual equality under the transformation vo =1, #e = Unt1
+ Uagvzt Uass.

The system of Hamiltonian quaternions (for which s.2=—1, 4s5=1
= —1313, and so on) is associated with fi=ux;2+%,2+%;?%, or with the identity
matrix.

With every integral form f is associated a system Y. (f) of integral qua-
ternions, consisting of the quantities {=1£{ + tqla, where =to+2_126¢ta,
and &, 1, b, & are rational integers (§3). Here the ¢, have the values O or 1 in
accordance with §3(1). The sum, difference, and product of two elements of
() are in Y, (f). The trace 2¢{ and the norm (f9+42-"Y €ata)?+2 Aaplals are
rational integers. The quantities 1 and j, =%.+¢€./2 (@=1, 2, 3) form a basis
of X_(f). If we apply a unimodular transformation U to f to obtain g, the sys-
tems Y (f) and 2 (g) are isomorphic, and the trace and norm of each element
are invariant. If U is integral, but ] U I >1, > (g) is a subset of Y (f). The sys-
tem Y_(f) is maximal in the sense of Dickson, if and only if the form adj f
cannot be derived by an integral transformation from any form adj g, where
g is also integral (cf. §3).

If f=£1, then >_(f) consists of the Lipschitz integral quaternions

3 to 4 41ty + 4ot - isls,

the #; rational integers, the 7, the Hamiltonian units. This system is not maxi-
mal. FOI’, if 41 =x12+x22-l-x32+x2x3+x3x1 +x1xz, then adj &L= (3x1’+3x22+3x;‘ )
= 2o9x03 — 220331 — 2%1%5) /4, and adj fi=y,*+¥:2+¥:? is obtained from adj g, by
the transformation x;=y;-+93, x2=y1+73, ¥3=v1-+72 of determinant 2.

Any system Y_(f) can be put (cf. §11) into other forms by applying rational
transformations, and expressing the conditions on the coefficients of elements
in the resulting algebras which correspond to the integrality of the elements
of Y_(f). For example, since the diagonal multiplication table for f; is simpler
than that for g; (in the preceding paragraph), we may seek a set of elements
in the quaternion algebra for f; arithmetically equivalent to the set 2 (gi).
With an eye on the identity

(4) adjgr = (%2 + x: — 0)2/4 + (23 + 21 — 22)2/4 + (21 + 22 — x5)2/4
and noting that e =e=¢;=1 for g1, we set

¥yo = 2% + %1 + %2 + %3, Y1 = %3+ %3 — %1,

Y2 = %3 -+ %1 — %, Y3 = %3+ %2 — %3,

whence the norm-form (xo+2—‘Ze,x,)3+ZA afX%g becomes (yo2-4yi2-+y2?
+v3%)/4. On solving (5) for the x; we obtain 2x;=ys-+ys, 2%a=7y3+ 1, 2205=
Y1492, 2%0="Yo —y1—¥z — %3, whence the integrality condition that xo-+ _ja%a

©)
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have integral coordinates is equivalent to the condition that ye, 31, 32, ys are
integers satisfying

(6) Yo = y1 = y2 = y3 (mod 2);
while the corresponding integral quaternions are given by
N (3o 4 4131 + 222 + 13y3)/2,

the 4, being the Hamiltonian units. Thus this system of integral quaternions,
given by A. Hurwitz, is isomorphic with > _(g1). The form g;, we should ob-
serve, is the reduced, positive-definite, integral ternary of least determinant
(=1/2).

The much debated question of whether one should use the Hurwitz sys-
tem rather than that of Lipschitz is thus seen from the point of view of quad-
ratic form theory to amount to this, whether one should confine attention to
fundamental forms (not derivable from integral forms of a smaller determi-
nant) or not. The form fi=x:+x,2+x5? is, to the worker with quadratic
forms, just as important as the form g, even though the form adj fi may not
be fundamental. Similarly, from the standpoint of quadratic forms, non-
maximal systems of integral quaternions are just as important as maximal
systems, even though they may not be as simple (for, if adj g is carried into
adj f by an integral transformation of determinant &, the primes dividing %
will play an exceptional role in 2.

In this article we shall not confine attention to maximal systems. We
shall make no restriction on f, for arithmetical applications, except that it be
integral. However, we shall sometimes be compelled to restrict the norms of
certain quaternions, and it will usually be seen that these restrictions are
vacuous when the system is maximal.

Out of personal experience with Hurwitz or Lipschitz quaternions, the
author may say that it makes no essential difference which one uses. Using
Lipschitz quaternions one must sometimes restrict the norm to be odd, but
this is counterbalanced by the simplifying fact that there are fewer units.

Interesting points to which we may call attention here are: the easily re-
membered multiplication table (§2(1)), and its simple law of transformation
(Theorem 1); the definition of a system of integral quaternions (§3); the theo-
rem on the uniqueness of factorization of primitive quaternions in every sys-
tem Y (f) (§5); the algorithm for finding factors of a given norm in §6; the
exact formula (when F is fundamental) for the integral automorphs of adj f
and the norm-form F, which points to the essential rightness of our definition
of integral quaternion (§7); the determination of ol systems with positive-
definite norm-forms in which factorization is always possible (Theorems 10
and 11). We may point also to Theorem 12, which states that there do not
exist genera of more than one class of positive-definite norm-forms, which
do not also contain classes of minimum greater than 1; there should surely
be an easier way of proving this.
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Principal notations. f denotes a ternary form of matrix (a.g); the matrix
of adj fis A = (4 .s); the multiplication table of its algebra is given in §2, (1) or
(2); the basal elements of the algebra are usually designated 1, 71, 7s, 43; ele-
ments of the algebra, guaternions, are usually denoted by the letters
¢ 4, - -+, 2 and their coordinates indicated by subseripts. If f is an in-
tegral form, a basis of the integral elements D, (f) is 1, 7, 72, 75 (§3); d =4l aaﬁ[ ;
F always denotes the norm-form (xo-+ex1/2+ €x2/2+e€523/2)2 42 A apxaits,
where the €. (=0 or 1) are chosen to make F an integral form. Subscripts
and B always range over 1, 2, 3; subscripts 7 and j over 0, 1, 2, 3, unless other-
wise indicated. F, G denote quaternary forms; other italic capitals denote
square matrices and their linear transformations; 7 =transpose of matrix T’;
f=the conjugate of the quaternion ¢ (§2).

We shall employ freely (without indications of proof) certain facts about
the form-residues modulo % to which a quadratic form can be reduced by
integral transformations of determinant prime to k; certain standard proper-
ties of genera of quadratic forms; and the invariants ¢, of quadratic forms un-
der rational, linear transformations. The latter invariants are due to Hasse
[4], and in the ternary case to Hensel [5, p. 337]. An exposition of all these
tools will be given shortly in a book by the author.

2. The Hermite quaternion algebra. The quaternion algebra pertaining to
the form f, or symmetric matrix (@.s), will now be defined. This algebra has
four basal elements 1, 7, 1, %5 satisfying the multiplication table

'iq2= _Aaa (a=1) 27 3))

¢))
igis = — Ao + 3 Graba fais = — Ass — 2 G1abey

with 45, and so on, obtained by permuting subscripts cyclically. In matrix
notations, the multiplication table can be written

0 D Gsaba — D, Gaaia
(2) i =—A+ K, where K=| — 2 34t 0 > 61ada |

Z azaia - Z aluia 0

where i’ denotes the row vector (4, 4, 73) and the prime indicates “transpose.”
The elements of the algebra have the form

L

(3) x= a0+ D aka = %o + ¥k,

where £’ = (%1, %2, %3); and the x; may range over some field containing the co-
efficients @..

It is sometimes more convenient to speak of the 4, as pertaining to the
matrix (A.s). Note that (4,s) is the adjoint also of (—a.g), and that the cor-
responding multiplication table is obtained by changing the 4, for (a.s) to
their negatives. :
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We can easily verify that if #=muo+2 iatte and t=to+) iuls, then ut=v is
given by Hermite’s formulae (1) of §1.
If T is any nonsingular matrix of order 3,

4) 2o+ VE= 2o+ 'y, where £¢=T9, ¥ =1{T.
By (2), 8/ =T"i'T = —T'AT+T'KT. This suggests the following theorem.

THEOREM 1. Let U denote a matrix of order 3 and nonzero determinant N. If
(0ap) is replaced by (bag) = U'(aap) U, whence A is replaced by B=T'AT (where
T'U=UT'=X\I), then the basal elements k. pertaining to B are related to the ia
of A by the linear iransformation

® I=1T1
We shall base our proof on the interesting identity:
(6) C’[p*IC = [q*], where q = Dp.

Here p denotes any column vector, p’ = (p1, ps, ps), and [p*] denotes the skew-
symmetric matrix formed from p as follows:

0 Pz —pe
) [p*] =] —2s O nl
P2 —h 0

C is any matrix of order 3, and D’ is the matrix of its cofactors, that is,
CD =DC=+~I, where y= I C [ . Obviously, the left side of (6) is skew-sym-
metric. We leave the verification of (6) to the reader.

To complete the proof of Theorem 1 we must show that T'KT= [¢*],
where q= (bss)f. We have immediately,

T'KT = T'[p*]T, where p = (aap)i,
= [¢*], where q = AU(aap)i = U'(2ap) UT'i = (bep)l.

The form A .px.%s is derivable from x,2-+x,*+x5* by means of a complex
linear transformation £="Tt, hence A =T'T. It follows from Theorem 1 that
the basal elements 2, pertaining to 4 are related to the Hamiltonian units,
say k. (these being usually denoted by 4, j, k), by the transformation i=T"}.

We define the conjugate & of x to be &=xo—1%1%1— iz —1s%s. In the case
of Hamiltonian quaternions, &&= x;2. Hence, by the preceding peragraph,
there holds in our generalized quaternion algebra,

(8) ix = 2% = xg? + FAE = 2 + 2 AopTalp.

We call this the norm of x and denote it by Nx. It will be seen from (1) and the
distributivity of multiplication that the conjugate of (w02 iatha) (fo+2 tata)
is (fo —Zi.,t.,) (%0 —Ziau,,), that is

® wl = i-d.
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Hence if v =ut, then 7=i%, vd =utla=u# i, or Nv=Nu- Nt This is of course
Hermite's identity (2) of §1.

The correspondence in (4) replaces each quaternion x by an equal quater-
nion, expressed in terms of a new basis. This correspondence is preserved un-
der addition and, by Theorem 1, under multiplication. The “real part” xo of
x, and the norm, are invariant.

We call x pure if #= —x, whence 2xo=0. If x is pure and ¢ is any quater-
nion, then y =7x¢ is also pure, and Ny=Nx(Nt)%. Here Nx is given by the ter-
nary form D A.sx.xs. Thus if Nt=1, the linear transformation expressing
the y, in terms of the x5, obtained on expanding y=1Ixt, is an automorph of
the form YA .sx.%s. It is of determinant 41, and will be found to coincide
with the general expression of Hermite, mentioned in the Introduction.

Indeed, we easily prove that y={#xt where Ni¢=1 gives the most general
automorph of determinant +1 of any form 4 =(Aas), provided it is true for
one particular form, say for the identity matrix I, or the matrix of x1x3 —x,?
(a relatively easy case [1, pp. 22-23]). For, if E denotes the general automorph
of determinant 41 of (say) I, and T is a particular transformation of I into 4,
then an obvious argument shows that 7-1ET is the general automorph of
determinant +1 of 4. Let ¢ denote the I-quaternion for which y =#xt expands
into n=E¢t. Consider the corresponding equation in A-quaternions y = ixt.
Then the I-coordinates of ¥ are those of the vector T3, and those of x are
those of TE; cf. (4). Hence the A-equation y=1Ix¢ is equivalent to the linear
transformation Tn=E(T%), or n=(T1ET)E. It therefore yields every auto-
morph of determinant 41 of 4.

LemMa 1. Let (a.p) be a rational, symmetric matrix of order 3, [a,p[ #0.
Let 1, by, ka, ks be linearly independent quaternions in the algebra of (a.p) satisfy-
ing the same multiplication table as the basal elements 1, 41, 13, 13. Then there
exists o quaternion q in the algebra and a sign ¢ = +1 such that
(10) (Tk1 = qilq—l, G'kz = qizq—l, dkz = qiaq—l.

For since k.2 is real and 1, ki, ks, k3 are linearly independent, &, is pure
and we can find a nonsingular rational matrix T such that £=T"t (cf. (5)).
Hence the multiplication table of the k. is that connected with the form
T’'AT. By hypothesis, T’AT =4, or T is a rational automorph of 4. Choose
the sign of T and adjust ¢ so that |T| = +41. Then there exists a rational
quaternion ¢ such that the equation y =Zx¢~1 is equivalent to the matrix equa-
tion n=T§. If x=4;, then §=(1, 0, 0), and »'=§'T"’, whence 7' is the first
row of T’; thus the coordinates of 7’ are the i-coordinates of %, that is
Ey=tit~1. Similarly, ks=1it, ks=1tist~1.

3. Quaternion arithmetics. Let (aas) be any nonsingular symmetric ma-
trix of order 3, which is sems-integral. That is, a1, Gz, ass, and 2as, 2a5, 2¢13
are rational integers; and the ternary form f =D Gag¥a%s is an integral form.
The adjoint matrix 4 = (4.s) may have some of its coefficients with denomi-
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nator 4. It will be convenient to introduce three numbers €, €, € each equal
to 0 or 1 according as (respectively) 2as3, 211, 2a;2 is even or odd. It is easily
seen that

2

€1 €1€2 €1€3

¢)) 44 =] @61 € ez [ = e (mod 2),

€3€1 €362 €37

where €’ denotes the vector (e, €, €).
The Hermite “norm-form?” xo?-+2 A .gx.%s is not always integral for in-
tegral forms f. However, it is found (cf. (1)) that the form

3
F = (xo + 61x1/2 + szz/z + Es:&'s/Z)2 + Z Aapxaxp

a,f=1

= xo2 + E €aX9X o “I"‘ Z (Aaa + e,,’/4)xa2 + (ZAzs + ezea/Z)xgx;;
+ (2431 + es€1/2) 2351 + (2412 + eree/2)11%2

always has integral coefficients. By replacing xo by %o~+_%aX., where the &,
are integers, we can evidently replace the e, by arbitrary integers of the same
respective parities. The form (2) then becomes identical with a form shown by
Brandt to be the most general satisfying a certain type of composition iden-
tity. We shall refer to (2) as the Brandt norm-form or simply norm-form.

We now introduce new basal elements 7, by the equations

(3) ia = jc - Gn/z (Ol = 1, 2, 3),

2

with the e, as defined above. The elements of the algebra can be written as
@ t = lo -+ jitr + oo + fabs,

where the ; are (say) rational. We define ¢ to be an integral quaternion if the
j-coordinates o, &, £, #; are rational integers. Clearly,

(5) t=1+ 2—12 €l + E tala = tol -+ Z iatar
say, and the real part #{ of an integral quaternion ¢ is in general only half an
integer, while the other coordinates (always integers) are the same for both
the 4, and ..
The sum of two integral quaternions is evidently integral. Also,
jaz = eaja — Aga ~ 5a2/4r
(6) jajs = (B2 + /D (s + e3/2) = — Asa — 271 G10€a — €262/4
+ anj1 + (612 + €/2)j2 + (313 1+ €2/2)js.

Here Au+2" t1a€a+t 6263/4= (a1} €/2) (@ + €2/2) — an(0ss + &/2) +ane,
and is always integral. Hence a product of integral quaternions is always
integral.
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The norm of ¢ evidently coincides with the Brandt norm-form in the j-co-
ordinates of ¢ as variables, and with the Hermite norm-form in the 7-coordi-
nates, If ¢ is integral, V¢ is an integer. The same is true of {-+, or 2¢f . Hence ¢
satisfies the algebraic equation #2—2¢J 4+ Nt=0 in which the coefficients are
rational integers.

A quaternion is called primitive if it is integral, and the g.c.d. of its j-co-
ordinates o, 4, fs, £ is 1; primitive mod « if this g.c.d. is prime to «; purely-
integral if it is pure and #, &, and f; are integers (pure meaning, even if
j-coordinates are used, that fo+2"2 ety =0); purely-primitive if it is purely-
integral and the g.c.d. of 4, %, ;3 is 1. A purely-integral quaternion is therefore:
not integral unless D e.t, is even.

Our set of integral elements has all the properties prescribed by L. E.
Dickson [3(a), p. 141; (b), p. 154] for the integral elements of an algebra,
except that in some cases our set is not maximal, and can be imbedded in a
larger set of integral elements.

It can easily be shown directly, or by using some results of Brandt, or of
C. G. Latimer [10], that the set >_(f) is maximal if and only if adj f is funda-
mental, in the sense that adj f cannot be obtained by an integral linear trans-
formation of determinant greater than 1 from the adjoint of an integral form.
For, if d =4l a,,pl , it is easy to prove that adj f is fundamenial if and only if

¢ d is squarefree, and ¢, = —1 for each prime ¢ in d.

(In view of Theorem 7, the same result holds with F in place of adj f.) An
examination of Latimer’s work will show that every maximal set of integral
elements in a rational generalized quaternion algebra is associated with a
ternary form satisfying (7). It should be noted that he appears in his work
to omit the condition that ¢; is —1 when d is even (an essential condition if f
is indefinite); and that, after transforming his problem so that in effect =1
and e =e; =0, he uses as his key form the norm of 2x13;-}%48s %375 (integrality
requiring that the coefficient of 4, in a pure quaternion is even), whence his
matrix I is obtained from our 4 by multiplying the first row and column by 2.

