To: John Hsia and Rainer Schulze-Pillot

Dear colleagues:

I just noticed something. The proof is a triviality, but at least it applies to an infinite family of forms. And it resembles the phenomenon in the Jones-Pall Acta paper, which later turned out to be explainable by spinor genera. So I decided to send it to you.

Theorem. Let F be $2x^2 + 2y^2 + (4r^2 + 1)z^2 + 2xz + 2yz$. Then (a) If r is even, F does not represent s² for any prime s of the form 4n + 3. (b) If r is odd, $F \neq m^2$ in the Jones-Pall notation, that is, F does not represent any m^2 where every prime factor of m is of the form 4n + 1.

Remarks. 1. For r = 1, F is the genus mate of $x^2 + y^2 + 16z^2$. For r > 1, I have no further information on F.

2. The proof is similar to the proof of the theorem on page 5 of the enclosed paper by Jagy and myself (to appear in Experimental Mathematics).

Proof. We have

(1)
$$2F = (2x + z)^{2} + (2y + z)^{2} + 8r^{2}z^{2}.$$

Suppose that F represents an odd number A. Then 2F = 2A and we see from (1) that z is odd. We have

(2)
$$u^2 + v^2 + 4r^2z^2 = A$$

for suitable u and v.

(a) Suppose $A = s^2$ with s a prime of the form 4n + 3. Then (s + 2rz)(s - 2rz) is a sum of two squares. Since r is even both factors are of the form 4n + 3. It follows that some prime q of the form 4n + 3 divides both factors. But then q divides 2s, so q = s. Furthermore

s divides rz. Then in (2) s divides u and v. Divide (2) by s². Then the right side is 1, but $4r^2z^2/s^2 > 1$ (remember that z is odd and hence nonzero)

(b) Suppose that $A = m^2$ is divisible only by primes of the form 4n + 1. We again have $(m + 2rz)(m - 2rz) = u^2 + v^2$. Since r and z are odd, both factors are again of the form 4n + 3, so that again a prime q of the form 4n + 3 divides both factors. Then q divides m, a contradiction.

While I am at it I'll add three notes concerning forms John treated by spinor genera.

- (i) BI discriminant 108. Both $x^2 + xy + y^2 + 36z^2$ and its mate reduce, by the trick of replacing $x^2 + xy + y^2$ by $x^2 + 3y^2$, to forms treated by Jones and Pall.
- (ii) Same discription ant. $f = 3x^2 + 4y^2 + 4z^2 + 3xy + 4yz$ is the mate of a form proved regular by John. I proved rather easily that $f \neq w^2$ in the Jones-Pall notation. Known?
- (111) Discriminant 81. $g = 3x^2 + 3y^2 + 4z^2 + 3xy + 3xz$ is another such mate. I couldn't prove anything but I checked up to 100,000 that g represents all eligible integers except 1 and 58.

