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INTRODUCTION

The problem of this thesis is to find the totality

of positive integers represented by certain positive ternary

quadratic forms fraxzeby2+cz2+ryz+sxz+t§y, i.e. (a,b,¢,71,8,t)
with integral cbefficients where X, y and z range over all
integers.,

Dirichlet1 proved that every positive integer not
of the form 4k§8n+?l (k and n positive integers or 0) can
be represented as the sum of three squares, that is, that
the positive integers represented by the form x2+ ’22 are
exclusively those not of the form 4k§8n¢72. He also applied
the same method to prove that (1,1,3) represents all posi-
tive integers prime to 3.

Ramanu.jan1 in finding the positive quaternary quad-

ratic forms without cross products which represent all posi-

tive integers made use of certain results for ternaries

! Journal fir Mathematik: 40 (1850), pp.228-32.
*Proc. Cambridge Philosophical Society, 19, (1916-1919),
pp.11-21,
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which he stated hut did not srove, He noticed tha

in the cise of the form X2+y2+1022, i.e. (1,1,10), the

cil inteesrs net ropr-osented 4id not seem to follow =2
“efinite 1w, He could find no formula or fTormulae even
emvpiric .1lly which included all and only the intezer; n-t

re r=3:-ntad,

I ¢ . .-
J. . n, irnatT proved certain fuets he neede’ wi sk

resard to rerresent tion hy certain ternaries, usins

Dirichlet's methed -nd elementary transformations.

L. ©, Dicxson #zave 4 modific tion of Diri-rlet's
method necessary Iror ¢ rtain type. of formsz, “roved re-
sults for certioin ternaries he needed dealins with cext +in

. . s . 2 .
quaternary Iforms rerr2senting all rpositive integers®, =n:

viz

in The Annals of Lathematies, (2), 28, (1927), p.333,

arplied Dirichlet's metho! and certain elementary trans-
Jormaticns to rrove results for certain ternaries. In + s
1.5t article he ~ave system to dealing with intezers r. re-
s:nted by forms f=(a,b,c)(a,h,c positive integers) =us
follows: he called attention to the irresularity nctzd

by Ramanujan in the case of the form (1,1,10) and m:ie * e

followin- definition: "All integers not represented - -

resular form £ coincide with all the positive integers 4

hy certain a ithm-tie~l vrosressicns", Otherwise a 7u -~

1. "Ueber die Darstellunsg ganzer Zahlen als Surren voo - an
¥uben"”, Dissert tion, Tottingen, 1925,

. Bulletin of the American MNiothematical Society, =3 (>."",

T. 63.

Americon Journal of Mathemat es, 49, (1927), p.39.
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sall to be ‘rie ular. Dic son then "roreedad

C0 Trove
e Tollow'n theorem “or azl and » and ¢ rel . tively +»rire:
Theorem: The Torm fe(a,bh,c), where it is w 4. -

trhat no two of 3,b,c hove an odd -rime factor in covion

and not all sre even, i3 irregul .r if there existg - YOSl

As]

f

t ve odd ‘ntegzer r pr me to abe such that ¥ is not re ra-
sented hy f and f2z(mod 8) is solvable,

This amounts to 7ind'n~ conditions on a.ﬁositfve
integer ¥ 1ot ro_.resented hy f suifficient to assure u; - %
ev'.ry aritun tic 1 rrosression fontoinine X conu itz lso

cCoitive integer: represented h

~es

f.

By means of this and other thecrsms ha creves b
noct more than seventeen “orms f are rerular whe-e a=1 nd
h ond ¢ ore rel-tively prime <nd less thon certin 1.v-e
intzxers.,

ROECUTLAR FCRYS

In this section it is noted first that Dickson
rroved in effect the theorem above and rroo’s a e ~iven
for cert.in addition;l basal theorems alons lines suggested
by his work: e.g. here are found the additicnal conditions
on r sufficient to insuve irresularity of f when one of its
coefficients has a faetor in common with k. Then, mavins
use of these theorems and Rertrandts Fostulate, it is rrov=d

that not more than seventeen forms z:(a,h,c) are resular

when no two of a,b,¢ have a factor in common. Next, it is
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noted that all but a limited number of forms (a,b,¢) are
irregular by virtue of the above results, when two of
a,b,¢ are even but no two have an odd prime factor in
common, and the theorems are applied to this remaining
limited number to prove many irregular, Following this,
forms (a,b,¢) are dealt with when two of a,b,c have a
factor 3 in common but no two have a prime factor greater
than 3 in common, With the aid of an additional theorem
this process is carried through to prove finally that no
regular form (a,b,c) has a prime greater than 7 as a factor
of one of its coefficients and that not more than 103 forus
(2,b,¢) are regular when 1 is the greatest common divisor
of a, b and ¢.

Certain forms (a,b,¢,r,s,t) of Hessian less than 21
are proved irregular by referring them back to forms with-
out cross products but no s&stematic treatment of irregular

forms with cross products is attempted.

REGULAR FORMS

These loi*forms are next dealt with. The methods
used are those of Dirichlet; Dickson and cerfain elementary
transformations, - One method which was found useful was due
to Arndt and was based on the easily established fact taat
all integers represented by x2Q3y2 with x and y odd are
represented with x and y even, A generalization of this

result is established., Another kind of elementary trans-

* Ac{%q” (02) 45 (’]5}20(7} |I5 V}a’)‘ V‘f}?’qy’v' VlIxC, Jq-lnl

7 /K]ES"T L\‘inO{“’r;H(‘l V\Ol'(g JJ\I/ I' }(qflthky .
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formation led to the following type of result: if an
integer 5n is represented by (1,1,1) then n is represented
by (1,1,5) and conversely (if p is an integer), thus
making the proof for (1,1,5) result from known facts for
(1,1,1). Proofs for 23 regular forms have been publisned
previous to this thesis, Here shorter proofs are given
for some of these forms and 74 additional forms are proved
regular. Thus the totality of integers represented by each
of the following 97 forms has been found by proof:
(1,1,2a) where a=1,2,5,4,5,6,8,9,12,16,21 or 24;
(1,2,a) where a=2,3,4,5,6,8,10 or 16;
(1,3,a) where 2=3,4,6,9,10,12,18 or 30;
(1,4,2) where a=4,6,8,12,16,24 or 36;
(1,5,a) where a=5,8,10,25,40 or 200; X q %200,
(1,6,2) where a=6,9,16,18 or 24;: WL Jagy
(1,8,a) where a=8,16,24 or 40;
(1,9,a) where a=9,12,21 or 24; (1,10,30); (1,12,12);
(1,16, a) where a=16,24,or 48; (1,21,21);(1,24,a) where
2=24 or 72; (1,49,120); (2,2,3); (2,3,a) where a=3,5,8,9,
12,18 or 48;
(2,5,8) where g=6,10 or 15; (2,6,8) where a=9 or 15;
(3,3,8) where a=4, 7 or 8;: (3,4,a) where a-4,12 or 36;
(3,7,2) where a=7 or 63; (3,8,a) where a:8,12,24,48 or 72;
(3,10,30); (3,16,48); (3,40,120): (6,6,16); (5,8,a)
where a-24 or 40; (8,9,24) and (8,15,24).