Several writers have investigated canonical bases of (maximal) integral
sets. Since our multiplication table is so easy to remember, handle, and trans-
form, we prefer not to canonicize it any further, but rather, when we have the
need, to use all the resources of quadratic form theory to obtain the most
expedient form for a particular problem.

4. Integrality is preserved if T is unimodular. We prove somewhat more.:
Suppose T is an integral matrix such that B=7'AT is the adjoint of a semi-
integral matrix. (This is always true if ] Tl =1.) To see that integral quater-'
nions associated with B are still integral when referred back to 4, we need:
only show that

§)) > eaka = E €*ya (mod 2),
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where the e are the parameters 0 or 1 related to B; and where £=T7,
%o+ 2 €aka = Yo H 27D €Yo

Now 44 =ee¢’ mod 2 by §3(1). Hence 4B=¢*e*'=T"44T=T"ec'T mod 2.
Hence e*’'=¢€'T, and D _exa =€ =€'Tn=¢*'y =) eX*y, mod 2.

Note that the transformation replacing the norm-form (02752 €ax.)?
+-§’A £ by the norm-form (yo+2"1>_e*y.)2+n'Bn is the integral transforma-
tion £=T7, xo=yo+ (¥’ —€'T)n/2 (see §8).

5. The factors of a given norm of a primitive quaternion are essentially
unique. If v =uf in integral quaternions, ¢ is a right-divisor, u is a left-divisor,
of v. Necessarily, Nt[ Nv. We designate units, that is integral quaternions of
norm 1, by the letter 8. The quaternions 6t are called left-associates of ¢; all,
or none, are right-divisors of ». By definition of integral quaternion, v is di-
visible by a rational integer m if and only if each of the j-coordinates of v is
divisible by m. We now prove:

THEOREM 2. Let x be primitive. If Nt=m, and ¢ is a right-divisor of x, the
- only right-divisors of x with norm m are the left-associates 6t, provided

) {m is not divisible by any prime p such that p’] d

(where d = 4|a.g|) or such that p||d and ¢, = + 1.

It will be noted that the restriction (1) on m is vacuous if the integral
system is maximal (as we remarked in §1). The proof depends on three
lemmas, from which the theorem will follow, since x+2m and ¢ have the same
right-divisors of norm m, t=ut, with Nt=Nty=m, Nu=1,u=0.

LeEMMA 2a. If x=y (mod m), x and y have the same righi-divisors of norm m.
Proof. If y=x-+2m and x=ut where Nt=m, then y= (u-+25)t.

LeMMA 2b. If Nw is prime-to m, x and wx have the same right-divisors of
norm m.

Proof. Choose g so that gNw=1 (mod m). If wx=ut, gowx=gout=x
(mod m).

LemMa 3. If m satisfies (1), x is primitive, x =ut, and Nt=m, then we can
choose an integral quaternion z such that N(x-+2zm)/m is prime to m.

Proof. Set ¢= (Vx)/m. Then

@ N(x + zm)/m = q + 2 + 2% 1 22m,
and we set
(3) r = x5+ 2% = 2(x"20’ — E A ap%a2s)-

We can apply to f any unimodular transformation to obtain a more conven-
ient residue, since divisibility will be invariant under such transformation. We
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interpolate here a2 lemma on form-residues embodying facts needed here and
later.

LeMMA 4. Let d =4laagl . If p is an odd prime not dividing d or dividing d at
most once, we can assume

€)) F = a1%® + a2xs® + pazxs? (mod p7),

rarbitrary, where a,, 6z, azare prime o p,and azis Oor 1;ifaz=1,c,=( —alazl ).
If dis odd, f is equivalent mod 27 to the form

(5) = xxs + asxs?,
a3 odd; and if d=2 (mod 4) and c;=—1, f is equivalent mod 27 to the form
(6) =z 4 o1 + 222 + 245757,

a3 odd. Form-residues for coprime moduli can be achieved simultaneously.

To continue with the proof of Lemma 3, if p|m and plg, we make g+
prime to m by taking =0 (mod p?). If p|m, p|q, and p}d, then by (4) with
a3=0 and (5),

r = Z(xo'Zo’ — (203%1%1 — Q3Q1%X9%3 — a1dzx323) (mod P2)9 if b > 2,
r = 2[(x0 + %3/2) (30 + 25/2) + 052122/2 + a52221/2 + %37,/4]
= (220 + %3)20 + @s%221 + @sx1z2 + (%0 + %3)23 (mod 4), if p = 2.

Clearly, x being primitive, g+ is prime to p by choice of z mod p. Finally,
the case plm, p[ g, p”d, ¢, = —1, cannot hold with x primitive:

LEMMA 5. If x is primitive and m| Nz, then if p is a prime dividing d pre-
cisely once and satisfying c,= —1, m cannot be divisible by p*.

For by (4) with a;=1 and (6),
Nx = xo’2 + paa(a2x12 + alx,ﬁ) + ﬂqdzx32 =0 (III.Od 1)2),
Nz = x* + 2ox3 + x5? + 203(21% — 2122 + %,%) = 0 (mod 4),

whence x, and %3, then x; and x., are seen to be divisible by p.
In view of Lemma 5, m has the following form:

) m=2*myms, where u is unrestricted (20) if d is odd, pis 1 or 0 if
d=2 (mod 4) and ¢;= —1, p=0 otherwise; m, is squarefree, and consists only
of odd primes p dividing d once and such that ¢, = —1; m, contains no primes
dividing 2d.

6. Conditions for the existence of a right-divisor of norm m. A method
of obtaining the right-divisors if any, of a given norm will now be given.

THEOREM 3. Let m be a nonzero integer represented by some form in the genus
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of F, and assume §5(1), x primitive, mle. Then, by an algorithm explained
below, every factorization

1)) x = ui,

in which Nt=m, is associated with a representation of the number 1 by a certain
quaternary form in the genus of F. Hence, unless the genus of F contains a class
of forms which do not represent 1, there exists a right-divisor ¢ of x, of norm m and
necessarily (by Theorem 2) unique up to a left unit factor.

By (1), =0 mod m; conversely, if xf=0 and Ni=m, then xf=wum with u
integral, xft=wutm, x =ut. We seek the general solution ¢ of the system of four
congruences xf=0 mod m, with the intention of substituting this general solu-
tion in the condition Nt=m.

If m is even we can use the residue

) f=jx? 4+ %2 + j2.® 4+ Axa® (mod 2%)

where 7 =0 and \ is odd, except that =1 and A=2 mod 4 if d=2 mod 4 and
¢= —1. Simultaneously we can assume that

©) f = a12:® + 02%2® + a325? (mod mum,),

where a1, a2, and az/m; are integers prime to mms, and ¢, = (—a1a2| p)=-—1

for each prime p in m;.

The four coordinates of xf in terms of the j. must be divisible by m. In
particular, on expanding (¥¢+%3/2+2 to%a) (fo2s/2—2 iaba) With (G.s) as in
(2), and (4.5) as given by

adj f = A(F®:® — 2z + j22) + (G — 1/Dxs?,
and then using 2;=ji, 2=7s, ts=3—1/2, we get

Zoly + MG — 2ty + A xDE:  + (20 + j23)ls =0,
xdy -+ (— 20 — x3)t1 + jasts + (21 — j22)ts = 0,
Xabo + (—jzdti + (— =zt + (Fz)t: = 0,
%3ty + Azt + (— Azt + {(— x0)t3 = 0, mod 2,

€))

For the odd modulus mms we can use the i-coordinates, since xo’ and £y’ are
integral mod myme, and have

o'l + aa83%1ts + 8381208y + 61097383 = 0,

® Xube’ — %'ty -+ axste —  axals =0,
xztu' -_ azxah —_ xo'tz + Qax1ls = 0,
xshe' +  Ga%ely —  @sxde — o'tz = 0,mod pT,

where pT ranges over each of the prime-powers in myms..
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- For success the following process requires that the number of independent
congruences in (4) or (5) be two.

First, let pl my, whence pl as. Since Nx=x¢'2-F 0283212} 030120+ 0102%32 =0,
x9’=x3=0 (mod p). Hence the matrix of (5) has the first and fourth rows
zero mod p, and the second and third (x; 0 0 —a;x) and (x; 0 0 azx;). Clearly,
(5) can be solved for 2’ and # (hence for ) and £) in terms of # and % (mod p).

Second, let p=2, d=2 (mod 4), whence j =u =1. Then Nx=x+xyx;}xs?
=0 (mod 2), x¢=x3=0 (mod 2), and the matrix of (4) reduces mod 2 like the
preceding case; we can solve for £, and #; in terms of # and £ mod 2.

If p}d, it may be remarked that (4) or (5) will usually involve three inde-
pendent congruences (if p'[Nx and p)x). However, if p’lxo' or 2"|2xo+x3,
we shall prove that the number of independent congruences is two. For ex-
ample, if p}xs, multiplying (5:), (53), and (55) by aaasx:, a1asxs, and @003,
and adding, we get 0 mod p*, whence (54) is a consequence of (52) and (5;);
using xs, —asxs, and asxy on (5), (52), and (55) shows the same for (5;). As
plxs and p|a2a3x12+a3a1x22+a1a2x32 the determinant of the coefficients of #,’
and % in (5z) and (5;) is prime to p, and we can solve for £ and £ in terms of §
and # mod p". Similarly in (4) if x3=—2x, (mod 2*), then as =0 and
Z“I —xo*—Ax1x2, (41) and (4;) are proportional, and Q\xs)(4s)+ (\x1)(4s)
—x0(44)=0.

To secure p’lxo’ and 2#|2x,-4+;, we use Lemma 2b, and the following
lemma.

LemMaA 6. If pld, and x is primitive, we can find an integral quaternion
residue w mod p* (s given not less than 0), such that Nw is prime to p, and the
real part 2(wx)o of 2wx is divisible by p*.

We use (2) with j=0 and modulus 2¢; (3) with a; prime to $ and modulus
?*. Hence if p =2, Nw=we?-t+wews—w 2z (mod 2), and

(6)  2(wx)o = wo(220 + x3) + wi(Ax2) + wa(Ax1) + ws(wo + 1), mod 29,
and if p>2, Nw=w,'?+0:05w12+0s01w2%+a10:ws? (mod ), and
(7) ('wx)o = wy'x) — G203W1%1 — G301W2X2 — G102W3X3 (mod P').

Since x is primitive, (6) can be solved for one of the W;, say wi=bowot baws
+bsws (mod 2¢). This implies mod 2 that w;=20;-+bowo-+beve-+bavs, wo=0,,
Wy =1y, Wy ==v3. Substituting this in the expression for Nw gives a quaternary
form of determinant (d/4)2- 22, whence not every term in vy, 93, 75 has an even
coefficient. Hence Nw can be made odd by specifying vy, 22, and 5 mod 2,
and then 2(wx)o=0 mod 2* by choice of ;. A similar argument applies to (7).

To sum up, for each prime-power p* in m, the condition =0 mod p* re-
duces to a pair of congruences such as ty=af,+ 8¢, & =7+ 6t; (mod pr), where
@, B, v, d are integers; or what is the same thing, to

(8) to= PpTso + ass + Bss, h=p'sy -+ sz -+ 853, by = 89, I3 = 53,
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in which the s; are arbitrary integers, a substitution of determinant p?. If
these last expressions are substituted for the #; in the system of congruences
corresponding to xi=0 (mod p,"), where p."? is another prime-power in m,
we obtain four congruences in sy, - - -, §3 equivalent, since p and p, are co-
prime, to xf=0 (mod $."%), and hence having a solution of determinant ps%
expressing the s; in terms of four new integer parameters. Continuing in this
way, and finally compounding the linear substitutions, we see that the gen-
eral solution of x2=0 (mod m) is given by a system of the type

3
9) L= Z Pizi, t1=20,---,3, p;;integers, I p;,-l = m?
F=0
Furthermore, for arbitrary integers 2, - - - , %3 the #; determined by (9)
must satisfy

(to + 271 eate)? + 2 Aaptats = 0 (mod m).
For they satisfy x#=0, x#t=0, x(Nt) =0, where x is primitive and Nt is ara-

tional integer.
On substituting the expressions (9) for #; in the equation

(10) (to + 2_12 Eatu)z + Z Aaﬁtatﬁ = m,
we obtain an equation of the form
(11) Z rijZ2iZ; = M,

where the form on the left has integral coefficients. Also, by the preceding
paragraph this form has a value divisible by m for all integers z; and z;. It
follows that m divides every r;;. Setting r;;=ms;; we get

(12) > sy = 1.

Conversely, for any solution 2y, - - - , 33 of (12), the integers ¢; determined
by (9) satisfy (10) along with x#=0 (mod m), hence (1).

Finally, to prove that F and G=Zs,-,x.x,- are in the same genus, we need
only show that they have the same index, the same determinant d%/16, and
the same form-residues modulo d2. Let F and G stand for their own matrices.
Since G was obtained from F by applying the transformation (9) of matrix
P=(p;;), and cancelling m, we have

(13) P'FP = mG.

By (13), since IPI =m?, the determinants of F and G are equal. Also, the
indices are equal, since P is real, m is positive if F is definite, and the indices
of Fand — F are the same if F is indefinite.

We assumed that m is representable by the genus of F. Hence m
= F(vq, 91, 2, v3), where the v; are rational numbers of denominator prime
to 2d. Thus m= Nv, and mF= N(2t) determines a linear transformation of
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determinant m? of F into m F, with rational coefficients of denominators prime
to 2d. By (13), P'mFP =m?G; hence F can be carried into G by a rational
transformation with denominators divisible by 7 but by no other prime fac-
tors of 2d. Hence, first, F and G have the same values for all their rational
invariants ¢,, and, second, it remains only to prove that F and G are equiva-
lent mod p7, where p divides both m and 2d. That the last holds true follows
from the easily proved lemma:

LeMMA 7. Let pld;or pud and c,= —1. Then every integral quaternary form
of determinant d*/16 <s equivalent to a form with the following residue mod pr:

(14) %oxy + d%%9%3, if p = 2 and d is odd;

(15) 6% + 2oxs + 242 + (@¥/18) (222 + %923 + 242), if p = 2||d and ¢y = — 1;
(16) %o + nxy? + plxe? + nas?), if p > 2, p”d and ¢, = — 1.

In (16), —n denotes a certasn gquadratic nov-residue mod p.

This completes the proof of Theorem 3. The reader’s attention should be
drawn at this point to Theorems 11, 12, and 13.

When f is indefinite, then at least when adj f is fundamental, it follows
from a well known theorem of A. Meyer [3(c), p. 54] and adj f is in a genus of
one class. But it does not necessarily follow that this is true of F. However,
Latimer’s theorem that, in the indefinite and fundamental case, every one-
sided ideal in an integral set is principal implies that if F is indefinite and
fundamental, F is in a genus of one class. For, according to Brandt [2, p. 29],
the ideal-classes correspond to the classes in the genus of F.

We shall in §15 prove a result showing that Theorem 3 is in some meas-
ure best possible.

A word should be added here about the restriction on m in Theorem 3.
The genus of F represents all integers m (having the necessary sign if F is
definite) for which F(xy, 21, %2, %3) =m (mod k) is solvable for every modulus &.
It is easily seen that if Fis fundamental, and in certain other cases, this con-
gruence is solvable for every k. Hence in this case there is no restriction on m,
except for sign when F is definite.

7. The automorphs of adj f and F. The integral automorphs of any in-
tegral ternary quadratic form can be expressed most conveniently by means
of our systems of integral quaternions. If adj f is fundamental the result will
be surprisingly precise.

We first make some remarks by way of orientation. The automorphs of g
and kg are the same for any form g and constant x. The automorphs of f are
the transposes of those of adj f. For if 4 =adj ¢, and A= | al , S’/AS=A4 im-
plies $’ASa=AI, 5’4 and SA are permutable, hence Sa.S’ =a. If there is one
automorph of determinant —1, all such are obtained by multiplying it on
one side by each positive automorph, where positive signifies determinant 1.
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The automorph —1I can be so used if the number of variables is odd. The
form F has the automorph

1 €
1 s
M [O o ]
I of order 3, of determinant —1. Hence the number of integral automorphs

of F is double the number of its integral positive automorphs.
Our main result in this section is the following:

THEOREM 4. Let f be integral and adj f be fundamental. Then every positive
integral automorph y.= eqsxs of adj f is obtained by eguating i-coordinates in

(2) y= (th)/Nt (2 = Z Ta%ay Y = E aYa)s
as t ranges over the primitive quaternions such that N t] d. Every positive inlegral

automorph yi=2 hige; of F= (%027 €aka) 2+ A apiais is oblained by equai-
ing j-coordinales in

3) y = (tzu)/Nt (x= %0+ 2 ja%ar ¥ = Yo+ 2 jaPa)s

as t and u range over the primitive quaternions such that Nt=Nu and Nt|d.
All automorphs so obtained are integral, and each appears exactly twice, once
Jfor t and once for —t in (2), once for (t, u) and once for (—t, —u) in (3).

THEOREM 5. If f is integral and ad] f is not fundamental, then all the posi-
tive integral automorphs of adj f, or F, are included among the automorphs ob-
tained as in Theorem 4; but among those so obiained there may be some which
are not integral.

We consider first the uniqueness property. If we apply to adj f a non-
singular transformation 7', as in Theorem 1, all quaternion equations will be
transformed uniquely, and the automorphs will correspond as E to T-1ET.
Hence we can suppose if we wish that

@ = a1%1? 4+ a2%2® + asxs?, a102a3 # 0.

The expression (2) is homogeneous: it is unchanged if £ is replaced by A#,
\ scalar. Conversely, we prove the following lemma.

LemMa 8. If the coefficient field has characteristic not 2, then txt/ Nt =dixu/Nu
identically in x implies that t and u differ only by a scalar factor, which may
however lie in a larger field.

