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July 7, 1995
To: John Hsia and Rainer Schulze-Pillot
Dear colleagues:

I just noticed something. The proof is a triviality, but at least it applies to an infinite
family of forms. And it resembles the phenomenon in the Jones-Pall Acta paper, which later
turned out to be explainable by spinor genera. So I decided to send it to you.

Theorem. Let F be 2x~ + 2yz'+ (4r*+ 1)z + 2xz + 2yz. Then (a) Ifris eveh_, F does
not represent s”for any prime s of the form 4n + 3. (b) Ifris odd, F ;{ m” in the Jones-Pall
notation, that is, F does not represent any m2 where every prime factor of m is of the form
4n + 1. ,

Remarks.‘ 1. Forr =1, Fis the genus mate of X+ y2'+ 16z Forr> 1,1 have no
further information on F. | |

2. The proof is similar to the proof of the theorem on page 5 of the enclosed paper by
Jagy and myself (to appear in Experimgntal Mathematics).

Proof. We have
) 2F=(2x+2) +Qy+2) +8'2"

Suppose that F representscgl odd number A. Then 2F = 2A and we see from (1) that z is odd.
We have
2) wr v drz = A
for suitable u and v.
(a) Suppose A = szwith s a prime of the form 4n -+ 3. Then (s + 2rz)(s - 2rz) is a sum

of two squares. Since r is even both factors are of the form 4n + 3. It follows that some

prime q of the form 4n + 3 divides both factors. But then q divides 2s, so g =s. Furthermore
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s divides rz. Then in (2) s divides u and v. Divideg (2) by sp/. Then the right side is 1,
but 4r’z %2 > 1 (remember that z is odd and hence nonzero)

(b) Suppose that A = m”is divisiblé only by primes of the form 4n + 1. We again have
(m + 2rz)(m - 2rz) = u” + v, Sincerand z are odd, both factors are again of the form 4n + 3,
so that again a prime q of the form 4n + 3 divides both factors. Then q divides m, a
contradiction. | |

While I am at it I’l] add three notes concerning forms John treated by spinor genera.

(i) Bl discriminant 108. Both x “+ Xy + y&+ 36z and its mate reduce, by the trick of
replacing X + Xy + yz by x " 3y2, to forms treated by Jones and Pall ,

(ii)) Same discri?ﬁlwnant. f= 3x7'_+ 4y7'+4z “+ 3xy + 4yz is the mate of a form proved
regular by John. I proved rather easily that f 74 w~ in the Jones-Pall notation. Known?

(111) Disc/r;%ﬁnant 8l. g= 3x° + 3y “rdz%+ 3xy + 3xz is apother such mate. I
couldn’t prove anything but I checked up to 100,000 that g represents all eligible integers

except 1 and 58.

Best regards,

Irving Kaplansky



William C. Jagy, January 2009. Compare page 312 of Schulze-Pillot “Survey”
2004, Theorem 4.3 and his illustrative example on that page. The computer
printed the square root of any exception that was a perfect square, then a
colon. Kap proved that 2224 2y%+ 1722+ 2yz 422z # ¢°, prime ¢ = 3 mod 4.
It is easy to show, using Theorem 4 and Theorem 5 of Jones and Pall (1939)
and identities (W2+X2+Y2+2%)% = (W2 - X2-Y?+ 7%+ WX -2Y Z)*+
QWY +2Z7X)% and (X2 +Y2%2+22)? = (X2-Y2-Z%)2+ (2XY)*+ (2ZX)?,
that 222 + 2y% + 172% + 2yz + 22z represents 4 and p? for primes p = 1 mod 4,
also ¢* for primes ¢ = 3 mod 4, and ¢?r? for primes ¢, 7 = 3 mod 4. Therefore,
all squares are represented except 1 and ¢? for primes g = 3 mod 4.

4 {two spinor genera}

43:

67:
107:
163:
211:
263:
331:

37

93
345
613
1849
4489
11449
26569
44521
69169
109561
146689

: 214369
1 249001

=====Discriminant 256 ==Genus Size==
Spinor genus misses square classes {no exceptions}
256 : 1 1 64 0 0 O
256 1 4 17 4 0 O
256 2 2 17 2 2 0
————————————————————————— size 3
Spinor genus misses square classes 1
256 : 2 5 8 4 0 2 {Spinor Regular!}
————————————————————————— size 1
256: 2 2 17 2 0
misses, compared with full genus (up to 250,000)
1: 1 5 3: 9 13
42 T 49 73 85
109  1t: 121 177 322
357  19: 361 397 23: 529
697  31: 961 1285 1738
2101 47: 2209 2797  59: 3481
71: 5041 79: 6241  83: 6889 103: 10609
127: 16129 131: 17161 139: 19321 151: 22801
167: 27889 179: 32041 191: 36481 199: 39601
223: 49729 227: 51529 239: 57121 251: 63001
271: 73441 283: 80089 307: 94249 311: 96721
347: 120409 359: 128881 367: 134689 379: 143641
419: 175561 431: 185761 439: 192721 443: 196249
467: 218089 479: 229441 487: 237169 491: 241081



1:
17:
37:

169
1156
3364
6724

11236
16900
24649
32761
40804
52441
70225
83521
97969
114244
133225
151321
168100
198025