Partial proofe are given for the six remaining forms without
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cross products not proven irregular: (1,2,32), (1,8,32),
(1,8,64), (1,3,36), (1,12,36), (1,48,144), It remins
to prove that the first form represents all positive
integers of the form 8n43, the first three forms all 8na41,
and the last three all 24ns+l. It is verified that such
is the case for all positive integers less than 1000,
Using the above methods and pPrevious results for
certain forms, 61 forms with cross products are proved
regular. This includes the proofs of the regularity of
all reduced forms (a,b,e,r,s,t) (r,s,t not all 0) or

Hessian less than 21 not previously proved irregular,

SEMI-REGULAR FORMS

The form (1,1,10) is regular as to evens since it
represents exclusively all positive integers not of the
form 4k(16n+6f but it is irregular as to odds (use k=3 in
the theorem quoted above)., Numerous such semi~regular forms
are dealt with in this section., The following theorem is
found useful:

Theorem: If f=(d4,db,¢) and gz(g,gp,gg),where all

-

the prime factors of the positive integer m

are represented
by xzibi?, then g represents ma if and only if f represents
the integer a, where b and 4 are positive integers prime to

m; i.e, if £ is regular, g is regular as to multiples of m,
Other methods of proof are illustrated.

‘The Annals of Mathematics, (2), 28, (1927), p. 341,
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The vroblem of ftris thesis 1s to find the —ozitive
inter-ers reuxresented (or not revresented) by certiin
e . . .o 2 2 2
nesitive termary aundratic forms f=zax shy“ecz®erycss netiy
itn intesr 1 coeificients vhere X, ¥, ~nd z ranve over
Diricnlet rwroved that every nositive inteser el
of the form 4k(8n+V) cen be re resented as the swy of three

of oy

(Qr
ot

3CY.

squares, that is, that the vositive integers rerry

. . 2 2 2 . . .
tine form X +y + 2 are exclusively those not of the Torrm

1~

4<(8ns+7)., He also appliczd the s.me method to rrovec thnt

i

X:+y2+522reprcsents 211 vositive integers rrime to 5.
2]
Ramanujanh in Tindins the zositive gquabternary
quadretic forms without cross products wirich repr ent =11
positive integers maede use of certain restlts for ternaries

v 1

srich ne stated but did not rrove. He noticed that in the
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c.se o~ the form x“+y~+10z"” the 0dd integers not re-r.sented
4id not seem to follow & definite law. He could find no
cormula or formulae even empirically which included =11 “nd
only the integers not represented.

5]

J. 0. A. Arndt~ proved certain faects he needed with

rezard to reyresent tion by certain ternaries, usin-~

Nirichlet's methods and elementary transformations.

1. Journal fur Mathematik; 40 (1850), pp.228-322.

2. Proe, Cambridge PhllOquhlcal society, 19 (1l916- 19199,
po.11l-21.

7. Wper die Darstelluns ganzer 7Zahlen als Summen von siahen
wuben', Dissertation, Gottingen, 1925.
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1L.E.Dickson' gave a modification of Dirichlet's
method necessary for certain types of forms (Bulletin) and
proved results for certain ternaries. In the "Annals of
Mathematics" he gave system to dealing with integers repre-
sented by férme: f=ax2¢by2¢czz ag followe: he called
attention to the irregularity noted by Ramanujan in the case
of the form x2+y2+1022 and made the following definition:

"All integers not represented by a rezular form f = ax2+

bz?*czz coincide with all the positive integers given by

certain arithmetical progressions", Otherwise a form is

said to be irregular. Dickson established a method to prove
forms irregular and applied it to prove that of the forms
xzeby2+cz2 where b and ¢ are relatively prime and less than
certain large intégers, all but 17 are irregular.

In Part A this method is supplemented by certain
moéifications and additional theorems to prove that not more
than 103 forms fsaxz-tbyz«»cz2 with no factor common‘to a,b
and ¢ are regular and several forms with cross products are
proved to be irregular.

In Part B the methods of Dirichlet,Dickson and Arndt
together with modifications and additional theorems are

*
applied to prove most of the 103 forms without cross producty

and many with cross products to be regular.

In Part C certain semi-regular forms are dealt wita.

| American Journal of Mathematics, 49, (1927), p.39,
Bulletin of the American Mathematical Society, 39 (1927),p.63.
Annals of Mathematics (2), 28 (192%), p.333.

v -
* Acl!‘?)f (02, Form 93 n T‘?Lf( I_Q; Pt /9(;2’/ e m:»‘f'y«fi?-:,,fn,;

Fovm 72 /R (// 5/200), TL‘;G “(7‘[(' L}‘ w.c. Jqﬂ)/
Falby wvnaf over 1.



5.

NOTATIONS

We denote the form fsaxzebyz*czz by (a,b,c) and
f=axzeby2+czz$ryz+sxz+txy by (a,b,e,r,s,t).

All letters assume only integral values unless tae
contrary is specifically stated.

f-mP or f/m =F where f and F are forms shall be taken
to mean: the multiples of m represented by f coin-
cide with m times the integers represented by F,

f= g=1(mod 4) shall mean that the integers = 1(mod 4)
represented by form f coincide with those integers
21(mod 4) represented by form g.

f#k where f is a form and k an integer shall mean that
f does not represent k.,

The letters, f, ¥, g, h,e ,X shall generally be used
to denote forms,

a

a,” and ¢ are positivs inte-ers unless the contrary is

stated,

vi



PART A

JRREGUIAR FORMS

1. Theorems.

The following lemmas and theorems have been
proved by L. E. Dickson:l
lemma 1, If p is an odd prime dividing neither a nor
b and if k is any integer, ax<s+by?=k(mod p) has integral

golutions,

Lemma 2, If no one of a, b, ¢ is divisible by the
odd prime p, f-k(mod p) has solutions with x and y not
both divisible by p, where f-ax2+by2ecz2,

Theorem 1, If p is an odd prime not dividing abe,
f=k(mod p?) has solutions when k and n are arbitrary.

Theorsm 2. If an odd prime p divides o, but not ab,
and 1f k is prime to p, f=k(mod p®) is solvable,

Theorem 3., If k is odd and if f=k(mod 8).13 solvable,
then fzk(mod Zn) is solvable when n is arbitrary.