We can choose A to make Nt=A2Nu, and so can assume Nt= Nu. We shall
verify that if the values of the nine elements of #xf are fixed, as well as the
value of Ni, then #i; are uniquely determined (3, j=0, 1, 2, 3), whence *tis
determined. The explicit expansion of (2) is D/N¢, where D is

16 + Gagals® — asants® — 010485 201(tots -} astits) 201(— toby + adlity)
) [ 205(— tobs + ashity) to — arodr® + cunds? — ol 20(tahr + artsts)
2as(tets - aaiits) 2as(— tob1 + astals) bt — madd? — aats? - gt
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Clearly the value of fo*-+as036%+ 0301822+ 0102832 (=Nt) and the values of the
three diagonal elements fix the values 4¢, and the nondiagonal elements
determine 4i;.

Abbreviate 4 .. as 4. Equating ¢-coordinates in y = txu we get y; =2 724,
where

ro0= totho— Arbrts1— A sbytta— A ststis, rar=—A1(lom1+tiko— artaustartsus),
roa= —Aotstha-tLattot aotits— astater), r03= — Az(bomsttsto— astistat-astons),
r10="tota+I1motGrbaths— arbaths, ru=lotbo— Asbrtr+A sbatha+A ststis,

©) 719= @1(boths— bato— agbitha— Galath),  T13= — G(botha— batbo+aotrtistastsniy),
790={tosiz~ttatho— Golrthst-aatsten, ra1= — ag(botia — lsthotashiiat-aatamr),
ro0=lotbo+A ttruts— A statia+ A staus, 723== Go(fothr— bytto— Gabatis— Balstts),
r30= lotts+Istotaabitta— astort, ra1=aa(fotha— Latto— Gobrtts— aslsuis),

rae= — aa(lothr—brtbotarbotist Grbstes), raz=lotbotArbiser+A sbstts— A staus.

The terms occur in sets of four; for example, the 7;; involve fguo and A4 o a2%,.
The signs in different 7;, of a set differ in only two terms, so that if the alge-
braic sum is taken to make a particular term add four times, the other three
terms will cancel. Thus if the values 7;; are fixed, the values 4a,a.a3t;u; are
fixed for every ¢ and j. If Nt and Nu also have fixed nonzero values, either
(¢, w) or (—t, —u) are thus uniquely determined.

It will be noted that (6) reduces to (5) when #=¢, the first row and column
becoming N¢, 0, 0, O.

We saw in §2 that the positive rational automorphs of adj f are given by
(2), but did not determine the field restrictions on the #;. They can indeed be
restricted to be rational. For, f can be carried by a rational transformation
into a form of type (4) with rational nonzero a,. We can choose A\ so that
Nt is rational. The discussion following (5) shows that #i#; are rational
(<, 7=0, 1, 2, 3). Hence #;=u;sY?, where the u; are rational, and we can re-
place ¢ by u.

Before going further we prove a similar result for the rational automorphs
of F.

LeMMA 9. Let (aqp) be rational. Then as 1 and u range over the rational qua-
lernions associaied with (G.p), such that Nu=1/Nt, then y= txu ranges over oll
the positive rational automorphs of Fo—xo“+2Aapxaxﬂ

Our proof is similar to that of Hurwitz [7, p. 63] for Hamiltonian quater-
nions. First notice that if the lemma holds for 4 =(4.s), it holds for
B=T'AT, where T is rational and of positive determinant. For then

10 10
O] S = [ ], where S = [ :I,
0T 0 1T
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gives a rational transformation of F, into the new norm-form Go=y,’
4+ Begy«ys, and all rational automorphs of G are given by S HS, where H
ranges over all rational automorphs of Fy. Let y =#xu be the equation which,
on equating A-coordinates, expands into the matrix equation y =Hzx, where
9'= (Yo, ¥1, ¥2, ¥3), and so on. Applying the change of basis T, consider the
corresponding equation y =#x% in B-quaternions. The A-coordinates of y and
x are respectively yo and T, xo and T, that is, Sy and Sx. Hence the result
of equating B-coordinates in y=#x% must be the system of linear equations
Sy=HSx, or y=S"1HSx, which is any desired automorph of Go.

If y;=2_hi;is a rational automorph of Fy, then multiplying by 1, 41, 72, %
and adding, we get ¥ = hoxo-+ kX1 +hoxs+haxs, where k= hoj-+haga+hafia tHhaiis
are rational, linearly independent quaternions; and we see that the result of
substituting for ¥ in ¥ or yo?+2_4 «gY¥<ys must be x&-{—ZAaﬁxagx,g. The prob-
lem of finding rational automorphs reduces to that of finding rational qua-
ternions k; satisfying

(8)  (hoxo+ hygat hamat hsts) (ho%ot hyr+ ha%ethsxs) = xo®+ >, Aapas,

identically in xq, %1, %2, ¥s. Comparing coefficients of x,* we have hoho=1, and
we can define rational quaternions k., by the equations

9) by = kiho, by = koho,  hs = ksho.

Hence (8) reduces to

(10) (%o Brxs+ ket ksxs) (Xo+ErstitBattatFaxs) = xoP+ D AapZas.

On equating coefficients we see that

(1) kot ka=0, Fkoke= Aaa,  kakg+ kgka =240 (,8=1,2,3).

We now assume A ,5=0 if a5p, although this may not be strictly necessary.
Then on eliminating the k., we get

(12) k,,,2 = - Aua; kzks = - kakz, k3k1 = - k1ka, klkz = - kzkl.
Hence

k]_kzka = EaEzEl = - kakzk]_ = kzksk], = - kzk]_ks = klkzks.

Hence the quaternion kyksk; is equal to its conjugate, and must be real. Since
N (kiksks) = AnA A= (anaxass)?, we can set

(13) k1k2k3 = 0211092033, g = i 1.

From (13) follows kiks= —dauk, keki=—0anks, kiks= —ocauks. Hence the
three quaternions ok, oks, ok satisfy the same multiplication table as the 4.
Hence we can choose g and ¢ to satisfy (10) of §2. Accordingly, in (8),

(19 y = qxq *ho, or y = qig 'ho,
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that is, y=Itxu or y={%u, where ¢ and u are rational quaternions such that
Ni- Nu=1. Continuity considerations show that the determinant is 1 for
the first, —1 for the second of these transformations. Lemma 9 follows.

If ¢ has rational coordinates we can choose a proportionality factor A to
make ¢ integral and primitive. Hence every positive rational automorph of
adj f is given by y =#xt/Nt with ¢ primitive. We must see whether the various
prime-powers in Nt can be cancelled to make the coefficients #t/Nt,
tiat/Nt, Fist/ Nt of the x, have integer coordinates. Similarly, every positive
rational automorph of F is obtained by equating j-coordinates in

(15) y = txu/m,
where £ and % are primitive quaternions, m a nonzero integer, Nt- Nu=m*

LeMMA 10. Let ¢, u denole primitive quaternions, N(tu) =m?2 If txu/m is
integral for every integral quaternion x, then: (a) Nt=Nu=+m; (b) u=19,
where § is a unit; (c) txi/m 1is integral for every integral x.

For, in particular, t#=0 (mod m). If $*is a prime-power in m, then N¢- Nu
is divisible precisely by p*. We prove that Nt and Nu are each divisible by p*.
For if not, let Nt be divisible only by p", n<s. Then #t#u=0 (mod 2?),
#=0 (mod p*—"), contradicting the primitivity of u. Hence Nt=Nu=+m.
Again, tu= +m0, 0 integral. Since N(tu) =m?2N9, 0 is a unit. Thus u =2#0. The
integrality of tx#/m implies that of #xi08/m, that is, of ixi/m, for every in-
tegral x.

LEmMA 11. Let £, u be primitive, Nt=Nu= +m, m|d, adj f be fundamenial.
Then txu/m is integral for every inmiegral quaternion x. Also, txi/m is purely-
integral for every purely-integral x.

Let p>2. We can assume that (4) holds as a congruence mod 7, r large
and can use (5) and (6) to see whether the power of p in N¢ cancels. Since
adj f is fundamental, p divides d precisely once and ¢,=—1; we can sup-
pose p“as and (—alazl p)=—1. Then if pINt (necessarily only once) clearly
uo=us=ty=£=0 (mod p), and every element of (5) and (6) is obviously
divisible by 2.

Note in advance for Lemma 13, that if p* exceeds the power of p in d
(=4a:a2a5), then by arguments like those following (5) and (6), ¢* cannot di-
vide every element of (5), or (6), without rendering t, or ¢ or u, imprimitive.
This applies equally to the prime 2 in case (4) holds, mod 2r.

To facilitate the discussion of the prime 2 we need explicit expansions of
(2) and (3), especially in the case f=jx*-}-x1%2-}+jxe®+Nxs% j=0 or 1. These
can be used with the elements determined mod 27, when the expression for f
is only a residue mod 27. To derive these expansions we take a1=4j—1, as =1,
as=\, and so derive the adjoint form

(16) }\(_7.0612 — X1%2 -!—sz’) + (7 — 1/4).1!;3z
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from a.03%1%2+ 2301522+ a102%3% by the substitution

i -t 0 1 1 0
r=—|1-j 1 o, T™={j-1 147 o]
0 0 1 0 0 2

of determinant 1/4. Then we form T-XET, using E as in {5), and apply T to ¢,
that iS, put lo =1Uyg, L= (1 +j)u1/2 —uz/Z, ta= (1 —_7)'u1/2 +u2/2, ts =u3/2. Fi-
nally, we replace #, by #y+us/2, so that the u; will be j-coordinates and
integrality most easily discussed. If 7=0, the result for the positive auto-
morphs of adj f is

2

Ug — Au,® Uoty

1
17 al Au? (uo + u3)? ~ us(o + us) |,
2 uguz  — 2xur(me + us) o + ugns + Auu
where Nu=u¢?+u¢ts—Auus (the Brandt-norm); and if j=1 the result is the
quotient by Nu (=uo*+uous+us®+N(s? —us+14,7%)) of
ut—ud-+A(ud—us?) 2ucustud+AQusthr—u?) teotiy+20113— 2utctis— tatis
(18) [—Zuoua—us’+>\(2u1uz—uz’) 2uoust+uct — Mol —us) 2untir-turs—sowa+uaus ]
2\ (ot t-nis) —2\(unturns—umis)  u-suostu—M o —upa-t+us?)

Now (6) is obtained from y=ixu, for the f in (4), by equating i-coordi-
nates. To get the result of equating j-coordinates in Y442 _jaYe = (o2 juk)
- (x0 +Zj.,xa) (uo+2j,,u,,), we write it as yo+7ys/2 +Z'i.,y‘,= (to+-23/2 +Zi..t.,)
< (oF%3/2+D AaXa) (Hot-ts/2+D ta%s), and apply the transformation T as
above, using (6).

Using the abbreviations

(19 p1 = baus + lsus, q1 = totks — lsus, 11 = fowr + hiwo, S1 = bowy — Ly

where subscripts 1, 2, 3 are to be permuted cyclically, and also p = fyu;--faus.
and o=hu;—kue, we thus find for the automorphs of F=uxp2+xexs+jxa?
4\ (jxs2—x1a-1-7%2%) = Nx the expression (k:;/Nt), where

hoo = fotto + Namy — j(baua-+-Np), hor = M(bambo — jr1 + jqu),

hoe = Moy — jre +jqo), hos = Mouy — j(rs -+ tsus + Ap —Aga);

b = 11 tsus + g, b1 = towo + o + F(bsus — Ao),

bz = My + j(ss — Aps), s = bowy + tsmr — §(s2 -+ P2 — q1);
(20)  hag = 72 + tous + jgo, hoy = MNasts — 5(s5 + Ap3),

hoe = botho + bows + j(tsus -+ Na), has = towo + faus -+ j(s1+ g2 — $1);

hso = r3 + taus + Ags, hsy = N(sq + tsuz — jpa),

hse = — A(s1 — hus + jp1),
has = lotho -+ 73 + tsus — Moy + F(Ap — fsus).
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These have been checked carefully. As a final check note that (20) can be re-
duced to (17) and (18) by setting =4, that is fy-+s/2 =uo-+us/2, h= ~—uy,
by = —uy, lg= —uy, hence fy=up+u;3; the first element in the last three rows of
(hi;) then becomes zero, and the other elements become those of (17), (18);
also, adding half the last row to the first gives yo+¥s/2 = Nu(xo-+x3/2).

In (18), and in (20) with j=1, Z[ Nu implies that #¢ and #; are even, and
since A is even when j=1, it is seen that all elements of (18) and (20) are even,
so that #x#/2 is purely integral, and #xu/2 is integral. This completes the proof
of Lemma 11.

In anticipation of Lemma 13, note that if 2* exceeds the power of 2 in d
{=({47—1)A), then in (17), 2* cannot divide the four leading elements without
rendering every u; divisible by 2; and in (18), 2* cannot divide both N% and
the last element, without 2 dividing both uo?-tueus+us2 and 232 — w12y -F 5,2,
whence 2| %.

Again, consider (20) with j equal to zero. For any integer A, it is easily
verified that if 2° exceeds the power of 2 in A, and 2* divides all 16 elements
of (20), then every tu; is even, so that  or % is imprimitive. A good scheme is
to construct a 4-by-4 square, and check off each product ##; as even, as it
appears.

The proof of Theorems 4 and 5 is now complete, at least in the fundamen-
tal case, when we observe (Lemma 3) that if j=1, 4 cannot divide Nt if ¢ is
primitive.

We now need more complete information on the possible form-residues:

LeMMmA 12. Any integral ternary form f can be carried by a unimodular
transformation into a form with the following residue mod 27, r large: either
(i) as in (4) with integers a., or (i) as 22(jxr>-+x1x2-+jx2 +-Nxs?), or (iii) as
2842(jx 24201200 -+ 7%22) +aax32. Here j=0o0r 1;8 and 8 denole non-negative integers,
\ and as integers. In (ii) if j=1, N is even, In (iil), the power of 2 in a; does not
exceed 2B,

Forming determinants we see that the connection with & is as follows:
(i) d=40a1040; (mod 2); (ii) d= (47 —1)2%); (iii) d=(4j—1)22f+4a; (mod 27).

In view of Lemma 10, we can complete the proof of Theorem 5, by proving
the following lemma, thus avoiding further complicated fourth order matrices:

LeMMA 13. Let t be a primitive quaternion of norm m. If either (a) Ixt/m is
purely-integral for every purely-integral x, or if (b) Ixt/m is integral for every
iniegral pure x, then m] d.

The signiﬁcanée of (a) and (b) may be seen as follows. Set y=7#xt, where
x and y are pure. Equating coordinates, we have, say,

Ya = ba1%1 T+ taz¥s 1 feaka (a=1,2,3),

where #., L, l.s are the elements of the ath row of the matrices in, for ex-
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ample, (5), (17), or (18). The column #3, &g, f gives the coordinates of Zigt.
Now, (a) means that the y, are integers divisible by m for all choices of in-
tegers x.; that is, m|tes (@, =1, 2, 3). But, in case adj f is given by (16),
whence ¢ =€=0, =1, then (b) means that for any integers x1, 2, and even
integer xs, y1/m, y2/m are integers and ys/m an even integer; that is, ml b, b,
tay, b2z, 2hia, 2ts, ba1/2, t2/2, and fas.

Only the power of 2 in m, in” the nonfundamental cases, remains to
be considered. Consider first (ii) with 7=0 and & positive. The form
adj f=2%(—Nox;—x52/4) is derived from —\xyx;—x3?/4 by the substitution
%o =2%,: note that in T-1ET, T is 21, T-'is 27%I, and T7*ET =E. Referring
to (17), and replacing %o by #o—us/2 (cf. last step in getting (17)) before re-
placing %, by 2%%,, we see that the automorph is now E;/Nu, where the first
four elements of E; are (uo—2""1ug)?, —N2%u,%, —\2%u,?, (u0+2%"'u3)*; and
Nu is uo?— 228232 — 22 \yu,. Clearly, if 2¢ divides these five numbers, but
not d, every u; is even.

Similarly in (ii) with j equal to 1, if >0, 2¢ cannot divide Nu=1u,*
+3. 2224524 2%\ (s, — watta -+u,?) and the last diagonal element #0243 - 22-2y,?
— 28\ (11,2 — uytis +%,?), without rendering % imprimitive.

Finally, in (iii), adjf=2%+4(j—1/4)xs*-+28*2a3(jx1* — 22+ jx2%), and
is derived from (16) by taking A =2f+%a; and replacing x; by 2#*%x;. The third
row of (17) or (18) is therefore to be multiplied by 2~#-%, and then the third
column by 2f+2, ug—u3/2 is to be substituted for #,, and then #; is to be re-
placed by 26+2u;. The new Nuis uo?-+ (47 —1)2%0+2us 24205 (jus® — wrsia +jua?).
Now 2° exceeds the power of 2 in 226*4g;. Hence if j=0, 2° cannot divide the
first four elements (mo—28+1us)?, —28+2%a5u,2, — 28+ 23u,%, and (wo+2F+1us)?,
without 2 dividing #. Finally, if j=1, and 2° divides N« and the last di-
agonal element ug®43-22P %ug% —28+%a5(sy® — utia+us*), then we see that
25+2‘ ulz—uluz-l—ug” and that u,=28+1p,, 2"—3—2#‘ 902+ 3us2. If a; is even,
s=2B-+6; and if ¢; and B are odd, 225+5| 28+205(uy2 — w3mua+u52) ; in these cases
8|v‘,2+3u32, whence #; is even. But if a; is odd and 8 is even, and s=28+35,
then putting u,=28%p;, up=262+1g, 4,=28+1y,, we find for the first two
diagonal elements the expressions 2%6+2 [(wo F us)2 —4us® + 4a5(:2—0,%) |. The
bracketed expression in both cases must be divisible by 8. If %3 could be odd,
then vo— s and vo-+u3 would both be congruent to 2, or both to 0, mod 4.
Neither case is possible, and #; must be even. This completes the proof of
Theorem 5.