Best regards,

Irving Kaplansky

William C. Jagy, January 2009. Compare page 312 of Schulze-Pillot "Survey" 2004, Theorem 4.3 and his illustrative example on that page. The computer printed the square root of any exception that was a perfect square, then a colon. Kap proved that $2x^2+2y^2+17z^2+2yz+2zx\neq q^2$, prime $q\equiv 3 \mod 4$. It is easy to show, using Theorem 4 and Theorem 5 of Jones and Pall (1939) and identities $(W^2+X^2+Y^2+Z^2)^2=(W^2-X^2-Y^2+Z^2)^2+(2WX-2YZ)^2+(2WY+2ZX)^2$ and $(X^2+Y^2+Z^2)^2=(X^2-Y^2-Z^2)^2+(2XY)^2+(2ZX)^2$, that $2x^2+2y^2+17z^2+2yz+2zx$ represents 4 and p^2 for primes $p\equiv 1 \mod 4$, also q^4 for primes $q\equiv 3 \mod 4$, and q^2r^2 for primes $q\equiv 3 \mod 4$. Therefore, all squares are represented **except** 1 and q^2 for primes $q\equiv 3 \mod 4$.

```
=====Discriminant
                    256 ==Genus Size==
                                            4 {two spinor genera}
                                           {no exceptions}
  Spinor genus misses square classes
  256 :
                     64
                                    0
  256:
           1
                4
                     17
                            4
                                0
                                    0
                2
                     17
                            2
                                2
                                    0
  256:
                        ---size 3
  Spinor genus misses square classes
                5
                      8
                            4
                                         {Spinor Regular!}
                       ----size 1
 -=----
        256:
                 2
                       2
                                  17
                                           2
                                                2
                                                      0
 misses, compared with full genus (up to 250,000)
    1:
            1
                          5
                                3:
                                         9
                                                      13
                                                                    37
           42
                         49
                                                                    93
                  7:
                                       73
                                                      85
          109
                 11:
                        121
                                      177
                                                     322
                                                                   345
          357
                 19:
                        361
                                      397
                                             23:
                                                     529
                                                                   613
          697
                                                    1738
                                                                  1849
                 31:
                        961
                                     1285
                                                           43:
                                                                  4489
         2101
                 47:
                       2209
                                     2797
                                             59:
                                                    3481
                                                           67:
                                                          107:
                                                                 11449
   71:
         5041
                 79:
                       6241
                               83:
                                     6889
                                            103:
                                                  10609
  127:
                      17161
                              139:
                                    19321
                                            151:
                                                  22801
                                                          163:
                                                                 26569
        16129
                131:
                                    36481
                                            199:
                                                  39601
                                                          211:
                                                                 44521
  167:
        27889
                179:
                      32041
                              191:
                                                          263:
 223:
        49729
               227:
                      51529
                              239:
                                    57121
                                            251:
                                                  63001
                                                                 69169
 271:
        73441
               283:
                      80089
                              307:
                                    94249
                                            311:
                                                  96721
                                                          331: 109561
                              367: 134689
                                            379: 143641
                                                          383: 146689
  347: 120409
               359: 128881
               431: 185761
                              439: 192721
                                            443: 196249
                                                          463: 214369
 419: 175561
               479: 229441
                              487: 237169
                                            491: 241081
                                                          499: 249001
  467: 218089
```

```
0
      256:
                            64
             1
                   1
misses, compared with full genus (up to 250,000)
         21
                     33
                                 42
                                             57
                                                        133
                                322
         141
                     253
                                            385
                                                        553
        1738
                            17 4
      256:
                  4
             1
misses, compared with full genus (up to 250,000)
          2
                     10
                                58
                                             82
                                                        130
                     298
                               3298
         282
8
                               4
             2
                  5
                                       0
      256:
 misses, compared with full genus (up to 250,000)
                      4
                          5:
                                25
                                            100
                                                  13:
                                                        169
   1:
          1
               2:
                                      10:
  17:
         289
              25:
                    625
                          26:
                                676
                                      29:
                                            841
                                                  34:
                                                       1156
  37:
        1369
              41:
                   1681
                          50:
                               2500
                                      53:
                                           2809
                                                  58:
                                                       3364
        3721
              65:
                   4225
                          73:
                               5329
                                           5476
                                                  82:
                                                       6724
  61:
                                      74:
  85:
        7225
              89:
                   7921
                          97:
                               9409
                                     101:
                                         10201
                                                 106:
                                                      11236
  109:
       11881
                  12769
                         122:
                              14884
                                     125:
                                          15625
                                                 130:
                                                      16900
             113:
                                     149:
 137:
       18769
             145:
                  21025
                         146:
                              21316
                                          22201
                                                 157:
                                                      24649
       28561
                  28900
  169:
             170:
                         173:
                              29929
                                     178:
                                          31684
                                                 181:
                                                      32761
 185:
       34225
             193:
                  37249
                         194:
                              37636
                                     197:
                                          38809
                                                 202:
                                                      40804
                                                 229:
 205:
       42025
             218:
                  47524
                         221:
                              48841
                                     226:
                                          51076
                                                      52441
 233:
       54289
             241:
                  58081
                         250:
                              62500
                                     257:
                                          66049
                                                 265:
                                                      70225
       72361
                  75076
                         277:
                              76729
                                     281:
                                                 289:
 269:
             274:
                                          78961
                                                      83521
 290:
       84100
             293:
                  85849
                         298:
                              88804
                                     305:
                                          93025
                                                 313:
                                                      97969
 314:
       98596
             317: 100489
                         325: 105625
                                     337: 113569
                                                 338: 114244
                         353: 124609
                                     362: 131044
 346: 119716
            349: 121801
                                                 365: 133225
 370: 136900 373: 139129 377: 142129
                                     386: 148996
                                                 389: 151321
 394: 155236 397: 157609 401: 160801
                                     409: 167281
                                                 410: 168100
 421: 177241 425: 180625 433: 187489 442: 195364
                                                445: 198025
 449: 201601 457: 208849 458: 209764 461: 212521
                                                 466: 217156
 481: 231361 482: 232324 485: 235225 493: 243049
Genus represents: 4^k (4n + 1), 4^k (8n + 2),
                  4<sup>k</sup> (128 n + 96), 4<sup>k</sup> (512 n + 192).
______
```

genera in the genus (the spinor exceptions of the genus) has been determined in [53], the same problem for primitive representations has been solved in [13], both of these exceptional sets are in general infinite.