We state:

Theorem 4. f=axzoby2¢czz (where no two of a, b, o
have an odd prime factor in cbmmon and not all are even)
is irregular if there exists a positive odd integer k prime
to abe such that k is not represented by f and f=k(mod 8)

is solvable, (2,4 ¢ »0)

1 Annals of Math, (2) vol., 28 (1927) p. 333.-

1l
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The proof carries through exactly as in Dickson's
paper taking the coefficient of xz to be a instead of 1.

Implicit in the proof of the above theorem are
three sub-theorems which we will state for purposes of
reference.

Theorem 4a., f=k(mod N) solvable for all N and £7%

implies that f is irregular.
Theorem 4b. f=k(mod N) is solvable for all odd N

containing no factor common to two of a, b, ¢, k.
Theorem 4c. f<k(mod N) and f=k(mod N') solvable im-
plies that f=k(mod ¥N') is solvable.
We prove:

) lemma 3. f-ax°4byoepc'z2=pk'(mod p?), where a and b
ere prime to p, a prime, and n is a positive integer (o
and k' may contain p as a factor) is solvable for n arbi-
trary if f=pk'(mod 8) or f=pk'(mod p) for p even or odd
respectively has a solution x={, y=5, z-5 where | and »
are prime to p; 1.e, has a golution with two of (,% , 5

prime to p for ¢#0(mod p) implies » #0(mod p).

Proof by induction:
1) 1If p=2. Suppose fzpk'(mod p®) (m:3) has a solution
x=i, Y5, z =§ where ( and » are prime to p. We then know

that aglqbofopc'31=pk'q-rpm where r is an integer.

Let xsf] + pm'lx. ¥ ..pm-l!. zZ =f, *me. Then f- a{LQZa {1 pm‘lx’
ap2~2x2411n* 42b pm'ltobpzm'zYz-m'ﬁL '2°'pm’l§ 2 ¢ ctpZtlzi=

pk' ¢ pP(rea X +bs ¥) fod p™1)., Now -r=ajX 4b) Y (mod p)




igs solvable for X and Y since a, b.ﬁ , 5 ~are prime to p.
1f the last congruence has the solutions X=X', ¥Y=Y', then

m’lY', z =f, qme' where Z' is arbitrary

x=£+fM1Xh Y=5 4D
are solutions of fzpk' (mod p™*') with x and y prime to
p. Thus the induction is complete.

2) If p is odd we proceed in the same manner except that
we take m2l and x=f{ -vme, VA meY, z =S, ¢pmz.

Corollary 1. If above {4 are solutions for n=1 or

3 according as p is odd or even, then f=pk' (mod pt) is
solvable with x si(mnd p), y=2 (mod p), 2= (mod p) for n
arbitrary. (This results directly from the manner of choice
of x, ¥, and 2z golutions).

Qorollary 2., If fzaxz*byzfczzzzrk(mod 8) 1is solvable

when a, b and ¢ are odd, with two of x, ¥y, z odd, then

fszrk(mod 2n) is solvable. Yor suppose x and y are odd.
Then z=2z' and f=ax2¢by2§4cz'%22rk(mod 2n) is solvable from
lemma 3,

Theoren gil f=ax2*by2+czz (where no two of a, b, ¢ have

an odd prime factor in common) is irregular if we can find
a positive integer k having in common with abe the prime
factors Py (i=1,...,T) With the following properties:
1) £ does not represent k.
2) f=2k(mod py) is solvable with two of X, ¥, 2,
prime to py (121, «s,T)e

1 For k even of. Theorem 13 Annals of Math. (2) Vol. 28
(1927) p. 338,
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3) £=k( mod 8) is solvable,
4) kX can be taken even only if just one of &, b, ¢
is even and f=k(mod 8) is solvable with two of
X, ¥, z odd.
Proof: Conditions 2) and 4) on k are sufficient from lemma
3 to assure us that f=k(mod pxil) is solvable for every py
and n arbitrary. Then theorems 3, 4b, 4c, 4a‘in succession

complete the proof in view of condition 1) on k,

Lemma 4a. If g-ax2+pby2:=p k'{mod p°) where p is an odd
prime, prime to a, has a solution x-pf , ¥y=% where § is
prime to p, then g=pk'(mod p") is solvable for n arbitrary
and positive.

Proof by induction: Suppose that for n-m:=3 there exist
X ={=§P and y=4 where ¢ is prime to p, solutions of g:_pk'&nodpm).
Then af”ep‘b';"z pk'erpm where r is an integer.

Let x=f -’pm"]'X, Y=% me‘Y. And substituting get
g;af‘QZagpm‘]-Xf ap?u-2x2 -tpby’bepm'”z Y -.'bpzm‘le;—- agf *
Za{pm’lx +pby*= pk! -ppm(rq.?.a;’ X) (mod p™1),

Now re2af X= 0(mod p) has a solutiom X-X' since a
and ( are prime to p. Thus g:=pk'(mod p™1) has solutions
x=p( f Qm’zX) and y=» meY (Y arbitrary) where x=px' with x!
prime to p since f{ is prime to p and mz3. Thus the in-
duction is complete.

Iemma 4b. l’=axzﬁpby2wzz_—:pk' (mod p®) where a and ¢ are
prime to p, is golvable for n an arbitrary positive integer
if there exists an integer t such that btz-k'= pr where r

is an integer prime to Dp.
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Proof: lLet x=px', z=pz' and we have PF=pk'(mod ps) is
gsolvable if apx'z*cpz'zeby%zpk'(mod pz) is solvable,
Setting y-t we see that the last congruence is solvable
if ax'®4cz'®z-r(mod p). The last congruence is solvable
by lemma 1 and furthermore, since r is prime to p, x' and
z' are not both divisible by p. Suppose x' is prime to p.
Then F=pk' (mod p°) has a solution x=px' where x' is
prime to p and thus from lemma 4a, F=pk'(mod p°) has a
gsolution with z2=0 for n arbitrary. We may proceed sim-
ilarly if z' is prime to p, teking x-=0,

Theorem 6,~ f=ax2eby2¢cz2 (where no two of a, b, ¢ have

an odd prime factor in common) is irregular if we can find
a positive odd integer k having in common with abc the
prime factors Py (i=1, ..+, ¥v) with the following properties:
1) f does not represent k.,
2) For ¥ a prime factor common to k and ¢ there
exist integers r and t, where r is prime to @ ,
such that
ot fr ~kfr=Tr
and similarly for other factors common to k and
¢, to k and b, to k and a.
3) fz=k(mod 8) is solvable.
Proof: Condition 3) on k assures us from lemma 4b that

f=k(mod p}) is solvable for every pj and n arbitrary., Then

1 Of. Lemma 3, Annals of Math, (2) vol. 28, (1927), p.339.




theorems 3, 4b, 4a in succession complete the proof in
view of conditions 1) and 3) on k.