THEOREM 6. Let adj f be fundamental, that 1s, let d be squarefree and c, be
—1 for each prime p in d. Then: (i) if m| d, all solutions t of Nt =m are obtained
from any one solution by multiplying it on one side (whichever we please) by
all the units; (i) if Nt=m and Nu=ms,, where mlld and M2ld, then tu is di-
visible by the g.c.d. ms of my and my, and N(tu/ms) =myms/ms?; (iii) the number
of divisors m of d, for which there exist qualernions of norm m, is a power of 2,
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say 2%; (iv) tf the number w of units is finite, then adj f has 2w positive,'in—
tegral automorphs, and F has 2" w? positive, integral automorphs.

Proof. (i) By Lemma 10, % =16, where % and ¢ are any two quaternions of
norm . (ii) We can suppose f=a1x:2+asx22 +pasxs® mod p?, for any odd p in
d, where (—alazlp)=-—1 and pjlas; and that if d=2 mod 4, f=x2+xx:
+2,2+2ux;® mod 8, p odd. Hence if Nt=0 mod p, {y=£=0 mod p. Suppose
Nt=Nu=0 (mod p). If p>0, then tu= (i1 %22) (Grt01}%2u2) =0 (mod p),
since 4.2=1% =410 =11=0 mod p. If p =2, the same result is easily verified;
for example, by (1) of §1,

(tu)o 4 (2)3/2 = to'uo’ — 2ubruy — p(tams + tothy) — 2ubaus — 3bsus/4
+ (W'us + t3'uo + 2p(taus — tou1))/2
= folhp + fous + t3ug — 2[1.(t1141 + tzuz) =0 (mod 2),
(tu)1 = t'ur + W'uo + 1(faus — tsuz) + (baus — taus)/2

= fots + fatho + Laths - fats — fgus = 0 (mod 2),
and so on. It follows that if Ni=m,, and Nu=m,, then {x has m; as divisor.
Since d is squarefree, f#/ms can have no further rational integer divisor, and
(ii) follows. (iii) is an easy consequence of (ii), and (iv) now follows from
Theorem 4.

At this point we draw attention to Theorem 8, which can also be verified
(though less simply) by the preceding methods. Indeed, one finds, whether
adj f is fundamental or not, that fxu/m is integral for all integral x if and
only if txf/m is purely-integral for all purely-integral x.

8. The connection between f and F. We now proceed more easily:

THEOREM 7. If F = (x¢ + 27 ex,)? + adj f 4s carried into G
= (xo+2"D_nax.)?+adj g by an integral transformation, then adj f is car-
ried inio adj g by an integral transformation. In particular, if F~G, then
adj f~adj g, whence f~ +g.

For, if A and B denote the matrices of adj f and adj g, then 4, and B,
are integral matrices, where 41=4 +e¢'/4, Bi=B+1n’/4. Any integral trans-
formation of F into G is expressible in the form

1 %o T,] [1 6'/2] [fo 0"] _ [1 ‘)7’/2]

) [«1“ /2 Ay dlr T 2/2 B, J

where ¢’ =(s1, $2, s3), 7' ={(l, &, 13), and T are integral matrices. The expan-
sion of (1) gives the following three equations:

2 (to + 7'¢/2)2 + A7 = 1,
3) (o + T/ + €T/2) + PAT = 4'/2,
4 (¢ + T'¢/2)(¢’ + €T/2) + T'AT = B + m’/4,
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the transpose of (3) being (e+7"¢/2)(to+€'7/2)+T'Ar=17/2.

Hence if =40+2 jabay Nt=1 (in the set of quaternions related to F) and
the coordinates of £ form the first column of the transformation replacing F
by G. Now y=ix (where y=yo+2jaya, x=xo+zj¢xa) is evidently an auto-
morphic transformation of F, since N¢=1 and Ny= Nx;and the first column,
giving the coefficients of %o, also consists of the coordinates of . The inverse
of this transformation multiplied by the transformation applied to F in (1)
produces another transformation replacing F by G, which has =1, and
h=t,=1;=0. Supposing this to be the transformation employed at the start,
we find that (3) and (4) imply o’+€'T/2=9'/2, 6+ T'¢/2=1/2,

O] T'AT = B.

Thus T is a transformation replacing adj f by adj g, and the theorem follows.

Suppose now that F=G, so that (1) defines an automorph of F. The pre-
ceding process associates with every integral automorph of F a uniquely de-
termined integral automorph of adj f, satisfying, that is,

(6) T'AT = A,

and a uniquely determined quaternion ¢ of norm 1. Conversely, if T is any
integral solution of (6), the matrix

L)

is an integral automorph of F. For if we put f,=1, 7=0, we see that equa-
tions (2)—(4) are satisfied with o=(I—1")¢/2. Also, ¢ is integral, since by
(1) of §3, 44=ec’ mod 2, T'(44)T =44, T'ee’T=ee’; hence if T'e={,
Gi=¢? (@=1, 2, 3), or e=T"¢ mod 2. Finally, if ¢ is any unit quaternion,
the automorph y=#x multiplied by that in (7) produces any desired integral
automorph of F. We have thus proved the following theorem.

THEOREM 8. The number of integral automorphs of F is equal to the number
of integral automorphs of f multiplied by the number of uniis.

In particular, if the only units are *1, every integral automorph of F
is given by (7) or its negative, where T ranges over the integral automorphs
of adj f. This case occurs when f is definite and the minimum of adj f ex-
ceeds 1.

The definite forms f for which adj f has minimum 3/4 or 1 will be deter-
mined in the next section. At the same time, for later use, we shall isolate
also the forms for which adj f has minimum 7/4 or 2.

THEOREM 9. Every form G of minimum 1 in the genus of a norm-form F is
equivalent to a norm-form belonging lo a ternary g in the genus of *f.

For G is equivalent to a form (xo+2"1znax,)’+ZBaﬁxaxﬁ, where the 7«
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are 0 or 1, and B+4-9%'/4 is an integral matrix. Comparison of determinants
gives | B| =| A|. Since Fand G are in the same genus, (1) holds with &, o, 7,
and T having rational elements with denominators prime to 2d. Now y=1{x
determines a rational transformation of denominators prime to 2d, with ¢ in
the first column. Proceeding as before, we get (5) with T rational and of
denominator prime to 2d. Hence 44 and 4B are in the same genus, and the
theorem follows,

9. The positive, integral forms f such that adj f has minimum not greater
than 2.

(i) First suppose that {’4{ represents 3/4. By a unimodular transforma-
tion we can take A3 =3/4. Hence an%:®+ 2a12%1202+a2x3% becomes an integral
positive binary form of determinant 3/4. All such forms are equivalent to
x1?+x1%2+x2%, and we can therefore assume ay=2a;=as=1. Next by a
translation on 3 in adj f, we can obtain |241| £3/4, | 24| £3/4. Hence
An=on/4, Ay=as/4, where ay=0 or t1, @;=0 or +1. The matrices of f
and adj f now have the following appearance:

1 12 . 1 44 4412 o
(1) 1/2 1 b Z 445 444, 2]
[+ 5} [+7) 3 )

Let d=4| aqs|. Then adj adj f=df/4, and in particular,
(2) 4d = 12A11 - d12, 2d = o1l — 12A12, 4d = 12A22 had 0[22.

Hence ay*=a?= —2ma; mod 3, and we can suppose either ax=az=0, or
ay=az=—1 (the signs of both &, and oy can evidently be changed without
affecting (11)). In these two cases, d=3%k—1 or 3k, where k is a positive in-
teger, and adj f has the respective matrices

4k -1 1—-2k —1 L 4k — 2k 0
3 y 1-2k 4k—1 -1, ) — 2k 4k o
-1 -1 3 0 0

the corresponding forms f are as follows:
(4 =P 2 kg b ke + axs + xems, w2+ ks -+ 222+ Ragl

(ii) Suppose that adj f has minimum 1. We can take Agp=1. Hence
an%1*+2610%1%2 1 022%2* can be taken to be x12-}-x2%. By a translation we get
12A13l él, I2A23| §1. Hence A13=(¥1/4, A23=C{2/4, where o, a2=0, :tl, or
1 2. Since the coefficient of xx; in f is 0, the negative o; can be dropped. We
have (1) with 0 in place of each 1/2 in the upper left, and 4 in place of the
3 on the lower right. Hence

44 = 16A11 — a1’, . 4d = 16A22 bt ag"’, 0= ajog — 16A12;
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ot=al=oay=0 (mod 4). We can set a;=208;, where 8;=0 or 1. Then
An=@+p%/4, An=(d+B:?) /4, 412=B:B:/4, and
F= (24 21 eaa)? + (d + BiD)x:2/4 + (d + Ba?)%2%/4

+ x5? 4 Brx1xs + Bakaks + Pifax1xs/2.
Since F must have integral coefficients, =0, e;e21+518 is even and 24,2
=e?+0:2 mod 4. This implies that & =p0;, =P, and d=—¢?—g? mod 4.
The forms f obtained from (e, €)= (0, 1) and (1, 0) are equivalent. There re-
main three forms f:

(6) %1 + x2® + ks’ — %223 — 2371, 212 + %% — 2123 + kxs?, 01% + 22 +kxd?,

)

and d is respectively 4k—2, 4k—1, and 4k. We can suppose 2= 1 in connec-
tion with (63), k=2 in (6;) and (6s). For, if =1 in (6,) or (62), adj f represents
3/4, and it is seen that f is equivalent respectively to the case k=1 of (41)
and (4,).

(iii) Let adj f have minimum 7/4. As before we readily obtain:

1 172 - 1 44n 441 o
1/2 2 -1 y 4421 442 a2 |;
o1 [+4] 7

where oy, a2=0, .“:1, iz, '_"'3; 4A11=(a12+8d)/7, 4A22=(0l22+4d)/7,
44 = (a10e—2d)/T; —daon=0n?=20?2 (mod 7); (a1, a2)=(0, 0) and d=7k,
(o1, ae)=(1, —2) and d=7k—1, (a1, aw)=(—2, —3) and d=7k—4, or
(a1, ) =(—3, —1) and d="T7k—2. Hence we have four forms, with d respec-
tively 7k—4, 7Tk—2, 7Tk—1, and 7k, and each demanding 2 =2:
212 + 2252 + ks + 21%0 + x1xs + 2%0%s,
€)) %1 + 2% + ks’ + xaws + 2a®a + 2%
212 + 2227 + kas? 4 x1x2 4 2223, %% + 222 + kxg? 4 212,

(iv) Let adj f have the minimum 2. Then we have

1 0 - 4451 4412 o
0 2 -1, Z 449 4420 o2 |;
(231 o2 8

o, Ot2=0, 1, 2, 3, or 4; 4A11=(a12+8d)/8, 4.A22=(0122+4d)/8, a1a2=32A12;
O€1=4ﬂ1, ag———‘Zﬁg, ﬁ1=0 or 1, ﬂz=0, 1, or 2; €3=O,

(w0 + em1/2 + e2%2/2)? + (28:* + d)x1%/4 + (B2 + d)x2*/8
+ 2252 + Bafaxi®a/2 4 2812123 -1 Ba%a%a
is integral, d= — &%—2:? mod 4, d= —f:*—2e? mod 8, €162-1-8318: is even. We

(8)
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thus have six cases: (a) d=8k—6, =0, =1, Bi=1, B:=2; (b) d=8k—4,
61=€2=61=0, ﬂ2=2; (C) d=8k""3, €1=€2=B]=Bz=1; (d) d=8k'—2, 61=0,
€2=1=B]_, ﬂz=0; (e) d=8k"'1, €1=1, €2=0=ﬁ1, Bg=1; (f) d=8k, 61=éz=ﬁ1
=0, =0. The corresponding forms f are respectively:

x12+ 2x22+ kxsz'— X1%3— 2x2x3 (k g 3), x12+2x22—|- kx32—— 2x2x3 (k; 2),
9) #2222 kg — maws— xaxs (B2 3), 21242202+ kxg?—xyx3 (B2 3),
x1’+2x22—|— kx32—- XoX3 (kg 2), x12+2x22+ kx32 (kg 2).

10. Problem; to find all the fundamental definite norm-forms F for which
factorization, as of Theorem 3, is always possible. The genus of a fundamental
norm-form represents all positive integers. Hence F must represent 2, and so
must belong to one of the forms in (4), (6), (7), and (9) of §9. We number these
in order, 1° to 15°. Note also that d must be squarefree (excluding 5°, 11°,
and 15°), and ¢, is —1 for each p in d. Since f is definite this implies that d
contains an odd number of primes.

1°. Then F=(xo-+x1/2+x2/2 +x3/2)2+¢p /4, where

¢ = 332 + (4k — Dx? + (4 — 1)x2 — (4F — 2)21%2 — 22125 — 22075,

Since ¢ is Eisenstein-reduced if k=1, the least number primitively repre-
sented by ¢ with (x;, x,) (0, 0) is 42 —1. Since F(x, 0, 0, x3) =22 F-x 23} %32
#2, F does not represent 2 if £>3.

There remain the cases k=1 and 2, that is, d=2 and 5, when F is indeed
fundamental and in a genus of one class (Theorem 10).

2°. F=x®txox3+x32+E(x1 2 Fxixa+222), and F%2 if 2=3. If =2, d=6
and contains two primes. There remains k=1, or d=3 (Theorem 10).

3°. F=(xotx1/2 +x2/2)*+p/4, ¢=4xs2+(4k— D)xa?+ (4k — 1)1 2422012
42323+ 4x0xc5. Hence if k24, F#3. Since ¢,=(2—4k, —1),, ca=(—1)*; and
if 2=3, cs=1. Hence no fundamental F remains, as k= 2.

4°. F=xo*+xox2+kxo?+ 252+ age+kxy 2 If =4, F3. If k=3, we might
point to the fact that f=(1, 1, 3,0, —1/2, 0) is not alone in its genus, being ac-
companied by g=(1, 1, 4, 1/2, 1/2, 1/2). (For further information on f, see
[8, p. 173).) Hence G = (xo 4 271D x,)? + (15x1% + 15x.2 + 3x2 — 14wy,
—2x1%5 — 2x5%3) /4 is in the same genus as F; and since G342, G and F are
inequivalent. However, although this proves that F is not in a genus of one
class, it does not prove (since G represents 1) that factorization, as of Theo-
rem 3, may fail. For this reason, we point to the following third form in the
genus, of minimum 2:

2x02 + le2 + szz + 2x32 + XoXy1 — XpXe + 2xox3 —_ lexg — X9X3
= 2(%0 + #1/4 — %2/4 + %,/2)?
+ (123532 + 155\?22 —_ 153’?1’ —_ 14x1x2 - 4x1xa bl 4.’.\72%3)/8,

whence indeed factorization must sometimes fail.
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There remains the case k=2, d="7T (Theorem 10).
6°. F = (xo -+ x2/2 + x3/2)” -+ ¢/4, ¢ = 71’(«'32 + (4k - 1)3‘«'22 + (Sk - 4)."(512
— (4 —4)x1x, — 420105 — 6x2x5. Hence as F(xy, 0, 0, %) =%o*+xox%3+2x5#3, F
does not represent 3 if (4k—1)/4>3, or k=4.If k=2, d=10. Finally, if k=3,
whence d=17, then besides another norm-form in the genus corresponding
tog=(1,1,6,1/2,1/2,1/2), there is the following form of minimum 2 in the
genus of F:
2(xo + x1/4 - x2/4+ x3/2)2+ (23x12+ 23x22+ 12x32 nd 4x2x3 - 4x1x3 e 22x1xg) /8
= 2x02 + 33612 + 3x22 + 2x32 + XoX1 — XoX2 + 2x0x3 —_ 3x1x2 — X2¥3.
7°. F=(xotx1/24%2/24%3/2)2+ /4, ¢=(8k—1)x:2+ (4k —1)xa2+ Txs?
—(2k—1)xwes —3xixs—xax5. If k=2, d=12. If k=4, F#3. If k=3, the genus
of F contains the following form of minimum 2:
Z(xo + x1/4 _ x2/2)2 + (23x1’ + ZOxz’ + 16x32 + 4x1x2 + 16x1x3 + 8x2x3)/8
= 2x02 + 3x12 + 2x22 + 2x3’ + XoX¥1 — 2xox2 + 2x1x3 + X2X3.
8. F=(xo+ux1/24x3/2)*+ /4, p = (8% — 1)x12+Akxo?+ T2+ dkaxsts -+ 22125
+4x505. Hence if k24, F><3. If k=3, d=20.
If k=2,d=13, and F is in a genus of one class (Theorem 10).
9°. F=xo*+x0x3+ 20052+ k(221242102 +x:2). Hence if k=4, F#3. If k=2
or 3,d=14 or 21, and F is not fundamental.
10°. F=(xo+x2/2)2+¢/4, ¢ = (82 —4)x,2+ (4k — 1)x,%-+ 8232+ 4,25+ 82105
+8x5x3. Since d=8k—6, ;=1 if kiseven. If k=3 or 5,d=18 or 34. If k=7,
F(xo, 0, 0, x5) =20>42x325%5, and (4k—1)/4>5; F#5.
12°. F=(xo+21/24%2/2)2+¢/4, ¢=(8k—1)x12+ (4 — 1)222 48232+ 22100
+8x1x03+4xows. If k26, F5. If k=3, d=21. But if k=4 or 5, d=29 or 37,
we have again to construct forms of minimum 2 in the genus of F:

2(xo + x2/4 — x3/4)% + (3221% + 31292 + 15x32 + 162302 + 82125 -+ 2%225) /8
= 2% + 4::? + 4xs® + 225% - Xoxa — Xo%s + 241%2 + X173
2%+ x1/4+ %2/4 — 25/4)2+ (39212 + 31252+ 23232 — 102123 — 62125 — 2225%5) /8
= 220 4 5%,% -+ 4xs® + 3232 + xo%; -} xo%s — XoXz — Xi¥s — 1% — 3%pxs.

