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Notes on Ternary Forms
I. Near misses relative to odd numbers

1. Introduction. This is the first of a series of notes, intended for limited
distribution. Whether any of these will be polished and submitted for publication
is problematical. At present the idea is to try to ensure that things of permanent value
here (if any) do not vanish identically and hopefully will be available to investigators
who go further some day.

I begin with an autobiographical note. When in the Fall of 1992 I ended my term-as
MSRI Director I decided to return to a childhood love: elementary number theory. The idea was
to try to fill in some of the numerous gaps in my knowledge. I started by going back to
Dickson, for whom I have the utmost admiration. His book "Studies in the Theory of
Numbers" is mostly about ternary forms; I found it somewhat inpenetrable. Much better
was the portion on ternary forms in his last book "Modern Elementary Theory of
Numbers". In fact, I fell in love with ternary forms and haven't recovered yet. The subject
had just the right combination of accessible facts and challenges where some progress
i)y elementary methods looked possible. -

Starting in the Fall of 1994 I was fortunate in having Will Jagy as a collaborator.
He wrote a substantial number of dandy programs and contributed many ideas to the
theory. Starting in December, 1995, tables furnished by Alexander Schiemann were
vital in the classification of regular forms.

Final remark: in the Fall of 1996 I briefly studied indefinite ternaries. Correspodence

with Andrew Earnest convinced me that my ignorance of spinor genera was too big a
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handicap, so I aborted the project. Thus: in these notes all forms are positive definite.

2. Background. In {3] I executed the project of finding the ternaries that represent all
odd positive integers. As explained there, thuee forms accidentally showed up that seemed to
miss exactly one odd sumber. I cauntiously noted that "there may be others". Partly because
this aroused my curiosity, and partly because of the similarity to Halmos's admirable
Jugendarbeit [1], I looked into the matter and have now found all of them. The answer is
that there are 41 more, for a total of 44. More honestly, there are at most 44: one for sure
and 43 plausible candidates. This is a subject where, at present, proofs are rarer than
hens' teeth.

Two things were needed to carry out this investigation: a priori bounds for the

discriminant and an effective program written by Jagy. I proceed to explain the bounds.

3. 1} priori bounds. The idea is simple. Let f be an odd form with discriminant D.
Suppose that the form f represents a, b, ¢ at vectors u, v, w that are linearly independent
over the integers. We first note that the submodule B spanned by u, v, w may not be all
of the free 3-dimensional Z-module on which f operates. But this works in our favor. Write g
for the restriction of f to B. The discriminant of g has the form (s*2)D. So a bound for
(s"2)D is, a fortiori, a bound for D. The doubled up matrix attached to g has the form
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A known theorem on the determinant of a positive definite symmetric matrix gsserts that
is is bounded by the product of the diagonal elements. So the determinant of the above matrix
is bounded by 8abc. This has to be divided by 2, after which we get the bound 4abc for D.

We proceed to the problem at hand. The worst scenario is where the "forgiven" number
is . We have the following estimate.

Proposition. Let D be the discriminant of an odd form (posititve definite ternary, of
course) that represents 3, 5,7, 9, and 11. Then D < 660. |

Proof. Take u and v with f(u) = 3, f(v) = 5, where f is the given form. Necessarily
u and v are linearly independent. The restriction of f to the submodule spanned by u and v
has the form h = 3(x2) + rxy + 5(y*2). We can take r = 0. Positive definiteness implies
thatr 57. Thus there are 8 cases to handle: r=0, 1, 2, ..., 6, 7. We take w with
f(w)=17,9, or 11. We need to have u, v, and w linearly independent.  Failure means that
h represents s*2(7, 9, ér 11) for some nonzero s. The following assertions meet the need.

3(x72) + rxy + 5(y”2) does not represent 7¢s*2) forr=0, 2, 3,4, 6,7,

3(x"2) + xy + 5(y*2) does not represent 11(s*2),

3(x"2) + 5xy + 5(y”"2) does not represent 9(s"2).
Proofs of these assertions are routine exercises; I leave them to the reader. In the worst
case we get the estimate 4.3.5.11 = 660.