Terma 5. f=ax29pb'y29pc'z2£»k (mod p2), where k and
a are prime to p, an odd prime, is solvable for n arbi-
trary if fzk(mod p) is solvable.

Proof; Set z=0 and to prove the theorem by induction,

suppose there exists a { and an ) such that af'spbhzkerp” (m21).

Iet x=f’pn5(, ¥y =5 +pm. Then f=aj"+2a{pmx oapzmxtobfpt

2,bpl4m%bp2m+l

Ea{LQZagppx *bpo”zkﬁpm(r+Za;X) (mod p®¥l),
Now { ig prime to p since k is, a and 2 are prime to p and
thus reZa;XEEO(mod p) has a solution X=X', Then a solution
of f=k(mod p®*l) is x:j"me', (prime to p), y=% epm, z2=0
and the induction is complete.

Theorem 7. f:axzeby2¢czz, where there is no factor com-
mon to a, b and ¢, and p; (i=1l,...,t) are all the odd prime
factors common to any two of a, b, ¢, is irregular if there
exists a positive odd integer k prime to abe such that
f£=k(mod pi) is solvable (i=1, ...,t), f=k(mod 8) is solvable
and f does not represent k. If k 1s even we have the
further condition on k that f=2k(mod 8) be solvable with
two of x, ¥y, z odd, from lemma 3,

Proof: Lemma 5 applies to show that fak(mod p§) is solvable
for any pi and n arbitrary. Then theorems 3, 4c, 4b, 4a

apply successively to prove the theoren,

Note: 1If f=ax2+by2+cz2 is irregular as to multiples of

a number m it is irregular, i.e. if f-mg (see notations)



where g is irregular, f is, For, since g 1s irregular
there exists a k not represented by g such that gzk(mod N)
is solvable for any N, Thus f does not represent mk and

fzmk(mod N) is solvable for any N, thus proving by Theorem
4a that f is irregular,
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11, f=x29by2+cz2, with b and ¢ relatively prime,

We may without loss of generality take b<e, Ve

prove that all forms f not given in Table I are irregular,

In most ocases we apply Theorem 4 and exhibit a positive
integer k such that f#k, k is prime to b and ¢ and £=k(mod 8)

1 is solvable, thus proving the form to be irregular,
b=1
We shall prove f is irregular unless ¢ =1,2,3,4,5,
6,8,9,12,16,21, 24.
A, If c=2(mod 4), c#2,6, consider
(1) o¢=6(mod 8)., Take k=c/244 5 3(mod 4). f#k for

J k<c since 0>8, k is prime to ¢, and fzk(mod 8) is solvable,
(11) cs2(mod 8)., Take k=c/242 =3(mod 4), f£#k for
k<o since o-4, k is prime to ¢, and f:zk(mod 8) is solvable.
Be If o=3(mod 4), c#3, take k=c-4 = 3(mod 4), for k»0
since o-4,
C. If c2l(mod 4), ¢#1,5,9,21, we know fz2¢c (mod 8) 1is
solvable,
(1) oz 1{mod 8).

a) If o#0(mod 3), take k=3<c, for £#% and
fz3(mod 8) is solvable. This takes care of c¢=17,

b) If o020(mod 3), one of o/348,c/3416 is prime
to 3. Choose X to be one which is prime to 3 and therefore
to o, k<o since 0-24, k=3(mod 8) and thus £7k,f=k(mod 8)
)| ie solvable,

(i11) o= 8(mod 8).
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a) If c#0(mod 7), take k=Y<c, for f#7,f=7(mod 8)
is solvable,

b) If c=0{(mod 7), one of c/T+4, o/7-4 is prime
to 7., Choose k to be one which is prime to 7 and therefore
to e, kec since ¢>5, ke=?7(mod 8) and thus f#k, fzk(mod 8)
is solvable.

D. If c=0(mod 4), o#4,8,12,16, 24,

(1) If o=4C where C is odd, fsO(mod 4) implies x=2X,
¥=2Y and f/l==X2iY2+Cz2 which 1s irregular from above un-
less €=1,3,5,9,21. If C=5,9,21 use k=6,22,22 respectively
with Theorem 5 to prove f irregular, Otherwise (C#l,3)

f/4 is irregular and by the note at the end of paragraph I,
f is irregular.

(11) If 0=8C where C is odd, £/4 =X2+¥%+20z% which is
irregular since C#l,3 and thus f is irregular.

(111) If ¢=16C where C is 0dd, £/4 =X24¥Y244Cz° which is
irregular, since C#l, unless C=3, If C*3 apply Theorem 6
to f with M = 3 and k=21, put t=2 and note that 16+2%-7: 319
and thus, since f#k, f=k(mod 8) is solvable, f is irregula:.l

(iv) If 0=32C, where C is odd, £/4 =XZ+¥°48Cz% which ie
irregular unless C=1,3. Then use k=21,77 respectively, to
prove f irregular from theorem 4.

(v) If 0=64C, where C is odd, f/4 = X24Y°+16Cz° which

1s irregular unless C=1 in which case we use k=21 to prove

1 Bee Annals of Math, (2) vol, 28, p. 339,
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f irregular by theorenm 4,
(vi) If o=2"C where rz? and C odd. Then £/4° is of
the form 5) or 4) if s=(r-6)/2 or (r-5)/2 according as r

is even or odd. Thus f/4° is irregular and therefore f is.
b=2

We shall prove f is irregular unless ¢=3,5,

A. If c=1(mod 8) take k=c-2=7(mod 8) for f#k since
x222y2#17 (mod 8) but fzk(mod 8) is solvable.

B. If c=3(mod 8) take k-c-4=7(mod 8) for f#k and
f=k(mod 8) is solvable.

C. If c=6(mod 8) take k=c=-8=5(mod 8) for f#k since
x242y2 #5(mod 8) but fsk(mod 8) is solvable,

D. If c=7(mod 8) take k-c-2=5(mod 8) for f#x and
fzk(mod 8) is solvable,

b2 and b or ¢21(mod 4),

We shall prove f is irregular unless b=5, c¢=8,

A. If b or ¢=1(mod 8), if b or o= 5(mod 8) and the
other odd or = 4(mod 8), then f=2(mod 8) is solvable with
two of x, y, z odd, f#2 and thus theorem 8 (with the
corollary 2 to lemma 3) applies to prove f irregular.,

B, If b or c=5(mod 8) and the other =2(mod 8). Then
f=8(mod 8) is solvable with x, y, z odd and thus, since
£#8 we take k=8 to prove f irregular,