: 217156

256: 1 1 64 0 0 0
misses, compared with full genus (up to 250,000)
21 33 42 57
141 253 322 3856
1738
256: 1 4 17 4 0 0
misses, compared with full genus (up to 250,000)
2 10 58 82
282 298 3298
256: 2 5 8 4 0 2
misses, compared with full genus (up to 250,000)
1 2: 4 5: 25 10: 100
289 25: 625 26: 676 29: 841
1369 41 1681 50: 2500 53: 2809
3721 65: 4225 73: 5329 74 5476
7225 89: 7921 97: 9409 101: 10201
11881 113: 12769 122: 14884 125: 15625
18769 145: 21025 146: 21316 149: 22201
28561 170: 28900 173: 29929 178: 31684
34225 193: 37249 194: 37636 197: 38809
42025 218: 47524 221: 48841 226: 51076
54289 241: 58081 250: 62500 257: 66049
72361 274: 75076 277: 76729 281: 78961
84100 293: 35849 298: 88804 305: 93025
98596 317: 100489 325: 105625 337: 113569
119716 349: 121801 353: 124609 362: 131044
: 136900 373: 139129 377: 142129 386: 148996
: 155236 397: 157609 401: 160801 409: 167281
1 177241 425: 180625 433: 187489 442: 195364
: 201601 457: 208849 458: 209764 461: 212521
: 231361 482: 232324 485: 235225 493: 243049
: 4k (4n+1), £k (8 n + 2),

4"k (128 n + 96), 4"k ( 512 n + 192).
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genera in the genus (the spinor exceptions of the genus) has been determined in
(53], the same problem for primitive representations has been solved in [13], both
of these exceptional sets are in general infinite.

Writing

a -

(4.15) ) 9(spn L, z) := Zr(spn L,a) exp(2miaz),
. a=0

one has by [55] that

(4.16) . (L, 2) — (spn L, z)

is a cusp form of weight % whose Shimura lifting is cuspidal. For such cusp forms

of weight 3/2 the growth of the Fourier coefficients can be estimated using [11]
- and the Shimura lifting, which gives an asymptotic formula of the same type as

in Theorem 3.1 (with an error term O(a%‘i%+‘)) for all a outside the exceptional

square classes [12]. ’

If there is only one spinor genus in the genus, one is done at this point; since it is
known [44, 23] that this is the case if the discriminant is not divisible by 27 and
not by any p? for odd primes p, we are finished here for L of small discriminant.
If there are several spinor genera, a more detailed analysis [12, 54, 57| yields the
following result inside the exceptional square classes:

THEOREM 4.3. [57) If k(L) = 3 and a 15 restricted to numbers in g(gen L) not
divisible by p~ (v fized) for the primes for which Ly is anisotropic, one has:
If a is sufficiently large, then a is represented by all lattices in the genus of (L,q)
unless one of the following holds.
® a is a spinor exceptioh, In this case a is represented by exactly half the
spinor genera in the genus of L, and it is represented by all the classes in
these spinoT genera.
e a is of the form o’ p?, where a’ is a spinor ezception and p is a prime that
is inert in the imaginary quadratic extension

(4.17) E = Q(~2adetL)

of Q. In this case a' is represented by exactly half the spinor genera in the
genus of L and a = a'p? is represented precisely by those classes in this
half of the spinor genera that represent o’ and by all lattices in the other
half of the spinor genera.

In particular, if there is a spinor exceptional integer o' for the genus of L that is
represented by spn(L) but not by L (so ' is below the bound for being sufficien-
tly large), then there are infinitely many integers a'p? with p prime that are not
represented by L.

An example for the behaviour of this theorem is the quadratic form
(4.18) 4x% + 48y? + 492% + 48yz + 42

discussed in [57]; it does not represent any p? where p = —1mod 3 is a prime
although the form 72 + 48y% + 14422 in the same spinor genus represents all these
numbers (but not primitively).

We will come back to the proof of this theorem in the next section where we discus§
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Representation by integral quadratic forms - a survey

Rainer Schulze-Pillot

ABSTRACT. In this article we give a survey of results on representation of
numbers by an integral quadratic form (or more generally representation of
quadratic forms by quadratic forms). Particular emphasis is put on definite
forms and there on recent work about forms of rank 3 over number fields ond’
on questions of effectivity.

Introduction

An integral symmetric matrix S = (s;;) € M;Y™(Z) with sy € 27Z gives rise to an
integral quadratic form g¢(x) = %— txSx on Z™. If S is positive definite, the number
r(g,t) of solutions x € Z™ of the equation g(x) = t is finite, and it is one of the
classical tasks of number theory to study the qualitative question which numbers ¢
are represented by g or the quantitative problem to determine the number 7(g,t)
of representations of ¢t by ¢ either exactly or asymptotically.

Starting with the work of Euler, Legendre-Gauf§ and Lagrange—Jacobi on the num-
ber of Wayé in which an integer can be represented as a sum of two, three and
four integral squares, many deep and beautiful results have been obtained concer-
ning these problems, as well in this classical setting as in generalized settings like
the study of representations with congruence conditions, representation numbers
of forms ¢’ of rank.n < m by ¢, representation numbers or measures by definite or
‘indefinite forms over the ring of integers of a number field.

In this article I waht to give a survey of what is known (and what is not known)
about these questions. In particular we will discuss and slightly extend some recent
results about representation of numbers by totally definite forms of rank 3 over the
integers of a totally real number field in Section 5. We will also discuss some recent
progress concerning effectivity of results. Another recent survey is [20]
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