Remarks. (a) Ilikewise leave to th reader handling the remaining cases for odd forms
and verifying that 660 (indeed, a smaller bound) always works.

(b) When the missing number is larger than 7 we have the following result: an odd form

that represents 1, 3, 5, and 7 has discriminant < 77. This bound is the one that came up in [3],
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but it was not explicitly mentioned there. Incidentally, 77 is best possible, as witnessed

. s : L a(;lq’xfﬂ/e‘l :
For even Forms represert ng /)3'}5/7} o{:sc <5, M

by the form x2 + xy + 3(y*2) + 7(z*2). S 3?;* 5 9’,
(c) For even forms a simpler version of the argument yields the bound 105.

This (05 s for  Even '
Foﬂ'rs V‘@pregenfi'nj Z‘ 3)5;7 }’ HM 7)” qre f:'jn@f'f’ql,
4. The computation. Jagy wrote a suitable program. On odd forms it tested all of them

in the available table - up to discriminant 1000, going well beyond 660 to play it safe. Many
forms could have been deleted a priori, but it was simpler to test them all. The run on even

forms went to discriminant 150, beyond the bound of 19/5; The 44 that survived are listed in

s

the table.

In conclusion there are four remarks.

(a) Asremarked above, at present there is only one proof! This is for number 8, and is
due to Jagy [2].

(b) All forms were verified on odd numbers up to at least 5000.

(c) There are two interconnections that have been M‘ I will give the details in a
later note. (i) Numbers (1) and (3) represent e);actly tﬁe same numbers (even or odd).
\(ii) Number 15 represents exactly the same odd numbers as number 1 (or, equivalently,
number 3). Thus, only 41 proofs remain to be found. At present, I know of no other
interconnections.

@I thank Alexander Schiemann, who sent me his version of the Brandt-Intrau

tables, Having this available on line was a great convenience.
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Notes on Ternary Forms

II. Near misses relative to all numbers

My interest in the near misses discussed in this note was stimulated by two ternary
forms treated by Jones and Pall in [3]: they proved that 4 8904 0and 8 1221 1200
represent all eligible integers with a single exception. These are numbers 542 and 892 in
the table of strong near misses below. A second stimulus arose from a remark by Watson
at the end of his thesis [4]: "The method can be extended to four or more variables, or to
forms which are regular with one exception; but in either case the calculations are
formidable.” I have no thoughts at present about higher dimensional forms, but I agree
that ternaries admitting just one exception can be classified by Watson's methods and that
this will require much more work than the classification of regular ternary forms achieved
in [2]. Tdo not plan to undertake the job at this time. Being unwilling to forget about it
entirely, I decided to exhibit a partial list, obtained by using tools and tables currently
available.

Before describing what I have done I make a distinction between "strong" and "weak"
near misses. By a strong near miss I mean Just what was mentioned above: a form that
misses exactly one eligible integer. Now there exist numerous forms with the following
property: for a certain prime p (p = 2 is OK) the form represents an integer A if and only if
it represents (p*2)A. Such a form cannot be a strong near rniss:ras soon as it misses A it

misses all (p*2n)A. So I call f a weak near miss if, for a suitable prime p and a suitable
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eligible integer A, f represents all eligible integers except for the set {(p"2n)A}.

Now for a word about how the list was compiled. The program with command word
“comp", written by Jagy for the work in [2], is well adapted for the purpose. The input is a
mﬁﬂgﬁﬁmmmﬁam%amﬂmmmm@aTTMﬁmegW%dhmm%mgTwmm
are represented by f(resp. g) but not by g (resp. f). For strong near misses we exclude f
as soon as we find g in its genus with the output for f having at least two numbers. For
weak near misses we need more: numbers a and b in the output (a < b) such that b/a
is not an even power of a prime.

There was a complete search of the Brandt-Intrau tables, in the version sent to me by
Schiemann. These tables go up to discriminant 1000 for odd forms and 250 for even forms.
Beyond that, there was an additional search of most of the discriminants furnished by
Schiemann in connection with [2]. These discriminants are as follows.