C. If p=5(mod 8) and o = 6(mod 8) noting that £ =1,3,5
or 7(mod 8) is solvable and xquyggéa(mod 4) we prove f

irregular,
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(1) If c=26(mod 16)
a) If ¢»2b take k=(c-2b)/4 =3(mod 4) for O<k<c
and thus f#k, k is prime to b and e¢.
b) If c¢/2<b<3c/4 take k=2b-c/2 = 7(mod 8) for X
is prime to b and ¢ and f#k since 0<k-<c,
¢) If b>3c/4. Then, from Bertrand's Postulatel
there exists a prime p such that (bsl)/2spsb«l, (p is odd
since b25), Therefore p is prime to b sincé 2p>b. Also p
is prime to ¢ unless ¢=2p for 3p>3b/2>9¢/8>c.
Thus if c#2p let k=p for, since 2<k<b, f#k
If ¢=2p, b=5, then p=3 and use k=13,
If ¢=2p, b#5, then (b+l)/2#1b-2 and we take
k one of the two: (bs4l)/2, b-2 which is not p. Then X is
prime to p, b, ¢; k=3(mod 4) and f£#k.
d) None of the inequality signs of cases a), b),
¢) can be replaced by equalities.

(11) If c=14(mod 16), f=2(mod 8) implies x=2X, y=2Y
and £/2 =g=212+2bY2+cz2/2:al(mod 4) (see Notations)., Now
g =1(mod 8) is solvable and thus g=1l(mod N) is solvable
for all N by theorems 3 and 4b with 4¢. Thus f = 2(mod N)
is solvable for all N, f#2 and thus by theorem 4a, f is
irregular,

D. If b=8(mod 8) and c=B(mod 8) noting that £=1,3,5, or

7(mod 8) is solvable we prove f irregular.

1l "Verteilung der Primzahlen", Landau, vol,l, 1909, pp.89-92.
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(1) Consider b=6(mod 16) .

a) If 4b<e take k=c-4b=5(mod 8) for k is
prime to b and ¢ and since 0<k<c, xzebyzsés (mod 8), f#k,

b) If 4b>c, Then, from Bertrand's Postulate
(see note on preceeding page) there exists a prime p such
that (b+l)/2 £psb-1. (p is odd since bz6), p is prime to
b and f#p<b and thus we take k=p to prove f irregular if
P is prime to ¢. Now since 8p-4b-g P is prime to ¢ un-
less ¢=3p, ¢:=6p, c=Tp.

If ¢=3p, then b is prime to 3 and thus b>6 and we
take k=b/2-6=5(mod 8) for k is prime to p since k¢p, k is
prime to 3 and thus to b and ¢. Also f#k since x°#£5(mod 8)
and k«b, |

If c=6p, then b is prime to 5 and we take
k=b/2-20="7(mod 8) proving f irregular as above unless
b=6, 22 or 38 when we take k=11, 3 or 3 respectively, knowing
that then k is prime to p and thus to c since p= 1(mod 8).

If o=7p, then b is prime to 7 and we take
k=b/2-14 =5(mod 8) proving f irregular as above unless b =6
when we take k=5 since p = 3(mod 8).

(11) If b =14(mod 16) interchange b and ¢ in C ¢) above
to prove f irregular,

E. Remove temporarily the condition bdbse and find there
remains to consider b=5(mod 8) and ¢ *0(mod 8), excluding
b=5, ¢=8., Now £f=Q(mod 4) implies x=2X, y=2Y and continuing
this process we find f£/4% - €y = X240Y240z°2 where o=47C,
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C#0(mod 4). Reference to preceeding pages (which in-
clude consideration of all such gr) shows that we need
consider only the f's for which g, has b=5, C=1 or 2 or
b=21, C=1 since otherwise g€y and therefore f is irregular,
(1) r=1. Then C=0(mod 2) and g, is irregular un-
less b=5 and C=2 which is the case excluded.
(11) r-2, Use k=13 for all three cases proving by
theorem 4 that F=x2+by2*160z2 where C#O(mod 4) is irregular,
(141) r>2, Then £-4T"2F and thus f is irregular.

b_or c=2(mod 4) and the other = 3(mod 4), b>2 (e2b),

We shall prove f is irregular, unless b=3, c¢=10,
Note that £z 1,3,5, or 7 (mod 8) is solvable.
A. If b or ¢ =2(mod 8) and the other = 7(mod 8) or if
b or c=6(mod 8) and the other = 3(mod 8) we know that
£ =2(mod 8) is solvable with x, y, z odd and thus by
theorem 5 that f is irregular since fy¥2.
B. If b=2(mod 8) and c = 3(mod 8) f is irregular,
(1) If b<c/2 take k-c-2b=7(mod 8) for k is prime
to b and ¢ and since ¢>k»>0 and x24by*#£7(mod 8), fk.
(11) If b-o/2, then, as on paze 11 .. there exists
an odd prime p such that (bsl)/2:psb-l, p is prime to b
and f#p and thus we take k=p to prove f irregular if p
is prime to o, Now, ainc§ 5p»5b/2>c and o is odd we know
that p is prime to o unlees o=3p,
If ¢=3p, take krb-s.é?(mod 8) for k is prime to b
since 3 is, is prime to p since p= 1l(mod 8) and 7p>b, and



14

thus is prime to b and ¢, and f#k<b.

Co If b= 3(mod 8) and ¢=2(mod 8), we prove f is ir-
regular unless b=3, c¢-10, Note that £=1,3,5,7 (mod 8)
is solvable,

(1) If 4b<c take k=c-4b=6(mod 8) for f= 6(mod 8)
is solvable with x and y odd, f#k since x2¢by2;?2(mod 4)
and theorem 5 applies to prove f irregular,

(11) If 4b>c we may take b>3 since b=3 implies c=10
which is the case excluded. Then, as on .page 11 there
exists an odd prime p such that (bel)/2<p=b-1l; p is prime
to b and f#p and thus we take k-p to prove f irregular if
p is prime to ¢c. Now, since 8p-4b-c and o=2(mod 4) we
know that p is prime to ¢ unless ¢=2p or 6p.

If ¢=2p, take k=b-4 =7(mod 8) for k is prime to
P since p=1(mod 4) and 3p-b>k and k is prime to b and
¢, f#k<b,

If c=6p, take k=b-6 =5{(mod 8) for b is prime to
3 since ¢=0(mod 3); thus k is prime to b and 3. k is
prime to p since p= 3(mod 4) and 6p-b>k, f#k<b,
( 3p#k#0(mod 3) ).

D. If one of b, ¢ is =6(mod 8) and the other =7(mod 8),

f is irregular for, as on page.ll , f Z2(mod 8) implies
x=2X, y=RY considering first the case b»=7(mod 8), o=6(mod 8)
and £/2 =g =21292b22’022/25=1(mod 4). Then g=1l(mod 8) is
solvable and as in the section referred to f is irregular,

If b=6(mod 8) and ¢=7(mod 8) we interchange b and ¢ and
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proceed as above,

bsc=3(mod 4).