13°. F=uxo*+xoxa+ kxa®+2(25%+x5%1 +kxy2). Here ¢z is 1 unless £ is odd.
Ifk=30r5,d=220r38. If k=7, F5.
14°. F=xo+txox1+2kx12+ ka2 +xxs4+-2252. If =2 or 5, es=1. If £=6,
F3#5,. Butif k=3 or 4,d =23 or 31, we need the following forms of minimum 2
in the genus of F:
2x0% + zotty + kxi® + 2202 + x93 + kg
Summing up, we can state the following theorem:

THEOREM 10. The only fundamental definite norm-forms in whose (maximal)
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quaternion arithmetics factorization is always possible are the following:

Fo= 22+ 2124 222+ 232+ o 21+ 202+ %0, where d=2;
F3= x>+ 2023+ 23+ 212+ 2120+ 2.2, d=3;
¢)) Fy= 22421242292+ 2 232+ 021+ %0202+ 2025 — %1%, d=35;
Fr= 2209122224 252+ 23201+ 21142, a=T;

Frs=xg* 442,24 22524222+ %921+ 2025+ 2201 %0+ 01 23} 22235, d=13,

To complete the proof we must show that each of these five forms is in a
genus of one class. This can be done by means of formulae for the weight of a
genus, making use of the number of automorphs. (See references to Smith in
§§13 and 14.) This is possible since, the determinant being a square, the
weight of the quaternary genus can be expressed in a finite form. And indeed
this method was used by the author in 1941, but not published, to obtain
37 norm-forms in genera of one class, two of the forms in Theorem 11 being
overlooked. This was not as good a result as we have now, since it left open
the possibility of a genus containing several classes, which all have mini-
mum 1,

A result of Korkine and Zolotareff [9] shows that a* <48, where a is the
minimum and § is the determinant of a definite quaternary form G. In the
present case § =d?/16. Hence a=1 for the genera of F;, F;, F;, and Fy; but o
is 1 or 2, for the genus of Fy;. Now the ternaries f corresponding to the five
Fj are easily seen to be in genera of one class. It rema'ns only to shcw that
there is no form of minimum 2 in the genus of Fy,.

If the minimum is 2 we can take G =2x2+xo(a11 a0 Fasxs)+ - - - . If
all the a, could be even, the determinant of G would be either half or quarter
of an integer; but the determinant is 169/16. Hence we can suppose that the
g.c.d. of the a, is 1, and can replace (through the inverse of a unimodular
transformation) D _a.x. by x1. We thus obtain

G= 2x¢,2 + XX + e = Z(xo + 371./4)2 + ¢(x11 X2, xa)/S,

whence ¢ =7x,* (mod 8). Indeed, ¢ is equivalent to a form congruent mod 2
to 7y12+-8ysys, since 1=det(2G)=(—1)(—1) mod 8. Also, the form-residue
mod 137 of F shows that ¢~»z2+13(z,2+v2;2) mod 13+, where » is a quadratic
non-residue mod 13. Since det ¢ =522, we have adj ¢ =52y, where ¥ is an im-
properly primitive form of determinant 52, and adj ¢ =¢. The minimum @ of
Y satisfies a®*<104, a=2 or 4. If 6 =2, then 3a?/4 < C=<(416/3)¥2, 3<C=<11 :
since C must be represented by ¢, C may be 7 or 8 (which agree with the
form-residues of ¢ above). But if ¢ represents 7 (necessarily with x; odd),
G =2(xo+x1/4)2+¢/8 evidently represents 1; if ¢ represents 8, 4|x1, and G
again represents 1. If a=4, 12<C=<(832/3)¥/2<17. The only C consistent
with the form-residues of ¢ is C=15. But ¢(0, %3, xs) = Bxa?+ 2Rxsxs+ Cxs?,
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where BC—R?=4-52; and this is impossible since (—208[3)= —1. Hence
there is no form in the genus of minimum 2. The reader will discern here the
essentials of the method used to get forms of minimum 2 in §10.

11. Diagonal forms for the arithmetics of F, - -+, Fi5. We saw in §1 that
the system of integral quaternions related to F, can be carried by the trans-
formation (5) of §1 into the system Zs:

1) (yo + 211 + 2292 + 7333)/2, Yo = y1 = yz = ¥; (mod 2),

the y; integers, the 4, pertaining to (1, 1, 1).

Clearly, any system of integral quaternions can be transformed into in-
finitely many such diagonal systems. It is only necessary to transform the
norm-form into a form Y2+ a.a; Vi2+a30; Vs?+0a10: Y32, where the Y; are linear
expressions with rational coefficients in the x;, and to work out the conditions
of integrality.

For example, consider Fs. Since adj f has ¢z= —1, and ¢, is +1 for all other
p, we seek a form (az0s, @301, ¢102) of a small determinant, with the same
property, so that it shall be rationally equivalent to adj f. We easily find
(5, 10, 2). Now 4 adj f="Tx2+4 7222+ 3x3% — Gxtyxs — 2163 — 2x3%3, and has de-
terminant 100, and cannot be expressed as 5( )2410( )2+2( )2, where the
indicated linear forms are to have integer coefficients. We therefore take the
next best, 16 adj f, and find the expression

5(— 2x2)2 + 10(x1 - 113)2 + 2(3x1 - 2962 + xs)’.
We therefore obtain a norm-form (30/2)?45(31/2)2+10(y2/4)*+2(ys/4)* by
(2) yo=2%0+ x1+ %2+ ¥3 Y1 = — %3, Y2 = %1 — ¥z, Y3 = 3%1 — 222+ Xs.

The y; are then integers with the x;, but the integrity of the #; requires
Yo+y5=2y; (mod 4), ¥o-+y1=y2 (mod 2). Hence the system of integral qua-
ternions associated with F; becomes transformed into Zj:

2y + 2y131 + yai2 + V3i3) /4,
Yo+ y1= 32 (mod 2), ¥z + ys = 291 (mod 4),

the y; integers, the 1, pertaining to f=(2, 1, 5). That is, for the last, 3,2= —§,
4% = —10, 152= — 2, 4192 = —123; = 573, and so on.
In a similar way, using the respective transformations

©)

(4) yo = 29+ %1, 1 = %1, Y2 = X3, ¥3 = %2 + 2%, for F3 and Fy,

(5) yo = 2%+ %1+ %3, y1 = + %1, Y2 = — %, ¥s = 221 + 4%z + x5, for Fu,
we find for Fs, Fy, and Fy; the arithmetics Z;, 27, and 23
(6) (yo + 2y + 122 + ‘iaya)/Z, YW=V =3 (mOd 2),

the y; integers, the 4, pertaining to f=(1, 1, 3) for Zs, to (1, 1, 7) for Zz;
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(230 + 29181 + y2ia + vsis) /4,
Yo+ y1= 32 (mod 2), y2 -+ y3 = 29, (mod 4),

the 7, pertaining to f=(2, 1, 13) for Zu.

The author wishes here to acknowledge the valuable assistance of Miss
C. S. Williams, who checked most of the computations in this and the follow-
ing sections.

The preceding diagonal forms will simplify the work of deriving the non-
maximal systems in which, subject to (1) of §5, factorization is always pos-
sible.

12. Integral transformations, especially of norm-forms into norm-forms.
Two integral matrices T1, T are called right-equivalent if there exists a uni-
modular matrix U such that T1=T,U. H. J. S. Smith [13, vol. I, p. 389] has
shown that any integral matrix of order » and determinant # (>0) is right-
equivalent to a unique matrix

0]

1 N1z c - Ny
0 n --- ny

1 ’ n=1ny- Ny 0 5 n;; < m.
0 O LI '

Hermite was the first to give a general enunciation of this [6(b), p. 192].
Hence, if 7 is a prime $, an integral matrix of order 3 is right-equivalent to
one and only one of the p?+p+1 prime matrices

p a 1 00 1 00

() 0 10f {0 paf |01 0] & B=01,--+,p—1.
001 0 0 1 0 0 »
We shall now prove the following lemma.

LemMA 14. Let T be an iniegral matrix of determinant n. Then for every ex-

pression n=pips - - - p, as a product of primes in some order, we can find prime
mairices Py, - - -, P, suck as in (2) and of respective determinants py, - - - , ps,
and a unimodular matrix U, such that

3 T = PyP,--- P,U.

It is easily seen that T can be expressed in this form with the primes p;
in some particular order. For example,

1 00 1 00 1 00
0 pna |=]10 n « 0 p» 0},
0 0 m 0 0 m 0 01
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and unit factors can eventually be moved to the extreme right, by Smith’s
result. It remains only to show that if P and Q are of determinants p and g,
where p and ¢ are distinct primes, then PQ =01 P1U;. We can suppose P and
Q to be of the types in (2); hence PQ is of one of the forms

g @ P a p a B q a
01 0| 0 ¢ v} 01 01y, 0 9 v},
00 1 00 1 0 0 ¢ 00 1
and so on. In the first three cases the diagonal matrix {p, 1, 1} can obviously

be factored out to the right. In the fourth case,

g a 1 #n O g 0 B — nyy 1 n, 0
0 p v|=]0 1 01J]0 » Y 40 1 01,
0 0 1 0 0 1 00 1 0 01

where 7, and 7, are integers such that a=nyp+ng. Clearly, {1, 5, 1} can be
factored out at the right of the middle matrix.

We consider now the conditions under which a norm-form G is derivable
from a norm-form F by applying an integral transformation T of determinant
n to the variables #,, that is, to adj f, and then a translation on x, (to make the
coefficients of xex. be 0 or 1. If 4 =(A4.5)=adj(a.s), where (@.g) is semi-
integral, the matrix 7'AT will not, in general (if n>>1), be the adjoint of a
semi-integral matrix (bus). If 7VAT is the adjoint of some semi-integral
matrix, we shall call T a suttable transformation for 4.

If T is suitable, and T7AT =adj(b.s), then comparing determinants we
get n?A?=|bug| 2, and we can choose the sign of (bag) to get | bag| =nA. Hence
if U is the matrix of cofactors of T, whence U’'T=TU’=UT’=nl, then

()] U'(aag) U = n(bap).

Conversely, (4) implies 7'A T =adj(b.s). Hence: a necessary and suflicient con-
dition that T be suitable for A is that U’ (a.p) U be “divisible by n,” the quotient
to be semi-integral,

If n=p*m, where p is a prime not dividing m, and if T is suitable, then T}
must be suitable, if we factor T as ThTy, | Ti| =2*, | T2| =m, T1 and T} in-
tegral. For if (in obvious notations)

Ul Ui (8ap) UrUs = p'm(bap),
where (b,s) is semi-integral, then multiplying by T and T3/, we get
UL (0ap)Us = p*(T2(bap) To' /m).

Since the leftside is semi-integral, the right side must be likewise, and since
m is prime to p, T2(bas) T2' must be “divisible by m.”
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Lemma 15. If |T| =p* (sz1), and if T is suitable for A, then T has a
left-divisor of determinant p which is suitable for A, except that (i) if d is
prime to p, and (ii) if f~awi®+ame>+asxs? (mod p7), where p>2, plaa, and
(—a102|P)= =1, or if frvx® a0+ kx5? (mod 27), where p=2 and « is
even, then T may not have a suitable lefi-divisor of determinant p, but if so
will have one of determinant p2.

Using Hermite’s result we can suppose that

R
0=2du<ph0=rv<yp,
(5) T={0 p » | + o >0
=5po 7= 0.
0 0 FreTmTTEaReT

We shall actually prove a little more in case (ii), namely that if we take the ~
as being = (as we can, by a unimodular transformation), then any matrix
which has no suitable left-divisor of determinant p will be right-equivalent to
a matrix (5) where p>0, ¢>0, =0, A=0 mod p, and then

‘ P 0 p
(6) P,=]0 p v
0 0 1

is a left-divisor of T, and is suitable for 4.
If f has the form a2+ s%22+asxs? mod 97, then the three diagonal ele-
ments of U’(aqs) U, and the doubles of the three non-diagonal elements, are:

(M) p¥¥as, PPy + pUevias, pPtiay + pPN0s + (v — pop)Pas;
(8) — 2p%Hopg,, 2p#H (N — Pou)as, — 2pr+iNay — 2p0(\v — Puas.

The condition for T to be suitable is that $* divide these six numbers.

If p divides every a., evidently every matrix of determinant P is suitable.
If p divide a; and a; but not ay, then if T is suitable, ¢4+7>0; if now 7>0,
the diagonal matrix P,={1, 1, p} is a suitable left-divisor of T’; and if =0
but ¢>0, the matrix

10
9) P,=|0 p »
' 0 0 1

is a suitable left-divisor of T. Hence assume p}a,a,. Also, let pla;. The mat-
rices P, and P,,’ are suitable. If we left-multiply T in (5) by P,~! we get an
integral product if 7=1. Hence let =0, Then the suitability of T implies
by (7,) that p>0.

Now assume p>2. Then either >0 and p[)\ (by (8)), or c=0 and
p[a1+az2\2 (by (7). In the last case, »=0 and
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Pkn—]
(10) P,=l010
"o o 1l

is a suitable left-divisor of 7. But if p>0, ¢>0, and pl)\, then P’ is a suit-
able left-divisor of T. Further, P,,” has no suitable left-divisor of determinant
pif (—alaglp) = —1, and has P,, as a left-divisor if pla1+az)\2.

Similarly, let p=2. Then by (7s), either =0 and X is odd, or ¢>0 and X
is even. In the first case, Py, is a suitable left-divisor of T. In the second case
P, is a suitable left-divisor of T, and has Py, as a suitable left-divisor.

Next assume that pfa.a.as, p >2. It can be verified that the matrix P», is
suitable if p]a1+a2)\2+a3u2, P, is suitable if p]a2+asvz; and that the three
matrices of determinant 2,

100 » A O
(11) P,,'= 0 i) 0 y P)"= 010 ’ P;url';
0 09 0 0 »

are suitable. In connection with (11) we make the respective assumptions
(12) (— azasl P) = — 1, plar + a?,  pleias + a:03u1® + asawl.

For, if (12;) does not hold, P,’ is left-divisible by P,; if (12,) does not hold,
Py is left-divisible by Pjo. Lastly, P, will be a left-divisor of P,,,’ if
p|ast+asw?, excluded by (125) if plm. Again, Py, will be a left-divisor of
P,y if and only if X and p satisfy

et aN+ap?=0, pm— M1 —p=0(mod p).

Eliminating p, and assuming that pl @182+ a203112+a:0171%, we readily obtain
(@w1+4auM\)2=0 (mod p), which is solvable for X if pfui.

Now T has P,’ as a left-divisor if ¢=1, 21, and p|». (i) Suppose that
o=0, whence »=0. Since p’”[ (71), (82), and (73), we have 7=<p, u=2»"u,
pl"flal—i-ag)\z—{—azpl”. If here p=7, then as 0Su<p?, p=0 and P,, is a left-
divisor of T. But if p>7, then Py, is a left-divisor. (ii) Suppose 6z 1, 7=0.
If plaz-l—aav”, P, is a left-divisor of T. Assume p{as-+as»% Then o Zp by (72), -
A=pA\1 by (8s), pP“‘|al+a2)\12—l-a3()\1v—u)2 by (7;). If now p=c, whence
A=0, then P,/ is a left-divisor of T. But if p>o, then Py, is a left-
divisor. (iii) Finally suppose o=1, 721, p{». By (81), 7=p. If now o =7,
then by (8;), p°t l)\v—p"p,, A=p°\1, M1 an integer, and pl)\lv—u. And if
o>, then by (8), N=p"Na; by (8s), $°|NelG2p +asv?) —p*asuv, | Ny,
A=pN, p'laav()\w—p), p[)\lv—p. In either case, Py, is a left-divisor of T.

Now assume p}ai1a:a;, p=2. The suitability of T implies (i) p+o>0;
(i) p>0, or p=0 and 2|274»; (iii) >0 and 2|Av—27%, or 7=0 and
2| 294+A4\v—2u. Hence, if p=0, then ¢>0, A=x =0, and P, is a suitable
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left-divisor of T. If p>0, and o=7=0, then »=0 and A+ is odd; hence
P», is a suitable left-divisor. If p>0 and 7 =0<o, then 2|)\(1 +2); then Py,
is a left-divisor if X is even, and g —Nw—p; even, and is suitable if Mt s
odd: this can be achieved when A is even unless » is odd. Also, if » is odd,
P, is a suitable left-divisor. Lastly, if p>0 and 7>0, then 2|)\v—2” , and P,
" succeeds.
We assume next that f=jx;2+x1xa+jxe?+ (j+1)yxs?, j=0or 1, ¥ an in-
teger. Then 22 must divide the six numbers

(7' + 1)22p+2v,y, j22p+2f + (j ._l_ 1)22;;7,,2, 22v+2fj —_ 2c+21k _l,_ 221’)\2]'
+ G+ DrOw — 293
(G + D2¥totlyy, (54 120ty — 27g), 2etet2r — fpoetert
— G+ D27y — 2op).
(Note also that if f is replaced by 2%f, >0, these six numbers are multiplied
by 2%, and every matrix of determinant 2 is suitable.)
Let v be odd. The suitable matrices of determinant 2 or 4, omitting some

of determinant 4 which have suitable left-divisors of determinant 2, are P,
and P,,,," if j=1, and the following if j=0:

(13)

1 00 2 MM 2 01
14 P*=|0 2 0}, Pomu={0 1 0], Pry=|0 2 1]{.
0 01 0 0 1 0 01

Now let j=0. Evidently P,* is a left-divisor of T if ¢=1 and » is even;
Py is a left-divisor (for A; zero or one) if p>0, =0, u=2%\ mod 2; or if

(15) p>0,0>0,)is even, v is odd, 27u is even;
likewise for Py’ if
(16) p>0,0> 0, is even, » is odd, 27 is odd.