Odd: 1014,1029,1058,1080,1089,1125,1134,1176,1188,1200,1215,1250,1296,1323,
1331,1350,1452,1458,1500,1512,1620,1756,1764,i800,1875,1944,2000,2025,2058,
2106,2160,2197,2250,2430,2450,2646,2662,2700,2744,3000.
| Even: 252,256,270,288,294,300,320,324,336,350,360,368,378,384,392,396,400,
432,448,450,480,486,490,500,504,512,540,560,576,588,600,624,640,648,672,676,686;
702,720,736,750,756,768,784,810,832,864,896,900,960,972,IOOO,1008,1024,1029,
1080,1120,1125,1134,1152,1188,1200,1225,1248,1280,1296,1344,1350,1440,1452,
1500,1521,1536,1600,1620,1728,1764,1792,1800,1872,1920,1936,2000,2048,2112,
2160,2304,2352,2560,2592,2700,2800,2808,2816,2880,3000,3024,3072,3136,3240,

3456, 3600, 3840, 3888, 3920, 4000, 4032, 4050, 4056, 4096, 4224, 4232, 4320, 4356, 4500,
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4536, 4608, 4704, 4752, 4800, 5120, 5184, 5292, 5376, 5400, 5488, 5600, 5616, 5760, 5808, |
5888, 6000, 6048, 6144, 6174, 6272, 6336, 6400, 6480, 6912, 7056, 7168, 7200, 7680, 7840,
7938, 8000.

I conclude with some remarks concerning the tables.

(a) There are 117 strong near misses (note the 5 interpolations) of which 35 are
odd and 82 even. There are 186 weak near misses of which 85 are odd and 101 even. The
grand total is 303. _ e e

(b) All forms were verified to at least 1000; the majority were verified considerably
higher.

(c) There is some overlap between these near misses and the near misses with

respect to odd numbers of Note I: on the strong list numbers 1,2,3,4,5,8,39; on the weak

list numbers 9, 15, 25, 27, 30, 38.
(d) On the strong list there are no square-free discriminants. If this turns out to

be provable, the classification of strong near misses will get off to a flying start.

i add ion AF Al A Mme%W sertercl
(e) For the 303 forms only 8 proofs exis/li numbers 1, 19, 36, 37, 38, 44a on the strong
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Notes on Ternary Forms
[I. JP (Jones-Pall) forms

What is a JP form? In this note I shall not attempt a precise definition, but (in the
famous words of a Supreme Court Justice). I know oné when I see it.

In [1] Jones and Pall presented w, each the mate of zi\regular form.
(There was a slip in describing 'th.e. 1ntegers mxssed byone of fhe‘sevcn; corrected
independently by Lomadze [2] and Schulze-Pillot [3].) The first was f=2252 20, the
genus mate of the diagonal form 1 1 16. The form f is regular on even numbers. On odd ones
f is entitled to all numbers of the form 4n + 1, but it misses an infinite number. Which ones?
When I first saw the answer I found it remarkable and I still do. In the first place the
(4n + 1)'s missed by f are all squares. Secondly, every prime factor must be of the form
4n + 1. The first ten such numbers are

1,25, 169, 289, 625, 841, 1369, 1681, 2809, 3721.
Jones and Pall used ;é m”2 as a notation for this situation. Similarly, 74 w”2 means that the
prime factors must all be of the form 3m + 1. Later it turned out that JP forms can be
understood better in terms of spinor genera.

When I carried out the search for near misses reported in Note II I simultaneously

searched for JP forms. The result is listed below. These 18 JP forms, together with the

7 original ones, make a total of 25 known thus far.

€y
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Remarks. (a) Numbers ! and 15 are not really new. The device of replacing
x"2 + xy + y*2 by x"2 + 3y”2 cariries them into two of the original seven.

(b) By the methods of Jones and Pall I proved that number 2 does what it says,
as reported in the appended letter. Other than this, I have not attempted any proofs.
Spinor genera method~ will presumably give the best proofs.

(c) The exceptions for number 4 need a new description: the relevant primes are
those for which -7 is a quadratic residﬁe.