Then f = 2(mod 8) 1s golvable with y and z odd,

f#2 and thus by theorem 5 we take k=2 to prove f irregular,

v _bor c=3(mod 4) and the other=0(mod 4).

We shall prove that f is irregular unless b=3, c¢=4,
Note that £=1,3,5, or 7(mod 8) is solvable.

A, If b=3(mod 8) and ¢=4(mod 8), then £=0(mod 8) is
solvable with x and y odd, f#8 except in the case excluded
and using theorem 5 we take k=8 to prove f irregular,

B, If b=3(mod 8) and c¢=8(mod 16) consider

(1) ¢=8, then b=3 and take k=5,

(11) ¢=24(mod 32), then £= O(mod 8) implies x-2X,
¥=2Y and f/4=X2-0bY290z2/4=g. g=z2(mod 8) is solvable with
X and Y odd and thus by Lemma 3 and theorems 4b and 4c we
have g=2(mod N) is solvable for all N; thus £= 8(mod N)
is solvable for all N, f#8 and theorem 4a applies to prove
f irregular,

(11i) c=8(mod 64), c#8, then g=2(mod 8) implies
X=2x', ¥-2y' and g/2- F = 2x'242by'%40z%/8 =1(mod 4). Now
F=1(mod 8) is solvable and thus from theorems 3, 4b, 4c
we have F=1(mod N) is solvable for all N. Thus g= 2(mod N)
1s solvable for all N and £ is irregular as in the pre-
ceeding case,

(1v) o =40(mod 64).

a) if ¢>16b take k=8k' where k'-0/8-2b = 7(mod 8)
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for k' is prime to b and ¢ and since F =k'(mod 8) is
gsolvable, F=k'(mod N) is solvable for all N and

f £k(mod N) is solvable for all N. Furthermore
f#k=8k' = 8(mod 16) for k<c and x<e+by< 4(X24b¥2) = 0(mod 8)
and thus x2+by°#8 (mod 16). Thus from theorem 4a, f is
irregular,

b) c<16b, Then, as an page 11, there exists an
odd prime p such that (bel)/2+p=<b-1 unless b=3 when c=40 and
we may take k=11. Now p is prime to b and f£#p and we take
k=p to prove f irregular unless ¢ =0(mod p). Now, since
40p>20b>c and c 40(mod 64) we know that p is prime to ¢
unless ¢=8p or 24p.

If 8p-c, take k-b-4=7(mod 8) for k is prime to p
since 2p>b and p =6(mod 8) and thus k is prime to b and e,
f#k<b, .

If 24p-c, take k=b-6= B(mod 8) for k is prime to
P since 2p>b and p= 7(mod 8), is prime to 3 since b is and
thus is prime to b and e, Also f#k«b,

C. If b=3(mod 8) and c¢=4'C where r»0, C= 8(mod 16).
Then f:xzeby294r0z22 8+4% (mod 4“2) implies x and y are
even and repeating this process r times we finally have
£/4" = g_= X24bY2402%:8(mod 16) implied by £=8,4 (mod 4742).
Now, in B above we showed for every 8y the existence of a
k= 8(mod 16) such that g7k and g=k(mod N) is solvable
for every N, Thus f= 4§(mod N) is solvable for every N.
Also £#4"k eince that would imply gp=k. Thus by theorem

4a, £ is irregular,
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D. If b=3(mod 8) and ¢-4YC where r»0 and C=4(mod 8),
Except in the case b=3, 0-4 the same reasoning as that
above may be carried through to prove f irregular for
only when b=3, C=4 is gy regular,

If =3, C=4 take k=5 for any r,

E., If b= 7(mod 8) and ¢ =0(mod 4) consider

(1) =7, c=4(mod 8). Then £=0,4 (mod 8) is solvable
with x and y odd and x207y%#3,5 or 6(mod 7)., Choose k to
be one of c«4, c~8, c-16, ¢-28 which is =3,5 or 6(mod 7)
for 0,28, This is possible since if ¢=3,6 or 6(mod 7),
0-2823,5 or 6(mod 7); if ¢=1(mod 7), c~16=6(mod 7); if
¢=2(mod 7), c-4=5(mod 7); if o= 4(mod 7), oc=8=3(mod 7);
and we know ¢ is prime to 7, Then k=0(mod 4) and thus
f=k(mod 8) is solvable with x and ¥y odd, f#k since 0O<k<c
and thus by theorem 5 f isg irregular,

It remains to consider ¢=12 or 20 when we take k=5
or 3 respectively to prove f irregular.

(11) =7, ¢=0(mod 8). Then f= O(mod 8) is solvable
with x and y 0dd and as above we take k to be one of c=-8,c-16,
¢=56, ¢~32 which is 23,5 or 6(mod 7) for ¢»56, Then k=0(mod 8)
and = k(mod 8) is solvable with x and y odd; f#k since
O<k<c and thus by theorem 5, £ is irregular,

It remains to consider 0=8,16,40 when we take k=3 amd
0=24, 32,48 when we take k=5 to prove f irregular by theorea 4.

(111) b27, take k=8#f and apply theorem 5.

P. If b=0(mod 4) and ¢ = 3(mod 4) take k=c=b=z 3(mod 4)
since x24by2# 3(mod 4) shows that f#k<o, and we apply theorem
4.
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Thus we have proven that all forms f=x2¢by2ocz2, where

b and ¢ are relatively prime, are irregular except those

appearing in Table I,
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I1I. f=a.x29‘oy29cz2 with a>1, bzas<¢c and no two of a, b, ¢

having a factor in common,

We prove that all such f are irregular.,

A, If a=1{(mod 4), then b or ¢ is odd and f= 1(mod 8)
is solvable, We take k=1#f and prove f irregular by
theorem 4.

B, If a=2(mod 4), then f=1(mod 8) is solvable since
both b and ¢ are then odd and we take k=1 to prove f ir-
regular,

C. If 2=3(mod 4), f is irregular for

1). If b or ¢ is=1 or 2(mod 4) then f =1(mod 8)

is solvable, f#1 and thus by theorem 4, f is irregular.