Further, if =0 (whence »=0) and T is suitable, then by (13), 2P+’] —227\
471, p=2%X mod 2. Hence let 0 >0 and » be odd. Then by (13;), p Zc+7>0,
and by (13;), A is even; and either (16) or (15) holds.

Now let j=1. Then P, is a left-divisor if and only if 721; and if r=0,
P is a left-divisor of T' (for some choice of ps, »1=0 or 1) if and only if
p=1,Nis even, u is even if 7>0, 0=1, » is even if +>0. But if T is suitable
and 7=0, then (13;) shows that =1 and X is even, (13,) that p=¢. Thus in
all cases P, or P,,,,’ is a divisor.

Let v be even. If 7>0, P; is a suitable divisor. If =0, ¢>0, and j=0,
then P, is effective. If j=1 and 7=0, then if T is suitable, p>0 by (13,),
a>0 by (133), A is even by (13;), and P,,’ is a left-divisor of T and has no
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suitable left-divisors of determinant 2. If =0, r=0=g¢, then p>0, and A\
must be even by (133), and P, succeeds.

Finally, let f=22a1%:2-}26+2(juxs? 4 %s%3-+j%5%), where =0 or 1, a; is odd,
and a <. If >0 every matrix of determinant 2 is suitable. Let a=0. If T
is suitable, o+7>0. If 7>0, use P;; if 7=0 and ¢>0, use P,.

It follows from these lemmas that if a norm-form G arises from a norm-
form F by an integral transformation of determinant #, then a form equiva-
lent to G can be arrived at by a succession of transformations of type (5).
And further we can use the prime factors of # in any desired order, starting
with a transformation of determinant p or p2, in most cases continuing with
transformations of determinant p, and obtaining norm-forms at each step.

Suppose that at some step 2 norm-form Fj is obtained for which a particu-
lar factorization with the properties in Theorem 3 is not possible. Then the
genus of F; must contain a form G; of minimum greater than 1. (Note that
if an indefinite norm-form represents —1, then by composition with itself it
represents +1.) If we now apply a further integral transformation to £ to
obtain G, then the same transformation replaces G; by a form G; in the genus
of G. Since G represents all the numbers represented by G, the minimum of
G. is also greater than 1. Hence we need seek no further for genera contain-
ing norm-forms only. All this will be illustrated and applied in §§13-15.

13. Norm-forms derived from F; by transformations of determinant 2°.
We shall now investigate the genera which: (a) contain norm-forms G, (b) are
derived from F; by integral transformations of determinant a power of 2,
and (c) contain no classes of minimum greater than 1. We shall find that there
are exactly ten such genera, including that of F, and that each contains only
one class.

We have first a lemma, which follows easily from Lemma 12, giving a
form-residue mod 27 of any norm-form:

LeEMMA 16. If G is @ norm-form corresponding to an integral ternary form g,
then G is equivalent to a form with one of the following residues mod 27, r large:

6)) %o® + @203%1% + @s01%2* + 0102%5%;
(2) %o + %oxs + jxa? + A(Gx? + x1%2 -+ j%27);
3) %o? + (47 — 1)2%x32 + A(j2s® + 2122 + j207).

Here =0 or 1, \ and the a. are integers, B is a non-negative integer; if j=1
then \ is even. Also, in (3), the power of 2 in \ exceeds 28 and must not equal
226+1, I (3) the cases j=0 and 1 are equivalent mod 27 if the power of 2 in N
is 228 or 228+2, The values of ¢ are given by ¢;=(—010s, —a10;): in (1); and in
(2) and (3) by

¢z = (— 1)7 if X contains an odd power of 2;

©)

= 41  if X contains an even power of 2.
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Since G is now to be derived from F;, we must have cz=—1. Hence in
both (2) and (3), j=1 and X contains an odd power of 2. Also, in (1),
(—a182, —a1a3)2 must be —1. Further we can replace g by mg, m odd, since
this will not affect the form-residue of G mod 27; and so can suppose that the
odd part of det g is congruent to 1 mod 8. Hence an examination of the
unique form-residues attainable in (1) for g will show thatif det gis 1, 2, 4,
or 8, then (a1, @2, @3) can be taken to be one of the triples

B 1,1,1); (1,1,2); (1,2,2), (1,1,4);
(2,2,2, (1,2,4), (1,1, 8), (1,3, 24), (— 1,3, — 24), mod 2.
I. Forms G of determinant 1. The only residue in (1), (2), and (3) con-
sistent with det G=1, and with A limited as above, is xo24x;2+2,2 4252

mod 2. That is, there is only one genus of determinant 1 to be considered.
Evidently this genus contains the form

(6) Fy= y* + 9%+ y2 + 9i,

and (as is well known) this is in a genus of one class. Note that Fy is derivable
from F; by the transformation x1=232+4y3, £2=y3+1, x3=1+32, Xo=Yo—N
—92—7s, of determinant 2.

II. Forms G of determinant 4. The possible genera are determined by the
form-residues xo®4 2124 2x22-1-x3% and xe2+xgw3+ %22+ 8 (%12 + %1% +222), mod
2r. These genera contain the forms
(7N Fg = yo* + 29:% + 295 + 942,

(8) Fe = yo* + 32 + 3y° -+ 3y3% + yoy1 + yoyz + 3033 — 29295

and each of these is easily seen to belong to a genus of one class (cf. determi-
nant 64 below). Clearly Fs is derived from F; by a transformation of de-
terminant 2, and Fy’ from F; by a transformation of determinant 4.

III. Forms G of determinant 16. There are three possible genera, corre-

sponding to the form-residues
xo® + 221 + 24 + 4%, x® + x0® + 4o - 4axg?
%o® + 3xa® + 8(2:® + %1%z + %), mod 2.
Each genus contains only one class (cf. next case). Representatives of these
classes are

(9 Fi= 3+ 29+ 2922 + 4ys%,  Fi = 3o + 4y:® + 492 + 332,
(10) Fig" = 3o 4+ 33 + 3y2* + 3y — 29132 — 29193 — 2y39s.
IV. Forms G of determinant 64. There are six possible genera, correspond-
ing to the form-residues
(1) (1,4,4,4), (1,2, 4, 8), (1, 1,8, 8), (1, 3, 8, 24),
(1, — 3, — 8, 24), xo? + xoxs + %32 + 32(%:2 -+ %122 + 292, mod 27
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The second, third, fourth, and sixth contain the following forms of minimum
greater than 1:

2y02+3y1’+2y1y2+3yz’+4ys”,

2y0*+ 5312+ 5y2"+ 2952+ 29031~ 2502+ 291y5+ 2923,

3(yot+y1/3+y2/3— 33/ 3)*+ (1191 + 1195+ 8y5*+10y1y2+8y1ys+ 8y233) /3,
3(yot91/3— o/ 3+ y3/2)2 4 (4451244 y2.2+ 27932 — 40y1y2— 129173 — 1272y5) /12.
However, the forms corresponding to (114") and (11;"),

(11) Fiyp = 3¢% + 4y:2 + 4. + 4947,

(12) Fa' = 3o + 5912 + 532% + 492 + 29192 + 49193 + 479273,

are in genera of one class. This may be seen, in the case of Fi, by the fact
that the reciprocal (1, 1, 1, 4) of Fs,, which will be found in various tables of
quaternaries (the best, with determinant up to 25, is Townes [14]); or by our
methods of construction which when applied exhaustively lead to representa-
tives of every class in a given genus; or, most simply, by H. J. S. Smith’s ex-
plicit formula [13, vol. II, p. 666] for the weight of a genus. Thus in the case of
Fsy', which has 16 positive automorphs, we have (in Smith’s notations [13, vol.
II, pp. 666-668]) I1=1, I,=8, =1, W=(1/12)¢(1/2)°(1/2)982(1 /x2) (x?/8)
=(2/3)¢, where {=(3/128)(3—1)(3—1)=3/32, W=1/16; hence Fs,' isin a
genus of one class.

V. Forms G of determinant 256. Neither (11) nor (12), nor any of the
residues mod 27 in case 111, are of the special forms in (i) or (ii) of Lemma 15.
Hence we have only to consider the genera derived from (11) and (12) by
suitable transformations of determinant 2. Every transformation (on the y,)
of determinant 2 is suitable for (11), and we get three derived genera, repre-
sented by

(13') (1, 4: 4’ 16)) (1’ 41 8’ 8)y x02 + 48x82 + 8(3712 + X1X2 + xz’), mod 2';

from (1, 24, —8, —3), whence a:=1, a:= —3, a;= — 8, we find by the suitable
transformations P,, P, the two form-residues

(13") (11 24: - 81 - 12)7 (1’ — 48, 16) - 3), mod 2r.

The genus of (13;’) is derived also from (11,") and so contains a form of mini-
mum greater than 1; we list such forms also for the genera with the residues

(13/), (13,'"), and (13,""):
4x0? + dxgx; + 5202 + 42,2 + 4252,
5(%0 + 221/5 + 22/5)% + 4(4x1* + 4max2 + 6227 + 5237 /5,
5(x0 + #1/5 — 225/5)2 + (29212 + 2022 + 16552 — 20212, — 1621%5) /5.
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In the genus determined by (13;’)-mod 2 we find the form
(13) Foy = z¢* -+ S(xlz + %92 + %32 + X1%2 -+ %123 + xzxs).

Curiously enough, this case is missing in Smith [13, vol. II, pp. 669-670]
(here I, =4,I,=1,I,=4, and 64, 6;, 0:=1, 0, 1, mod 2, so that our case would
have come under Smith’s E(b)). However, if a is the minimum of a form in
the genus of Fg, a*<1024, ¢ 5. But a=2, 3, and 5 are not represented by
forms in this genus. Further, 4 is not represented primitively. For if Fy =4
(mod 27), xo=2 (mod 4), xe*=4 (mod 32), x124x> w52+ 212+ %103+ X3 =0
(mod 4), every x, is even. Hence all forms in the genus represent 1, and by
Theorem 9, all such forms are norm-forms. But the genus of the ternary form
S =3x:2+ 3x22+ 3x03* — 201209 — 2%303 — 25%3 contains only one class. The same
follows for Fes.

VI. Forms G of determinant 1024. We have only to apply transformations
of determinant 2 to (13;’). The resulting form-residues are

x? + 192252 + 8(x:® + ®1%3 -+ 2%, %o + 48%5% + 84,2 + 24%5%, mod 27,

The latter form is derivable from (1, 3, 8, 24) in (11’), and so its genus con-
tains a class of minimum greater than 1. To get a form of minimum ¢ in
the genus of the first form, note that ¢*<4-1024, a =1, 4, or 8. Trying a=4
we consider 4x?~+4xovs+kx?4 - - -, and try to satisfy 4t —4=192. Hence
we take k=49, and consider 4(xo+x:/2)*+p(x1, %2, x3), p=48x32F - - -
~48:x32+8 (21 +x1%2+5?) mod 2. Here det ¢ must be 256, and adj ¢ =16y,
where Y~3x37+24 (12 — %2 +%22) mod 27, det Y =16, and adj ¢ =¢. A possi-
ble form  is easily found to be 3x)2-3%22+ 3x5% — 20123 — 253%3 — 2%5%3, and we
construct

Yxo + 21/2 + 22/2 + 25/2)? + 8212 + 822 + 832 + 8x122 + 82145 + 84025
= 4x0% 4 921 + 9292 + 9232 + 4xoxy + 42022 -+ dxpxs
+ 102322 -+ 102125 + 10254,

which is in the desired genus, since

9 @1+522/9+220/9+ 545/9) 2+ 8(7 %2>+ S o x5+ 7 232+ 4 %02+ 2202+ 22025) /9
~ x1’+8(x22+ X2 %3+ xs’-i—xxo’), mod 2r,

where by the determinant, x can only be 24.

All further genera derived from these must contain a class of minimum
greater than 1.

Consider now the genera containing norm-form classes only, which can be
derived from Fs=x¢24xox3+xs2+ 212+ 21x2-F 222 by transformations of de-
terminant 2*. Now ¢z = —1, ca=1, Hence in (2) and (3), either =1 and X con-
tains an even power of 2, or j=0. The residue Fy~x%+3x;2-4-%:2+ 3%.2 mod 37
is not changed by transformations of determinant prime to 3.
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1. Forms of determinant 9/4. The preceding conditions allow only one
genus, that with the form-residue x¢*+xo%3+ 222 mod 27. This genus has
only one class, represented by

(14) F¢ = (%o + 2:/2 + 22/2)% + (%3 -+ /2 + x5/2)2 + 3(x1® + x,7)/2.

II. Forms of determinant 9. There are three genera, each of one class, con-
taining the respective forms

(15) Fia = x? 4 32,2 4 3%2® + 3%,
(16) Fi = xo? 4 xoxs + 2% 4+ 4(2:® + :1%2 + 229,
(17) Fy! = (xo -+ x1/2 + xz/z + -"\73/2)2

+ (15:”1,z + 7x22 + 79532 — 6;’61332 _— 6x1x3 - 2x2x3)/4.
Here Fi'’ has the form-residue xo2-}xox3+4x1xzs mod 2*, and is derived from
Fe; Fi is derived by the transformation xg=y9—9y2, x1=y1+19¥2, X2= —y2-+%s,
x3= —¥2+9s, of determinant 2, from Fe. But Fi,’ is derived by a transforma-

tion of determinant 4 from F.
III. Forms of determinant 36. The form

(18) Fay = %0* + 3%3% 4+ 4(x? + 2z + %2°)

is in a genus of one class, and can be derived from any of Fu, Fio/, Fis'’. The
genera with the form-residues xp?46x:24-6x2%-x52 and xp®+xox3-+8x1x3,
mod 27, contain the following forms of minimum 2:

(1) 2x02 + 2202 4 3222 + 3wt 2(wo + x4+ 23/2 4 x5/2)?
+ (153”12 + 28%22 + 28x3’ —_ 12x1xg —_ 12x1x3 - 8x2x3)/8.

IV. Forms of determinant 144. We must now apply transformations of de-
terminant 2 to (18). We thus get the genus of one class containing

(19) Fig = x0? + 12x5% + 4(22* + 2122 + 2%);
and the genera with the form-residues
(199 xo® + 3212 + 4xg? + 12252, x? — x5 -+ 8xaw,, mod 2.

The latter is derivable from (18;’); the former genus contains the form
(19") 'Sxo’ + 4x12 + 4x3’ + 4x32 + 2x0x1 - 4xoxz + 4xox3 + 4x1x3

of minimum 4.

V. Forms of determinant 144-22. The only genus derived from (19) by -
suitable transformations of determinant 2 is that containing x¢2+12x,2-} 12,2
+-4x5?, and being derived also from (19y’), it contains a form of minimum
greater than 1.

Proceeding next from Fs, whence ;=1 and ¢s=—1, we have Fy~x2+3x,2
+4-5x524-15x3% mod 57,
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1. Forms of determinant 25/4. The only residue mod 2* is x¢2+xoxs -+ 2x1%0,
and this gives a genus of one class, containing

(20) 10= (%ot %2/2F %2/ 2) 2 (122,24 T2+ T 232 — 42y 205 — A1 23— 622 %3) /4.
I1. Forms of determinant 25. The possible genera have the form-residues
xo? + 217 — 22 — 2%, X + xows + 23 + 4(x + 2120 -+ %7),
xo® + xoxs + 4x1%5, mod 27,
The first contains the form
(21) Fap = %2 4+ 5212 4+ 397 + 22033 + 245°

in a genus of one class; and the other two contain the following forms of
minimum greater than 1:

3x02 4 3212 - 3%2% 4 33 + 22021 - 3x022 -+ 3xox3 — X172 — %3 - Xoxs,

3x02 + 3x12 + 22492 + 2x3% + 2x0%1 — XpXs — Xo¥s — X1Xs — X1X3 — XaX3.

(21)

II1. Forms of determinant 100. Suitable transformations on x4 x1%2—x,?
—x32 mod 27 are x1—2x;:+%2; and x;—2x3+x3; the resulting form-residues are
202212 —Axo? —Axoxz — 232 ~vx o2t 212 — 2002 — 22032, and  xo24-4x1?-dxixs — x5?
~xo?+4x,x02— x5 The following forms in these genera have minimum greater
than 1:

3xo? + 2x0ws + 257 + 6212 + 4oy, + 402,
59.‘«12 + 3xo* + 3x22 + 3x32 + 2xox2 + 2x0x3 + 2x2x3.

~ Proceeding similarly from Fy, the derived genus of determinant 49/4 with
the residue xo2+xox3+ 2212 mod 27 contains the form
2% + 23:% + 2007 + 2%3% + 20%2 — %o%z + 1% + 2125

of minimum 2. This disposes, for determinant 49, of the residue xo2-2x¢xs
+ 2x 120~ (x0+x3) 2 — %32+ 2x 102 ~x o2+ 212 — 222 — 232 mod 27; or else note the
form 3x¢24-3x12+ 322+ 3232+ 2x 000 — 29263+ 221202+ 22163 of minimum 3. The
residue (215') also is eliminated. But (21,") gives the form

(22) Fog= (xo'l‘ x2/2+x3/2)2+(32x12+ 11x22+11x32-—8x1xz—8x1x3—6xzx3)/4

in a genus of one class.