(d) There exist forms with the following property: they miss the numbers appropriate

for a JP form, and some others as well. The appended letter sheds some light on this

phenomenon. I have one example worthy of mention: 9 16 32 0 0 8 with discriminant 4096.

- This seems to miss m*2 and excatly one more number, namely 4 (a different kind of

"near miss").
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Notes on Ternary Forms
IV. Semi-regularity

I believe that the term "semi-regular” was first used in Jones's thesis [3]. It
appears in the title of [4]. Ididn't find a definition in either of these references, but the
meaning is clear from the context: regularity on an arithmetic progression.

My interest in semi-regularity stems from a statement made without proof by Pall
in [6, p. 344]: the forms 1 17 and 1 2 4 2 00 (they form a genus) both represent all
eligible 4n's and (4n + 1)'s. For some time I was frustrated by my inability to prove this.
Then Dennis Estes put me out of my misery; I incorporated his proof in [5]. Later I
acquired a copy of [3] and found that Jones had given a proof for 1 1 7; this is acknowledged in
the added in proof in [S].

Jones remarked that semi-regular forms are abundant. He gave a table (Table VII)
of 38 such forms. I agree that they are abundant. For instance, each of the strong near
misses in Note II is (conjecturally) regular on 4n's or (4n + 1)'s or both. A systematic
investigation of all sem-regular forms does not look like an attractive enterprise.
Nevertheless, regularity on 4n's and (4n + 1)'s retéins a (somewhat irrational) special
place in my heart.

But there is a special reason for writing this note: recently I ma@e some progress on
the 4n case. I now have a method that sometimes works for proving regularity on

multiples of 4.
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The setup to which the method applies is as follows. Let f be an even form of odd
discriminant. (If f has even djscrimjnant the method of descent to a smaller djscrhﬁinant
is likely to work even better.) Suppose tl;ere exists an odd form g with the same discriminant
as f and satisfying three conditions:

(1) gisregular,

(2) fand g admit the same eligible numbers,

(3) there exists a homothety from f to g (necessarily with scale factor 2).

For conditions (2) and (3) there is a decision procedure. As for (1), a list of regular

forms is available [2], with the slight flaw that 22 of the 913 are, as of this writing, still
candidates. At any rate, when these conditions hold it follows that f represents all

eligible 4n's. The proof is routine and I omit it for now (I will record it on a later occasion).

The table below records all forms with discriminant < 100 to which the method applies.

There is a closely related result which is definitive for the forms in question. Again I
omit the routine proof.

Theorem. For any positive integer t the following statements are equivalent:

\(a) 1, 1, 4t - 1 represents all eligible 4n's, (b) 1, 1, t, 1, 0, O is regular.

Now, somewhat in the spirit of using the classification of finite simple groups, I invoke
the classification of regular ternary forms to learn that 1, 1, t, 1, 0, O is regular for exactly
t=1,2,3,4,and 7. Therefore: 1, 1, 4t - 1 represents all eligible 4n's exactly for
4t-1=3,7,11, 15, and 27.

As for representing all eligible (4n + 1)'s, I have no such method and have to fall

back on ad hoc devices, case by case. Suitable devices have been found for forms
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1,2,4,5,6,7,8,9,10, 17, 18, and 19. Note: the form 1, 1, 11 (number 3) does not
represent the eligible number 33; but computatrionusq‘ggﬁ:sts that. ii ‘rcprcsvc;ants
all (4n + 1)'s that are not divisible by 11. R

Here is a historical note. In {1] Dickson proved tixat the quaternary forms 1 1 7 7 and
1111 11 both represent all multiples of 4. Conceminé the lénef hé added that an attack
by using ternary forms had notvsucceeded. But it is easy to deduce the result from the
fact that the ternary form 1 1 11 represents all eligible 4n's. (Subsequently Will Jagy
showed me an alternate method: use the quaternary form which is the direct sum of the binary
form x"2 + xy + 3y”2 with itself.)

In concluding this note I stick in something not related to semi-regularity -- it is just
one more problem that I have invented. Which forms represent all (4n + 2)'s? It turns out
that such a form must be even. The problem then easily reduces to the forms that

represent all odd numbers. The table below gives the answer. Note the three candidates.
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