2). If b=c=3(mod 4) then f = 2(mod 8) is solvable
with y and z odd and since f#2, theorem 5 applies to prove
f irregular,

Otherwige b or ¢ is even., Permute if necessary
and take b as the odd coefficient and note that there re-
mainsg

3)e If b=3(mod 4) and 0=4"C where r-0 ind CZ0(mod 4).
Then £=0(mod 4) implies x and y are even and repeating
this process we find f/4r =ax20bY2-tcz2.'s 8o If C=1 refer=-
ence to table I shows that 8 1s irregular since bra=3(mod 4).
If C?1 is the minimum of g, reference to the above with g
and C interchanged shows that g, is irregular. If a is
sti1ll the minimum we have the same result thus proving that

f is irregular for every r.
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D. If a5 0(mod 4), we prove f is irregular. Now b and

¢ are odd,

1) If b or ¢=1(mod 4) then £=1(mod 8) is solvable

and we take k=1,

2). If b=c=3(mod 4) by interchanging a and ¢ in

C 3) above we see that f is irregular.
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IV, Processes 1 and 2.

Consider f=ax2¢prby2+pscz2’ where l=r<s and p is
a prime dividing neither a, b nor c.
If r22, £=0(mod p) implies x-px and £/p2- axPep™~Zby~ap® Zcz®
If rz4, £/=0(modp) implies X-px, and f/p4:ax§+pr‘4b1r?’+ps"4czz
Continuing this process we come finally to
(1) £/p = a:;f’:by‘a’ps'rczz if r is even or
(3 £/p"" 1= a.x,i, +bpy2ap® 022 if r 1s odd.
In or;er to go from one form in the above sequence
to that below we substituted Xy = pxi_’l and divided the form

by pa. The reverse process is

Process 1., Multiply through the lower form by p~

) and absorb it into the x (i.e, let xi’fxi/p) to obtain the
higher form.
Form (2) may be reduced further as follows:

f/pr"lzo(mod p) implies x,, -px,, and we have
£/p" = paxe, +by2ep®Toz?. If s-r-0, let y-py and have

£/pT*L axgﬂ ebpxz +p® T-1c22 and so continuing we have finally
E 3

2 2 2 :
(3) f/pszax?,l ebpf%ﬂocz or t/p® = 8PXsp #by,z%, +cz” according
ags 8 is even or odd, Since in each case to obtain the lower
form we let whichever of x and y had a coefficient prime to
p be p times a similar term we reverse it and have

Process 2, Multiply through the lower form by p,

absorb p2 in the resulting coefficient of x or y into the

variable to obtain the higher form. 1i.e. in the first form

2 ‘ 2
(3) above, the next higher form would be apx, obysz,}: +cpz©.




22

Note that process 2 does not apply except to a
form where p appears only to the first power in one of
the coefficients,

Now f will be irregular for certain powers of p

and therefore irregular if a form (1), (2) or (3) result-
ing from it is irregular., Thus we need consider only
those f's for which (1), (2) or (3) has not been proven
irregular, That is, only those forms derived from an

i apparently regular form (1) by process 1 or from an ap-
parently regular form (3) by process 2 and process 1

applied in any order or succession, need be considered.

Furthermore if at any stage all forms of type (1), (2) or
(3) or forms resulting from them are irregular, all higher
forms derived from them will also be irregular. Thus at
each stage only those forms which are not proven irregular
need be carried to the next higher stage.

Remark: If for a certain r all forms f-pTg derived
by processes 1 or 2 applied in any order from a form g in
Table I are irregular, then all forms f=pFg' where g' is
regular are irregular for from the nature of processes 1
and 2 reversed, for every g' there exists an m and a g
in table I such that g'=mg, where m is a positive integer.

Thus f-mp*g is irregular.
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Ve f:ax2¢2rby2¢25czz where O<«r<s; a, b, ¢ are odd and

no two of a, b, ¢ have a factor in common.

f will be irregular unless derived from a form g
in table I by processes 1 and 2 applied in some order or
succession,

A. If g-ax®aby®+cz® (a, b, ¢ odd), only process 1
applies, By symmetry take bsec,

4g=axze4by2f4czzrf

If a=1 and b=1; ¢=1,3,9 see table 1I.

c¢=5, use k=77 and theorem 4 to
prove f irregular.

6=21 use k=21 for 28z2-7=36+3
for z=2 and

2

12.3%=3=15+7 and theorem 6 applies,

If a=3, b=1 and ¢=1 see table 1I.

If a=5,9 or 21 and b=1l-¢ use k=1 to prove f irregular.
16g:ax2¢16by2f16022=f' (applying process 1 to forms
f not proven regular, i.e. the forms underlined above).

If a=1l, b=1 and ¢=1 or 3 see table 1I.

If a=1, b=], ¢-9 use k=473, to prove f' irregular.
If a=3, b=l-c use k=11 to prove f'! irregular.
64g-8x2¢64bye64023=2"
If a=1,b=}, ¢=1 or 3 use k=17 to prove f* irregular.
B, If gsaxQQby292c22 either process 1 or process 2 may
be here applied. (Interchange y and z for exact correspondence

with the theory).



24

(i) Process 2.
2g=2ax202by2+czz==f.
If a=1; b=l, c¢=1 or 3 see table 1],

b=3, c=z1 or b see table II,

b=5, ¢zl see table II.

We also have forms obtained from the above
by interchanging a and b,
4g:ax294by292cz2= fe.
If a=1l; b=1, ¢=1 or 3 see table II.

b=3, ¢=1 or 5 use k=7 to prove f' ir-
regular,
b=5, c=1 use k=7 to prove f' irregular,
If a=3,b=1,¢c=1 or 5 use k=1l to prove f' irregulax.
If a=5,b=1:=¢ use k=1,
83=2ax3e8by2¢cz2= .
If a=1, b=l, ¢=1 or 3 see table II.

16g- ax2s 16by2¢ 202z2 = h,
If a=l, b=1l, ¢=z1 or 3 see table 11,

323:2&12932by2*ozz= h'
If a-1l, b=1l; c=1 see table II.

¢c=3 take k=13 to prove h! irregular,
64g=a12+64hy2¢2cz2 = h",
If a=1=b=0 use k=35 to prove h" irregular,
It remains to apply process 1 to the underlined
forms above and to regular forms g.

(ii) Process 1,
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a) 4g:ax294by2¢8czz= F.