Writing

(4.15)
$$\vartheta(\operatorname{spn} L, z) := \sum_{a=0}^{\infty} r(\operatorname{spn} L, a) \exp(2\pi i a z),$$

one has by [55] that

(4.16)
$$\vartheta(L,z) - \vartheta(\operatorname{spn} L,z)$$

is a cusp form of weight $\frac{3}{2}$ whose Shimura lifting is cuspidal. For such cusp forms of weight 3/2 the growth of the Fourier coefficients can be estimated using [11] and the Shimura lifting, which gives an asymptotic formula of the same type as in Theorem 3.1 (with an error term $O(a^{\frac{1}{2}-\frac{1}{28}+\epsilon})$) for all a outside the exceptional square classes [12].

If there is only one spinor genus in the genus, one is done at this point; since it is known [44, 23] that this is the case if the discriminant is not divisible by 2^7 and not by any p^3 for odd primes p, we are finished here for L of small discriminant. If there are several spinor genera, a more detailed analysis [12, 54, 57] yields the following result inside the exceptional square classes:

THEOREM 4.3. [57] If rk(L) = 3 and a is restricted to numbers in q(gen L) not divisible by p^r (r fixed) for the primes for which L_p is anisotropic, one has: If a is sufficiently large, then a is represented by all lattices in the genus of (L,q) unless one of the following holds

- a is a spinor exception. In this case a is represented by exactly half the spinor genera in the genus of L, and it is represented by all the classes in these spinor genera.
- a is of the form $a'p^2$, where a' is a spinor exception and p is a prime that is inert in the imaginary quadratic extension

$$(4.17) E = \mathbb{Q}(-2a \det L)$$

of \mathbb{Q} . In this case a' is represented by exactly half the spinor genera in the genus of L and $a=a'p^2$ is represented precisely by those classes in this half of the spinor genera that represent a' and by all lattices in the other half of the spinor genera.

In particular, if there is a spinor exceptional integer a' for the genus of L that is represented by $\operatorname{spn}(L)$ but not by L (so a' is below the bound for being sufficiently large), then there are infinitely many integers $a'p^2$ with p prime that are not represented by L.

An example for the behaviour of this theorem is the quadratic form

$$4x^2 + 48y^2 + 49z^2 + 48yz + 4xz$$

discussed in [57]; it does not represent any p^2 where $p \equiv -1 \mod 3$ is a prime although the form $x^2 + 48y^2 + 144z^2$ in the same spinor genus represents all these numbers (but not primitively).

We will come back to the proof of this theorem in the next section where we discuss Compare Kap $(2,2,16 \pm 1,2,2,0) \pm q^2$ PRIME q=3 mod q=3 and q=3

Edifed Baeza Hsia, Jacob, Prestel

pages 303-321

Representation by integral quadratic forms - a survey

Rainer Schulze-Pillot

ABSTRACT. In this article we give a survey of results on representation of numbers by an integral quadratic form (or more generally representation of quadratic forms by quadratic forms). Particular emphasis is put on definite forms and there on recent work about forms of rank 3 over number fields ond on questions of effectivity.

Introduction

An integral symmetric matrix $S = (s_{ij}) \in M_m^{\text{sym}}(\mathbb{Z})$ with $s_{ii} \in 2\mathbb{Z}$ gives rise to an integral quadratic form $q(\mathbf{x}) = \frac{1}{2} {}^t \mathbf{x} S \mathbf{x}$ on \mathbb{Z}^m . If S is positive definite, the number r(q,t) of solutions $\mathbf{x} \in \mathbb{Z}^m$ of the equation $q(\mathbf{x}) = t$ is finite, and it is one of the classical tasks of number theory to study the qualitative question which numbers t are represented by q or the quantitative problem to determine the number r(q,t) of representations of t by q either exactly or asymptotically.

Starting with the work of Euler, Legendre–Gauß and Lagrange–Jacobi on the number of ways in which an integer can be represented as a sum of two, three and four integral squares, many deep and beautiful results have been obtained concerning these problems, as well in this classical setting as in generalized settings like the study of representations with congruence conditions, representation numbers of forms q' of rank $n \leq m$ by q, representation numbers or measures by definite or indefinite forms over the ring of integers of a number field.

In this article I want to give a survey of what is known (and what is not known) about these questions. In particular we will discuss and slightly extend some recent results about representation of numbers by totally definite forms of rank 3 over the integers of a totally real number field in Section 5. We will also discuss some recent progress concerning effectivity of results. Another recent survey is [20]

¹⁹⁹¹ Mathematics Subject Classification. Primary: 11E12, Secondary: 11E25, 11F27. Travel to the conference in Talca supported by DFG.