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1. Introduction. The motivation for this work comes from the fact
that 22 + y2 + 222 represents all odd positive integers. This seems to me
to be of special interest among results on ternary forms; for instance, in
1785 Legendre remarked that it could be regarded as a strengthening of
Lagrange’s four squares theorem [2, p. 282]. I therefore thought it would be
a useful step forward to determine all the positive ternary forms that share
this property.

According to my search of the literature, this question has not been pre-
viously raised. There is, however, a similar project of finding all positive
quaternary forms that represent all positive integers; this started with Ra-
manujan [6] and, after many intervening papers, culminated with Willerd-
ing [7].

In this paper I report partial progress on the problem. There are at most
23 such forms—-19 for sure and 4 plausible candidates; they are listed at the
end of the paper. The 4 candidates do represent all odd numbers up to 16383
(= 2" —1). I am greatly indebted to Noam Elkies who kindly programmed
and ran off the computation.

For 18 of the 19 forms more is true: they are regular, i.e., each represents
all numbers (even as well as odd) represented by its genus. (See [4] for
background on regular forms.) For 15 of the 18 this is true simply because
each is alone in its genus. 1 believe that regularity of the 3 other forms is
proved here for the first time; the proofs appear in Section 3. An ad hoc
proof that the 19th form represents all odd positive integers is presented in
Section 4.

In addition T shall mention three forms that I am calling “near misses”:

2+ yt + 927 +ay + 2z, 2% 4 2y% + 52 + 2z + 2yz, and
2?4+ 3y% + 522 + 2y + yz.

Each seems to represent all odd positive integers with exactly one exception.
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More precisely, up to 16383 they represent all odd positive integers except
5, 13, and 17, respectively.

Remarks. (a) For the computations on the near misses I am also in-
debted to Noam Elkies. (b) I was not looking for near misses and so there
may be others. (c) For positive diagonal quaternary forms Halmos [3] (with
a final touch added by Pall [5]) found all near misses, relative to all positive
integers. (d) I have additional information on the last of the near misses
(call it k) which I mention without proof. First, k represents all odd posi-
tive integers congruent to 0 or 1 (mod 3). Second, let A be an odd positive
integer congruent to 2 (mod 3). Then k represents A if and only if A can be
written x2 + 2y? + 322 with z prime to 3. (Of course, both statements fail
for A = 17 and otherwise hold up to 16383.)

2. Modus Operandi. The investigation involved a fair amount of hand
computation which, I feel, is unsuitabie for public scrutiny. However, I shall
outline the procedure. To diminish the possibility of error I did the work
twice, using different methods. In the first method the assumption that the
form represents the first few odd numbers produced a reasonably short list
of eligible discriminants. In the second method an a priori upper bound for
the discriminant was found and all forms up to this bound were examined.
I am indebted to John Hsia who sent me a copy of the relevant portion of
the massive table [1].

First the forms were tested for representing all odd positive integers
locally; this is an easy thing to check. If a form passed this test and was
alone in its genus it was forthwith mounted as a specimen. It turned out
that 8 forms were left. As noted above, I proved that 3 are regular and gave
a special argument for a fourth. The remaining 4 resisted my attacks and
remain in limbo. I hope that their fate will be settled some day.

3. Three proofs of regularity. The proofs follow a single plan. In each
case there is one other form in the genus; I write f for the target form and
g for its genus mate. Let A be an integer represented by the genus. If g does
not represent A, then f does. So I may assume that g represents A.

I f = 2?4 3y*+32? + 2y + 3yz (number 13 on the list), g = z? 4+ 2y + 3>
+822. It is known that the binary forms 22 +zy +vy? and 22 + 3y> represent
exactly the same numbers. Hence we can replace g by 2 + 3y? + 822. Thus
there exist u, v, w with A = u? + 302 + 8w?. Set 2 = u —w, y = 2w,
z =v—w. Then f(x,y,z) = A; I leave this short computation to the reader.

II. f = 2%+ 3y? + 322 + 2y + yz (number 15 on the list), g = 2% + y* +
1122 + zy + z2. If g(u,v,w) = A we have

(1) 124 = (3u + 2w)? + 3(u + 2v)? + 128w?,
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another computation that 1 omit. The following is known: if p? + 3¢ is a
multiple of 4 then (p® + 3¢®)/4 can also be written as r?2 4+ 3s%. On applying
this to (1) and dividing by 4 we get
(2) 34 = r? + 357 + 320°.
Now 72 + 32w? is divisible by 3 and hence so is r? — w?. By changing
the sign of w, if necessary, we arrange that r — w is divisible by 3. Set
r=s—w,y=2w, z=(r—w)/3. Then f(z,y,2z) = A. This time I give a
little detail:
@y, 2) = (s —w)? + 3(2w)* + 3[(r —w)/3]°
+2w(s —w) + 2w(r —w)/3,
3f(x,y,2) = 3(s* — 25w + w?) + 36w* + r? — 2rw + w?
+ 6(sw — w?) + 2rw — 2w?
— 72 + 352 + 3207,

which is 34, by (2).