All genera of norm-forms derived from Fy; by transformations of determi-
nant 2* contain classes of minimum greater than 1. For, the residue xp24x¢xs
+2x1x, mod 27 and determinant 169/4 belong to the form

22t x4/4— %2/2 — 23/ 8) 2} (31 242 28 222+ 15632 — 1201 05 — 142123 — 4x5205) /8.

The residues (21,") and (21;’) are eliminated as before; but (21,’) yields a
genus of determinant 169 containing the form of minimum 3,

3(xo+ x1/6+ x2/6 e x;/3) 2+(59x1’+59x22+32 xsz—- 38301962— 8x1x3— 8x, x;)/12.
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14. The norm-forms permitting factorization with . subject only to §5(1).
Every norm-form G is derivable from a norm-form F in which adj f is funda-
mental. If F is not equivalent to one of the five forms Fy, the genus of F
will contain a class of minimum greater than 1, and the same will hold for G.
It is therefore sufficient to consider only forms derived from the Fa.

Let Fa=(xo+2"5 €a%a)?+2 A agrarxs. If G is derived from F; by the ap-
plication of an integral transformation T of determinant 7 to the x., we have

G = (fo + 2—12 ea*ra)z + Z Baﬂ’a’ﬁy B = T,ATI E = Tp

1
® where p’ = (11, 72, 73), % + 2—12 €ala = 1o+ 2712 €7

If we should apply a full transformation of order 4 to Fs we would have a
more difficult discussion of suitability of transformations and of genera. How-
ever, after narrowing the problem a little we shall use such full transforma-
tions.

We saw in §11 that, for certain integral matrices S of determinant o, where
o=4if d=2,5,and 13, and ¢=2 if d=3 and 7, the transformation

) 1=25 &+ 272 €a¥a = $/2,
replaces F; by the form Hjy, where ,
3) 4¢’H g = €*yo® + e%d1y1”® + edrys® + eys?,

di=o0dd part of d, e=1 for d=2, 3, 7, e=2 for d=35, 13. Also, (2) replaces
the system Zr of integral quaternions associated with F; by the arithmetically
equivalent system 24 (d=2, 3,7, 5, 13).

As in Lemma 14, we can for the given S and T choose integral matrices
S, and T of determinants ¢ and 7, such that ST =T1S;. Hence T'=S571T15;
and replaces 4 by B. Let 7 be odd. Consider, after (2), the transformations

@ 1=Tg8, /2 = 32/2,
) § = Sw, 20/2 = 1o+ 271D €a*ta

On applying (4) to 24 we obtain a subsystem Z,’ by imposing the restriction
on the v, that the z, be integers, that is, that T4’ be integral mod 7; or if
we prefer to carry through the substitution, we obtain a system Z;"’ arith-
metically equivalent to Z4’, with elements expressible as zo/24-218,"'/2+ - - -
where now the z; are unrestricted mod 7 but still satisfy relations mod 2 or 4
due to those on the y; in Z4. As an algebra, the system Z;'/ must be the
same as that obtained by application of (5) from the system of integral qua-
ternions Xg. Further, the conditions of integrality are the same, it being as-
sumed that 7 is odd: for, the condition that S;~}{ (=p) be integral mod o
is the same as the condition that S—1T{(=£) be integral mod o, since
S-1T,=TS;! and T-1is integral mod o.

Hence if we prove by one instance that factorization is not possible in 2.,
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the same will follow for Z¢, whence the genus of G will contain a class of
minimum greater than 1.

Since 715 (=ST) replaces ¢ =e?d1y:2+ediya?+eys? by 462> Bogrars, clearly
T\ is.a suitable tranformation for ¢.

We shall now apply to the y, the suitable transformations T; of determi-
nant p or p?, where, to begin with, }2d. The genus of the form G so obtained
must represent 2. For, F represents 2, and since [ T|(= | T1l) is prime to 2d,
we can solve the congruences G=2 (mod 27 and mod dr). To prove that we
can solve G=2 (mod p7), where p is now the only other prime in the determi-
nant of G, we note that G is carried by (5) (of determinant prime to p) into
202 /44y /4€?, where ¢ is as follows (cf. paragraph containing (11) in §12):

e2dy(pz1 + Mz + p2)? + ediz® + ezs?, if pl1 4 eN? + edyp?;
e%d1z:® + edy(pz2 + v33)? + ez4?, if ple + edp?;
() et + edsp'ast + ep'ss, it (~ di]p) = — 1;
e?dy(pz1 + Na2)? + edyza? + ep’ss?, if p|1 + eN'%;
e?d1(pz1 + p'25)% + edi(pza + v'z5)? + ez3l, if ple -+ e2dw'? + edn'™

In each case ¢ has a coefficient mz,* where p{m, and the solvability of G=2
follows from that of s0*-+ms,2=2 (mod p7).
The quaternions of norm 2 in the various Z; are easily found by solving

(7) 83’02 + edlylz + duyt + ya’ = 8e,
subject to the restrictions on the y; in (1), (3), (6), (7) of §11, and are as
follows:
d=2: +(1%dy), x(1+4y), +(1t4s), +(d2t4s), F(dstiy), £(G1tis);
d=3: +(1t1s), +(2+42143)/2, +(1+i1+245)/2, £(1xirEiatds);
(&) d=T: +(1tidy), £ (1£4)/2, +(5:t45)/2;
d=5: F(+2i1+4i24145)/4, (F2+4+345)/4, (A Litis)/2, £is;
d=13: +(+2+14,—13)/4, +1is.
At the same time, we record the quaternions of norm 1:
d=2: 1, 4y, tds, +d5, T (1 kit d2t45)/2;
(9 d=3: +1, +45 £(1+41)/2, +(s2%145)/2; d=T7: +1, +45
d=5: +(F2+ir—i3)/4, +1; , d=13: *1.
Suppose that T is Py, of §12. Then in 2./, y1=My:.+uys mod p,and this
is satisfied by quaternions of norm 2 as follows: by 1+4;, never; 144, only.

ifA=0;1t5Gand Gif u=0;45+5Gand 245+ ifA=+p;ntand 1 +4 44,
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26t if Adp=+1; 244+ 345Gif A= —3p; +2+4—4;if A=p, mod p.

Now the number of solutions \, p mod p of 1-+eN2+edu?=0is p—(—d.| p).
Of these, the number with A=20 is 1+(—ed1|j>); the number with u=0 is
1+(—e|p); the number with A=4u is 2[1+(~2]p)] if d=2 or 17,
2[1+(—1|p)] if d=3; the number with A=—3u is 0 if d=5 and p=7,
but 14+ (—"7|p) if d=5and p#7; the number with A=p is 0if d =13 and p =7,
14(—7|p) if d=13 and p»7; the number with p=+1is 2[14+(—2|p)] if
d=2, 2[1+(—22|p)] if d=5; the number with A= +1 is 2[14+(—2|p)] if
d=2; the number with 2u=+11s 2[1+(—-7lp)] if d=3; the number with
+Atu=1is4[1+(—7|p)]if d=3;if d=S5, the number with A4-p=+1 is 2
if p=3, 2[1+(—~2|p)] if p>5. Counting these as they come, not worrying
about duplicates, we find af most n4 solutions (A, u) for which a quaternion of
norm 2 may belong to Z;/, where

8+ 2(—1]p) + 6(— 2| ) if d=2,
9+3(—1|p) +6(— 7] ) if d=3,
(10) na={3+(—1]p +2(—2]|p if d=1,
6+3(—2]9) + (= 7|5+ 2(—22] p) ifd=35p>1,
2+ (=2 +(—7]|p) if d=13, p ~7;

whilen4=0if d=35 or 13 and p = 7. Hence there exist solutions of 1-+eA%-}-edu?
=0 mod p, for which Z,’ contains no quaternions of norm 2, in the following
cases:

d=2,fp=7p=13,0r p=19; d=3, if p = 13;

(1 . . .
d=T7,ip23; d=35ip=7; d=13, i p=3.

If Ty is P, of §12, which requires that p[ 14-dp? and yo=wy; mod p, we
find a value of » for which Z;’ contains no quaternion of norm 2 in the addi-
tional case d =5 and p=3; that is, if we take v=—1, no quaternion of norm 2
satisfies yp== —v; mod 3. )

Now only one genus of norm-forms G is obtained from F; by all the suit-
able transformations of a given determinant p not dividing 2d. For, the form-
residue mod p1" of G is determined by that of Faif p15p; and if p1=4, of the
two apparent possibilities (1, #, p, np), where # may be a quadratic residue
or non-residue, only one is possible, since ¢, ={(—=n [ $), and ¢, is invariant un-
der all rational transformations. Here, ¢, is 41, and we can take n=—1.

The preceding paragraph holds also if the transformations of determinant
p are of order 4, the forms so obtained being necessarily in the genus of G,
though not necessarily norm-forms. If T} is of determinant p and order 4, and
S: denotes the integral transformation of order 4 and determinant 20 which
replaces H; by Fa, then we can choose integral matrices Ss and T, of determi-
nants 2¢ and p, such that T3S =S;Ts. For if we define S;* by S,*S.=201, we
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have So*T.=1T3Ss, and 20T>=S:T3S:. Hence 2051 =T,71(S;Ts). The left
side is integral mod p, the right side mod 2. Hence 2¢.S;~! is an integral ma-
trix, say Ss; and T3Ss=.S5,Ts. Now if T3 replaces F; by a form G; with a form-
residue (1, —1, p, —p) mod #7, then G, is in the genus of G. Also, the trans-
formation T2S; replaces H; by Gy.

We thus have four forms: Fgq, Hg, Hy', and Gy; where H,' is obtained from
H; by the transformation T3; and hence G; from H;' by S;. The variables y;
in H, are to be subjected to the conditions mod 2 or 4 of the system Zg4; the
variables 2; in Hy' are to be subjected to the conditions mod 2 or 4 such that,
under s, the variables of G, are arbitrary integers. If we now prove that Hy/,
so conditioned, does not represent 1, the same holds for Gy. Since | T. 2| is odd,
the conditions of integrality on the 2; mod 2 or 4 must be equivalent to the
conditions on the ¥;, connected with the 2; by T.

Let us therefore apply to H, the transformation

(12) Tyt yo=p2o+ M2+ Nzt Na2s, yi=12, Yy2=12;, ¥s=12s

LEMMA 17. Let 09016205 be prime to p, p > 2. Then every third order minor de-
terminant in the mairix of Y(zo, 21, 22, %) = Ao (P2o~+2 NaBa) > GaBa? is divisible
by p if and only if

(13) ? I 818203 -+ G0@2a3\12 + @o218302% + @02182A5%

Hence the form 4e:H,’ =e’(pza-i-z:)\.,z‘,‘)’-l-ezdlzlz—l—edlzgz—l—eza2 has the
form-residue (1, #, p, np) mod 7 if and only if

(13) Pl di 4+ A%+ eng? 4 edins?

Now 1 will be represented in the form H,’ if and only if the coordinates of
one of the units in (9) satisfies yo=M¥1-+Ae¥2+Asys. For d =2, this means that
either some A,=0 or that +M +N;+As+1=0 for some choice of signs. Now
if p=17, we have 17|324+42+45241, and +3+4+5+4150 (mod 17). Hence
G does not represent 1.

If d=3, (9;) shows that H,' represents 1 if and only if A\;3=0, or A= *1,
orAs= ;. Now 11|424-0243-124-3, 7| 224-224-3-124-3, and 5| 22+02+3-12
+3;hence if pis 5, 7, or 11, H,' and G do not represent 1.

If d=7 we need N\;5#0; we have 3] 024-1247-124-7, eliminating p=3.

If d=13, H4' cannot represent 1 since 130.

The transformations (11) of §12, of determinant 2, lead to two genera,
T'; and Ty, containing the respective form-residues

(14) 1, n, p% np?) mod pr,

where # may be either a quadratic residue or non-residue mod p. Other ap-
parent possibilities, such as (1, p, np, np?), are excluded by the fact that ¢ is
primitive in (6), and are indeed derived from the genera obtained previously
by transformations of determinant p. The genera I'y and I'sz are distinguish-



324 GORDON PALL [March

able by the coefficient #=e-+e?d u'2--edip’? of 232 We seek to determine val-
ues of u’ and »’ which make (n[ p) either +1 or —1, and such that the con-
ditions

(15) = p'ys, v = ¥y; (mod p)

eliminate all quaternions of norm 2. This is rather easy, since x’ and »’ now
satisfy only the incongruence e--e?diu’?*+ed1v'?5£0 (mod p).

Referring again to (8) we see that (15} fails to hold, for all the quaternions
of norm 2, unless: (a) d=2, (4, v')=(0, 0), (0, £1), or (+1, 0); (b) d=3,
', »"y=(0,0), (0, £1), (£1/2,0), or (1, £1); (c) d=7, (u, »")=(0, 0), 0r
(0, £1); (d) =5, W', »)=(£1, 1), (£1, 0), (0, 0), or (3p’, 3¥")=(0, 1);
(e) d=13, (u', »")=(0, 0) or (0, —1) mod p. These cases imply, if d=2 that
n=1or2;ifd=3 that n=1,4,7/4, 7;if d=7,n=1, 8; if d=5, n=32, 28/9,
22,0r 2;ifd=13, that n=28 or 2, mod p. Hence # can certainly be made either
a quadratic residue or non-residue, if

d=2,p27d=3,p27;d=7,p25;d=35,p211;d=13,p 2 1.

There can also be eliminated the case d=2, =35, since —(1+12+12[5) =1
=(1+3-12+3-22|5); and the case d=7, p=3, (n|p)=—1, since (14712
+7-02| 3)=—1. By using Py’ of §12, and the condition y,=0, ;=0 (mod p)
we eliminate the case d=7, =3, and (n] 3Y=-41. Let d=S5; the case p=7 is
eliminated by (2-+20-224+10-12| 7) =1= —(2+20-224+10-02| 7); and the case
p=3 by P.’, since no quaternions of norm 2 satisfy y1=29,, y:=0 (mod 3).
Let d=13; the cases p=3 and 5 are eliminated by (2+52-0’+26-12] 3)
=1=—(2-+52-12+26-12|3), and (2+452-12+26-0%|5)=1=—(2+452-12
+26-22|5).

To sum up, we have now eliminated from consideration all cases in which
7 contains a prime factor p not dividing 2d, except that it d=2, we have
to consider the genus obtained by transformations of determinant 3, 5, or 11,
and the genera obtained by transformations of determinant 32 (These genera
all contain only one class.) We have still to consider genera derived from
these, from the genera of §13, and from the F; by transformations of deter-
minant divisible by d.

Let us consider next the case where p =d>2. If 7= and the transforma-
tion P, of §12 is used, the genus obtained has the residue (1, p, ep, ep?) mod p".
If p=3 or 5, this genus consists of one class. But if p =7 or 13, we can elimi-
nate the genus as follows. The transformation (12) applied to H, produces
a form with the residue (1, p, ep, ep?) mod p7 if we take A; =N, =0 and choose
\s so that (e2s2+e|p)=1. If p=7 this can be secured with A\s=1; and it
should be noted in (9;) that no unit satisfies yo=y; (mod 7). If p =13, take
As=3.

If we use transformation P,,’, we get the same genus for all u and »,
with the residue (1, e, 9% ep*) mod p". This genus represents 2. The norm-
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form will not represent 2 unless one of the quaternions in (8) satisfies y1=puys,
ye=rys, mod p. For p=5,7, or 13, we need merely take u=—r=2. If p=3,
this method fails; however we easily find in this genus the following form of
minimum 2:

Z(xo - x1/4 + xz/Z)’ + (31x12 + 289022 + 16“232 + 4x1xz + 16x1x3 + ngxa)/&

Thus if 7 contains an odd prime p, either d=2 and p=3, 5, or 11; or
d=p=3 or 5. We must form combinations of these with one another, and the
cases of §13.

We shall now complete the discussion of the cases arising from d=2.

Since 15]1+4324-22412, 33| 1492442412, 55[1+72+22+414, in accord-
ance with (13), we can discard the cases in which 7 is divisible by 135, 33, or
55, after noting the following.

The genera obtained from F, with =32 contain the respective forms

(16) Fiz=(xo+ 21/2+%2/2) 2+ (192:2+ 19,2+ 4252+ 2201 20+ 4y w5+ 4 %9 %3) /4,
(17) F1g' = (xo-l" x2/2) 2"“ (20 x12+ 11 x22+8x32+4x1x2+8x1x3—|— szxa)/4,

with the form-residues (1,1,9,9) and (1, 2, 9, 18), mod 3". Here Fy3is equiva-
lent to (¥o2 4912 +9y22+v52) /4 with the condition y,=y;=y,=v; mod 2; and
Fis’ is equivalent to (yo3+99:2+18¥:2+2v:%)/4 where yo=2x0+ %2, y1=%3,
Yo =2%1, Yz =x1+x2+2x;3, 50 that yo=91, y3==9;+y,, mod 2. Hence the units are
+1 and 445, and +1. Further transformations of determinants 5, 7, and 11
give genera containing classes of minimum not 1. For we have 5] 9412412
+9-12, 7] 9+2240249-22, and 11|9+024-22-+9-12, where As3%0 mod 2 (cf.
(13)); and 5, 7, and 11 can divide 1842\2-FA2+9Ns2, without having
:’: IE>\10+)\20+)\3'0 mod P.

LeMMma 18. Let p be an odd prime not dividing d. Then the norm-forms G
derivable from Fa by transformations of determinant a power of p have the follow-
ing form-residues mod pr. Here n, n', n’’ denote integers satisfying (—nl p)=1,
('[p)=—1, (=n"’|p)=—1:

(18) 1, =, 2 ”P); (ly 1, ?’1 Pz)r 1, , ?21 ”’Pz); (1, by np, nPZ);
(1, n, p% np®); (1, p% 2%, p%); (1, p, mp?, np®), (1, #'p, mp?, #”'p%);
and so on. But if d=p>2, then the residues mod p* are:
(11 b — ﬂ'?: - ”'172); (19 - ”I! Pz’ - ”’Pa);
(11 P: - ”,Pzp - ”'Pa): (ly n'?1 - "'Pzp - ?3).

These are easily verified, using the properties that ¢,=1 in (18), —1 in

(19); that G represents 1 and has the residue xo2-+¢ (%1, X2, x3), where ¢ is the

adjoint of an integral form.
Besides the forms (16) and (17), we shall now see that F; gives rise by

(19)
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transformations of determinant p* to the following forms in genera of one
class: if p=3,
F¢' = xo® -+ xows + 23% + 2(24* + 2125 + 157,
Fis” = xo® + xows + %3% + 6(w1® + 2152 + 27,
(20) Fsi = %o + 23 + 7252 + 6(x:% + 2122 + %27,
Fsd = (20 + 21/2 + x2/2 + x3/2)2
+ 9(3x12 + 3202 + 3x3%2 — 2x1%5 — 2%1%3 — 2%2%3) /4,

with the form-residues (1, 2, 3, 6), (1, 3, 6, 18), (1, 6, 18, 27), and (1,9, 9, 9)
mod 37; and if p=35,

F1o'= (xo+x1/2+x2/2)’+(11x12+11x22+4x32+2x1x2+4x1x3+4x2x3)/4,

21
( ) Fao= (xo+ x1/2) 2+5(7x12+4x22+4x32—4x1x2—4x1x3)/4,

with the residues (1,1, 5, 5) and (1, 5, 5, 25), mod 57; and if p =11,
(22) Faz = %o? + xoxs + 3252 + 2(x1% + 2120 + 3107),

with the residue (1, 2, 11, 22) mod 117. But all further genera so obtained
contain classes of minimum not 1.

To prove that the forms above are in genera of one class, we must correct
two misprints in Smith [13, vol. II, pp. 666668 ]. On page 666, gs in (7) should
be gz; on page 668, f; should be 8;. In our (16), (17), (20), we have respectively
(I, I, I)=(1,18,1), (1, 18, 1), (1, 6, 1), (3, 2, 3), (3, 6, 3), (9, 2, 1); inall
cases (working with F: since only modulus 27 then matters) f, represents 3
mod 8, so that I8, and I36, are 3, mod 8, and { =1/24. Also, working with
the form-residues mod 3, f, represents respectively 1, 2, 2, 3, 6, 9, and 6.
represents 1, 2, 2, 1, 2, 1, mod 3; 6;/2 and 6;/2 both represent 1 mod 3. Hence
by Smith's formula (7),

W = (1/12)(1/24)k,

where (respectively for Fis, Fis’, Fe', Fis'’, Fsi, Fsi')
= 2-1[1 — 2/3 + 1/9]18%/8,  2-1[1 + 2/3 + 1/9]18%/8,
2-1[1 4+ 2/3 4 1/9]62/8,  47'[1 4+ 1/3]27-4/9,
8-1[1 — 1/9]27-6r/9,  2-1-27-4/9.

Hence W=1/w, where w=232, 8, 72, 72, 24, 48. Since w is the number of posi-
tive automorphs of F (cf. Theorem 8) in each case, these six forms are in
genera of one class. The forms in (21) and (22) proceed similarly.

The existence of the following forms shows that all further genera ob-

tained by transformations of determinant p* contain classes of minimum
not 1:
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2(xo+-2-1 E %a) 2+ (172211 %921 5032 — 1021 %0 — 451 23— 2 %2%3) /2,

3x2F 32,24+ T 22+ T2 — 32021 — 3 %022 — 32023 -+-3 %1033 7 x93,
220245224 52241 232+ 21203 — 32122+ 22021+ 2 20 %5,

620247212+ 10222+ 13 23246 2021+ 6 29202+ 6 5023+ 821 09+ 11 21203+ 1420 43,
7202+ T2+ Tx2 9 %52+ 32023 — S 0925 — S X1 — 34223 — 31 %3 — 4%1 %2,

7 %02-+T7 212+ 9222+ 9 %3243 2023+ 3%0 X — Sxox1+ 7 X223+ 6 X1 25+ 3 %1 %,

with respective residues (1, 2, 27, 54), (1, 3, 18, 54), (1, 1, 81, 81), (1, 6, 27,
162), (1,9, 9, 81), (1, 9, 18, 162), mod 37;

2(xo+22/2) 24+ (142,24 9222+ 6 252+ 2 %1 25+ 6 21 X3+ 4 %2%3) /2,

2(2o+271Y ), 22)2+ (1722172224 3252 — 1621 22— 2561 %3— 2 %2%3) /2,
(%0+ 21/2) 2+ (155221002524 202652 — 100201 22— 20 2, %5) / 4,

(%ot 22/2+ 23/ 2) 2+ (260 22+ 35222435232 — 2021 2, — 2021 %3 — 30 22%3) /4,

with residues (1, 1, 25, 25), (1, 2, 25, 50), (1, 5, 25, 125), (1, 10, 25, 250),
mod 57, the last two forms not representing 11 and 6 respectively;

3(xot %1/6-F %9/ 2+ 23/2) 2 (275212499 %2+ 99 %32 — 6621 2, — 66 %, 63— 66 X2 %3) /2,

with the residue (1, 11, —11, —112) mod 117, the genera with the residues
(1, %, 112, #112), n= 11, having been eliminated earlier.

The last step, for forms arising from Fs, is to apply transformations of
determinants 3¢, 5°, or 11 to the nine forms Fy, Fs, Fs', - - - . We shall see
that F, yields in this way only two forms in genera of one class:

(23) Fio=xo® 432524 2(212F 2152+ %27), Fae= o2+ 3%52+6(212+ %122+ 227),

with residues (1, 2, 3, 6) and (1, 3, 6, 18) mod 3. The units for F; are +1,
443, +145, 12 If =5, it suffices to have p[ 14242 +As2 with all A, prime
to p; we have 5|1+12+4+22422, 11|1+412+4-224+42; The case r=p2=5? or 112
was eliminated by our earlier treatment of F,. To show that transformations
of determinant 3* applied to F; yield only (23), we need to construct forms of
minimum greater than 1 with the following residues mod 37: (1, 1, 9, 9),
(1,2,9,18),(1, 3,18, 54), and (1, 6, 18, 27). For (1, 1, 9, 9) take Fys, replace
%3 by 2x3+x0+x, and obtain a form not representing 1, which must be
equivalent mod 27 to Fy. For (1, 2, 9, 18) replace xo by 2xo—x; in F1s’. For
(1, 6, 18, 27) take Fy and replace xy by 2x,. The case (1, 3, 18, 54) was ex-
cluded even for forms derived from F,.

We shall now see that Fs and F3’ yield no forms. (Since Fis, Fig’, and Fye’’
are all derivable from Fgs or Fg’ this will end the case d=2.) For Fs, which
has the units +1 and 4, and is derived from Fj, we have only to note that
3| 241241242-12 with A\s prime to 3. We can write Fg’ as (2¢%+ 2,2+ 2.2 +25%) /4
with 2g = 2ye+y14y2:+ s 21 =y1+y2—3¥s, 22 =1+ y2 s, 23 =y1—3y2+ys. The
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units are given by =+ (2o, 2, 22, 23)=(2, 0, 0, 0), (+1, 1, 1, 1). We easily find
for p=3, 5, and 11, solutions of 1-4A2-+A:24N:2=0 mod p not satisfying
+1=N+N4N; mod p. For =32 replace xo and x; in Fi5 and Fis' by 2%
and 2x;, and obtain forms equivalent mod 37 to Fys and Fis’, mod 27 to Fy'.
The case d =2 is now complete.
We prove for F; that transformations ot determinant 3* give rise only to

(24) Fy = %® + xoxs + %32 + 3(x2® + 2122 + x.7),
For = (%0 + %1/2 + #:/2 + 2/2)*
+ 3(59612 + 53622 + 5x32 - 2.’)61.')02 —_ lexg —_ 2x2x3)/4,

with the residues (1, 3, 3, 9) and (1, —3, 9, —27), mod 3. The proof, using
Smith’s formula, that these are in genera of one class is left to the reader.
We construct the following forms of minimum greater than 1 in the genera
derived from F; with the residues (1, 1, 27, 27), (1, 3, 9, 27), and (1, —3,
—27, 81) mod 3*:
2(xo+ x1/4— x2/2) 2+ (31x12+28x22+ 16x32+4x1x2+ 16x1x3+8x2x3)/8,
3(xo+x1/2+x2/2+x3/2)2+ (9x12+ 13x22+13x32—6x1x2—-6x1x3—— 10x2x3)/4,
7(x0+3x1/14—' x2/7+5x3/14)2

+(1592,2+4 108,24 87 32— 72 %1 %2 — 302123 — 36x225) /28.

(25)

Next, applying transformations of determinant 2* we obtain from Fy the
two forms in genera of one class

(26) Fla' = (xo + x1/2)2 + 3(5x1’ + 4x22 + 41”3z —_ 4x1xz - 4x2x3)/4,
(27) Fie = 2o + 32,2 4 3222 + Ox32.
The genus derived from Fs with the same residue mod 27 as Fi.’ contains the

form 3(xo*+xox1+%1%) -4 (%22 +xaxs+%5%) of minimum 2; and that with the
residue xo2-4+xox3-+42x1x2 mod 27 contains the form

3(xo + x2/2 + 23/2)2 + (16212 + 13x,2 + 13%32 — 8x1x2 — 8x1%3 — 10x2%3) /4.

Further cases are excluded like those in the paragraph containing (18) in §13.

The forms derived from Fi; by transformations of determinant 2° (s=1)
are derived from that with the residue xo2+ x4+ 2x1%2 mod 2f. Such a form
is the following, of minimum 4:

7(xo + 2x1/7 + 2x2/7 + x3/2)"’ + (96:.\‘212 + 24x1x2 + 963‘?22 + 633’}32)/28.

The case d=3 is complete.
From Fs we get by transformations of determinant 5* only

(28) Fas=(xo+21/2+%2/2+ 23/ 2) 2+ 5(32:2+ 3222+ 3232+ 22105+ 22105+ 29 %3) /4
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in a genus of one class, with the residue (1, 5, 10, 50) mod 5. From Fy;, the
genus with the »residue xo2+xexs+ 22122 mod 27 contains the form

4(x0+ x1/4+ x2/4—3x3/8)2+(60x12+ 60x22+ 55 x32—40x1x2—20x1x3—20x2x3)/16.
We have now proved the following two theorems:

TraeoreM 11. There are exactly 39 classes of positive, integral forms f for
which the genus of the associated norm-form F contains only one class. These
forms f are as follows, those for which F is derived from the same Fq (=2, 3,5, 7,
13) being grouped together:

d f=(a,b,crst) d f=(,b,cr,st)
=ax?+by?+czt+2ryz+2szx -+ 2Uxy

2 (1,1,1,1/2,1/2,1/2) 3 (1,1,1, —-1/2,0,0)

4 (1,1,1,0,0,0) 6 (1,1,2,—1/2, —1/2,0)
6 (1,1,2,0,0, —1/2) 9 (1,1,3,0,0, —1/2)

8 (1,1,2,0,0,0) 12 (1,1,3,0,0,0)

8 (1,1,3,1/2,1/2,1/2) 12 (1,1,4,0,0, —1/2)

10 (1,1,3, —1/2, —1/2,0) 12 (1,2,2,1/2,1/2,1/2)
12 (1,2,2, —1,0,0) 18 (2,2,2,1/2,1,1)

16 (1,2,2,0,0,0) 24 (2,2,2,0,0, —1)

16 (1,1,4,0,0,0) 27 (2,2,2,1/2,1/2,1/2)
16 (2,2,2,1,1,1) 36 (1,330,0,0)

18 (1,1,5, —1/2, —1/2,0) 48 (1,4,4,—-2,0,0)

18 (1,2,3, —1, —1/2,0) s (1,1,2,1/2,1/2,1/2)
18 (1,1,6,0,0, —1/2) 10 (1,2,2,1,1/2,1/2)
22 (1,2,3,0, —1/2,0) 20 (1,2,3, —1,0,0)
32 (2,2,2,G,0,0) 25 (2,2,2,—1/2, —1/2, —1/2)
32 (2,2,3 —1,—1,0) 7 (1,1,2,—-1/2,0,0)
36 (2,2,3,0,0, —1) 28 (1,3,3,1,1/2,1/2)
50 (2,3,3,1/2,1,1) 13 (1,2,2,—-1/2,0, —1/2)

54 (2,3,3,—3/2,0,0)
54 (3,3,3,3/2,3/2,3/2)
64 (3,33 —1, -1, 1)

THaEOREM 12. If the genus of a positive norm-form F contains more than one
class, then it contains at least one class noi representing 1.

Our proof of this very simple result is indeed complicated. There should
be some easier way of proving that if F; and F; are inequivalent norm-forms
in the same genus, then there exists a third form G in their genus which does
not represent 1.

A description of the properties of the 39 systems, which will make them
more easily accessible for applications, has been published in the Duke Math-
ematical Journal by Miss C. S. Williams and the author (vol. 12 (1945)
pp- 527-539).
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15. Theorem 3 is best possible.

TueOREM 13. If the genus of a norm-form F contains a class not represent-
ing 1, then there exist infinitely many primes p such that: (i) p s represented by
the genus of F, and (ii) for each p there exist primitive pure quaternions x (in
the quaternion system associated with F) of norms divisible by p but having no
right-divisors of norm p.

We shall first prove the following lemma.

Lemma 19. If Fi and F, are any two inequivalent forms in the genus of a
norm-form F, there exist infinitely many squarefree numbers n, coprime in pairs,
Jor each of which there exist integral matrices Q of determinant n® such that Q
replaces Fy by nF.. We can suppose also that the prime factors of each n are
representable by the genus of F.

We start with the fact that there exists a transformation T/s, where s
is a positive integer which can be taken prime to any assignable number, and
T is an integral matrix of determinant s4, which replaces F; by F.. Hence T
replaces F1 by s%F,. Taking m =52, we have transformations P of determinant
m? replacing Fy by mF,;. Write m =p?%*?, where p is a prime not dividing 2d.
We can factor P as QR, where | Q| =p?, and |R| =p%* (cf. §12). Wr can
suppose here that Q replaces Fy by $F;, where F; is an integral form (neces-
sarily in the genus of F).

To prove the last statement, we apply an integral transformation of de-
terminant 11 to secure Fi=A(to®+4H2+45*+14%) mod m: We can thus study
more easily the structure of P and Q. Let p* be the highest power of
in m2?, and let S be the left factor of P of determinant p2%, Then S replaces
t*+ 1212 +42 by a form all of whose coefficients are divisible by p°. By
Hermite’s result in §12 we can suppose that S has the form

pr kb ke ks
0 P ks ks
Lo 0 % ke |
0 0 0 p
where 2s=¢,}e:-testes, 0=k <p*2, and so on. Hence p* divides p?a, poig,,

ki p?2, and so on. From these facts we can easily deduce that S has a left
factor of determinant 2, of the form

p h 0 O p 0 k
01 0 0 0 p—k &
n Q= or
, 0 0 p & 0 0 0
0 0 0 1 0 0 0 1
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where p divides 1+42 or 14+k2+%2 Clearly, Q replaces F; by pG, where G
is integral.

The same argument shows that we can factor m as p1ps -+ - - p., where the
s are primes, and P as PyP; - - - P,, where | Pi| =52, and have P, replacing
Fi by p:1G., P replacing G, by p:Gs, + « + , P, replacing G, by p.Fs. Let Gy be
the last form in this sequence which is equivalent to Fi. Then P; replaces F1
by either piF: or piFs, where F3 is not equivalent to Fi. In the last case we
proceed with a new transformation P replacing F3 by m Fy, with m prime to pz.
We now take Gi to be the last form in the sequence which is equivalent to
either Fs or Fy, and so introduce a new class related to F; either by means
of a single prime p, or a product of distinct primes pg. Eventually, since the
number of classes is finite, we reach Fz. Note finally that each p is represented
by the genus of F. For if (say) Fs represents pFy, then the solvability of Fy=1
mod k implies that of F;=$ mod &, for every modulus k.

Proceeding with the proof of Theorem 13, we may suppose that F is car-
ried by means of a transformation P =(p;;) of a determinant m? into mG,
where m is squarefree and prime to 2d, and G does not represent 1. It is now
possible to find a primitive pure quaternion xof norm divisible by m, such
that the congruence system x#=0 mod m has the general solution #; =Y P
(z; integers). We can secure F=t.%-+1%+1,%+1? by a slight transformation.
For each prime p in m we can write P =QR, where | Q| =p?, ]RI is prime to p,
and Q is given by (1). The condition that # = p:2; is equivalent for each p
to the condition that Q' be integral mod p, ¢ denoting here a column vector.
We can assume that Q has the second form in (1), and on taking x,=0, x:=1,
%= —Fk, x3=h, mod p, see that (5) of §6 is equivalent to ¢{=Qu with # in-
tegral. Theorem 13 follows, since at least one factor p of m will have the prop-
erties stated.

It should perhaps be remarked that an x cannot always be found as above
if m is not squarefree. For example if the rows of (p,;) are (p, 0, 0, 0),
©, 2,0, 0), (0, 0, Pzi k), and (0, 0, 0, 1), and FEZtiz mod b4 then xi=0
mod.p? requires that p|x.
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