L. f = 22+ 3y + 522 + 2z + yz (number 19 on the list), g = 22 +y* +
1922 + zy + zz. The details are nearly the same as in 1T and I shall be brief.
With g(u,v,w) = A we have

124 = 3(u+ 2v)? + (3u + 2w)? + 224w?,  3A = r? + 352 + 56w
With w changed, if necessary, to make r —w divisible by 3 we set x = s —w,
y = (r —w)/3, z = 2w. Then

3f(x,y,2) =3(s — w)? + (r —w)* + 15(2w)? + 6w(s — w) + 2w(r — w)
=72 4 357 + 56w’ = 34.

4. Form number 18. h = 22+ 3y? +52% + zy + 2z —yz. In the following
proof no use is made of the other form in the genus of h.

First we present a lemma. This lemma is surely well known; for lack of
a reference we include a proof.

LEMMA. If a nonzero inleger r is divisible by 5 and expressible as a sum
of two squares then r can be writlen p? + ¢% with both p and q prime to 5.

Proof. The integer s = /5 is also a sum of two squares. We claim that
s can be written s = 2 4 «? with at least one of ¢, u prime to 5. For: if s
is prime to 5, this is automatic, and if s is divisible by 5, we can arrange to
have both ¢ and w prime to 5 by induction. Suppose for definiteness that u
is prime to 5. Change the sign of u, if necessary, so that ¢ # 2u (mod5). We
have

(t—2u)* + (2t +u)’ = 5(t* + u®) =bs =r.

Note that ¢ — 2u is prime to 5. It follows that 2¢ + u is also prime to 0.
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We turn our attention to h. The first step is going to be a switch to an
equivalent form; the version at hand is the canonical form as given in [1]
but it will be more convenient to use a version with one of the cross product
terms vanishing. Weset c = X + Y,y =Y, 2 = Z. The form becomes

(X +Y)2 43V 24522 H (X + V)Y + XZ = X*+5Y?+527 + 3XY + X Z.

We change notation and write h = 22 + 5y? + 522 + 3zy + z 2.

Let A be an odd positive integer. Our task is to prove that h represents A.
We can assume that A is not divisible by 25, for if it is, h represents A/25
by induction and we need only multiply the variables by 5. (Of course, if
it helped, we could assume A to be square-free.) It is known that 24 is
representable as a sum ¢ + d? 4 e? of three squares. They cannot all be
divisible by 5; say c¢ is prime to 5. We cannot have d = e = 0, for then
2A would be a square, whereas it is twice an odd number. The lemma is
applicable to r = 10(d? 4 €2) and we write r = a® + b2 with a and b prime
to 5. We have

(3) 204 = a* + b* + 10¢>

with a, b, and ¢ all prime to 5. The next claim is that a, b, and ¢ all have the
same parity. For if ¢ is odd, a® + b% = 2 (mod 4) by (3) and a and b have to
be odd; if ¢ is even, a? +b* = 0 (mod 4) and a and b have to be even. Note
next that each of a2, b?, and ¢? is congruent to £1mod5. Furthermore,
since a® + b? = 0 (mod5), one of a?, b? is congruent to 1 and the other

to —1. Interchange a and b, if necessary, so that a? = ¢?,b% = —c* (mod 5).
Change the sign of a, if necessary, so as to achieve a = ¢ (mod 5). We have
b* — 9¢* = 0 (mod5). Change the sign of b, if necessary, so as to achieve

b = 3¢ (mod5). We now have a — ¢ and b — 3¢ both divisible by 10. We are
at last ready to assign the values of z, y, and z: x = ¢, y = (b — 3¢)/10,
z = (a — ¢)/10. This final computation is going to be left to the reader: we
have 20h(z,y, z) = the right side of (3).

5. The list. It takes only a few seconds to discuss diagonal forms. Three
forms emerge: the first three on the list. It takes just a little longer to handle
the more general case of forms with even cross product coefficients: the next
two forms emerge. Serious business began when I attacked forms with at
least one odd cross product coefficient. The survivors are listed in order of
increasing discriminant; the discriminants are the numbers in parentheses.
I am following the normalization of the discriminant used in [1].

1. 2% + y2 + 222
2. 2?2 + 2% + 322
3. 22 + 2y° + 422
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2%+ 3y 4 2yz + 327

cx? 4 3y% o+ 29z + 527

(2) 22 + 9% + 22 + 2y + 22
(6) z° + zy + y* + 227
(8) 22 +y* + 32 + zy + x2
(10) 2% + 4 +32° + x2 + yz
(14) 2% +y* + 52% + zy + 2
(18) 2 + 2y* + 32* + 2 + 2yz
(22) x4 2y* 4+ 32° + z2

13. (24) 2% + 3y° 4+ 32 + 2y + 3yz
(30) 2% + 3y% + 322 + xy + x2
(32) 2 4 3y + 32° + 2y + y=z
(40) z* + 3y + 42° + zy + 2y2
(46) 2% + 3y* + 52° + 2y + 3yz

18. (50)

19. (56)

50) 22 + 3y + 522 + 2y + 2z — yz

56) x* + 3y® + 52° + 22z + yz
Candidates

20. (38) ° + 2y* + 52° + z2

21. (62) 2% + 3y> + 627 + 2y + 2yz

22. (72) 2% + 3y* + 1122 + 2y + Tyz

23. (74) 2* + 3y> + 72° + 2y + z2
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