If a=1; b=1, ¢=1 or 3 see table II.

bs3,¢c=z1 or 5 use k=5 or 17 respectively,
b=5, c¢=1 use k=13,
If a=3, b=1, c=1 or 5 use k=23,
If a=5, b=1l, c¢=1 use k=1,
16g=ax2+16by2s 32cz=2,
If a=1,b=1,¢=1 or 3 use k=161 or 33 respectively
(for k=33 use theorem 6),
b) 4f=83x248by2+c22 = F,

If a-1; b-l, c=1 or 3 see table II.

b=3, ¢=1 or 5 gee table II.

l b:=5, c=1 see table II.
L 16f - 32ax24 32by24c2z2,

If a=1l; b=1l, c¢=1 or 3 use k=17 or 11 respectively.
b=3, c=1 or 5 use k=17 or 13 respectively.
b=5, ¢=1 use k=17,

) 4f'-ax2+16by<+8022,
If a=1l, b=l, c=1 or 3 see table II.
16£'= ax®464by24 32022,

If a=1,b=1,c=1 or 3 use k-17 to prove 16f' irregular.
d) 4f"=8ax2432by2ecze,
If a=1, b=1; c=1 see table 1I,

c=3 use k-19,
16£%= 32ax74128by24cz2,
If a=1-b-c use k=17,
e) 4h=a12964by2’86z2.
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If a=l, b=l; c=1 see table II.
c=3 use k=17,

16h-ax?s256by"+ 32022,
If a=l=Db=c usé k=17,
£) 4h'=8ax°+128by2+cz2,
If a=l=b-¢ use k=65,
C. If g=ax2sby244cz2 only process 1 can be applied.
4g=ax294by2+16czz:=f.
If a=1,b=1;¢c=1 see table 1I,

¢c=-3 use k=21 and theorem 6 to prove
f irregular.
If a=1l, b=3, ¢=1 use k=5,
If a=3, b=1, c¢=1 use k=11,
16g=ax2+16by<+64c22.

If a=l=b=¢ take k=33,
D. If g;axquy2+8022 only process 1 applies.
4g=ax2*4by2+32022.
If a=1;b=1,c=1 or 3 use k=21 or 77 respectively.
b=5, c¢=1 use k=13,
If a=5,b=1-¢ use k=1,
E. If g=ax2+by2+16czz only process 1 applies.
4g=ax294by2064czz.
If a=l=b=¢ use k=21,

F. Since no regular form g has as a factor of one of its
coefficients the integer 32, all forms f=ax2+2Tby24+28cz2
where a, b, ¢ are odd and no two of a, b, ¢, have a factor
in common, O<r<g, ae irregular except those included in

table 1I.
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vIi, f=ax2+3rby2¢3°czz where O<r<s; a, b, c are prime to 3

and no two of a,b,c have an odd prime factor in common.

We apply theorem 7 with the specified k to prove f
irregular unless the contrary is specifically stated. f
# will be irregular unless derived from a form g in table I
or II by processes 1 or 2 applied in some order or succession.
A. If gzaxzéby2+cz2 (a,b,c prime to 3) only process 1
applies., From symmetry take b<e,
9g=-ax249by24 9022 = f,

If a=1,b=1; c=1 see table III.
c=2 or 6, use k=7,
¢:=4 use k=22 for,since fz6(mod 8) is
'} solvable with x and y odd, theoreus
5 and 6 apply with theorem 7.
c¢c=8, f=4h where h=x249y241822 which is
proved irregular immediately above.
=16 use k=133,
If a=1,b=2; ¢=2,4,5 or 10 use k=13,
¢c=8, f-4h' where h'=x2§18y241822 just

proved irregular,
c=16, f=4h"™ where h!=x2418y2+3622 Just
proved irregular,
¢=32, f=16n',
If a=1, b=4 use k=13 for no o in table I or II has
a factor 13,
If a-1, b=5, =8 use k:13.

If a=1, b=8, c=8m (reference to table II shows that
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g is irregular unless c=0(mod 8)) f=4H where H=x2418y2418mz°
which is irregular from the above theory.
If a=1, b=16=c use k=73,
If a=2, b=1; ¢=1,2 or 4 use k=5,
¢=6 or 10 use k=29.
¢c=8, 16 or 32 use k=3b,
If a=4, b=1 use k-1,
If a5, b=1, ¢=2, 8 or 1 use k=17,
If a=8, b=1; c¢=1 or 4 use 2:5.
c=5 use X-14 and theorem 5(p-=2) with
theorem 7 to prove f irregular.
¢=2 use k=1ll.
c=8,186,32,40,64 use k=65 (this holds
for ¢=40 by the application of
theorem 6 with theorem 7).
Note that all forms of minimum 22 in table Il have
a factor 3 in one of the coefficients and are thus barred
from present consideration. There thus remains a>8, b=1
a =1(mod 3), b=1l, a>8, use k=1,
a=2(mod 3), b=1, a>8, use k=17 since no coefficient
in table I or II has 17 as a factor.
81g-ax2+81by2+81l022= £,
If a=1=b-¢ use k=73 to prove f irregular.
B, If g:ax2e3by2¢gzz either process 1 or process 2 may be
here applied.
(1) Process 2.
5¢=3ax20by3¢30z2= f.
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If b=l; a=l,c=1,2,4 or 10 see table III,

=2,¢=2 or 8 sea table III.

az4, c=4 gee table II1.

a=8, c¢=8 gee table 111,

If b=2; a=1,¢=1,2,4 or 16 see table IlI.

a=2,6:5 see table III.

If b=4,a=1,c=1l or 4 see table III,

If b=7,a=1=¢ see table III,

If v=8; a=l,c=1,4,8,16 gsee table IlI,

If b=8,a-5,¢c=8 see table III.

If b=16,a=1, c=16 see table III.,

We have also forms obtained from the above by
interchanging a and ¢, This has to be taken into account
below though the form f is symmetrical in a and ¢,

9g-ax2¢ 3by249cz2= £,

If b-1; a=1l,c=1,2 or 4 see table III,

a-1l,c=10 use k=22 and theorem 6 with theorem 7.

a=2, ¢=1 or 2 see table Ill.

a=2,c:=8,then £'=2F where F:xz+6y293622 is
proved irregular by taking k=13.
a=4; o=1 use k=49,

c=4 see table 111,

a=8; ¢=2 use k=5.

c=8 see table Ill.

a=10, c=1 use k=7,

If v=2; a=1,c=1 or 2 ses table III.

a=l, o=4 use k=13,
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asl, c¢=16, then f'=4F where F_is above
proved irregular.

a=2; c=1 see table III,

c=5 use k=11,
az4 or 16 and c¢-1 use k=1,
a=5,c=2, then f'=2F' where F'=10x215y24922
is jirregular from above theory.

If b-4; a=1, c=1 or 4 see table III,

a=4, c=1 use k=1,

If b=7, a=l=c see table III.

If b=8; a=1l, c=1 or 8 gee table 1II,

a=l, c=4 use k=13,
If b=8; a=l1,c¢=16, then f'=4F where F=x2+6y2*3622
is irregular from the above theory.
a=4 or 16 and c=1 use k=1,
a=b, c¢=8 use k=53,

a=8; c¢=1 see table III.

———

c=b use k=29,

If b=16;a8=1, c=16 see table III.

azl6, c=1 use k=1,

For all other coefficients either g or 3g is ir-
regulai. Making use of the remark after the discussion of
process 2 we consider only

27g= 3ax24by242702°%= £% for which g is in table I.
If b=1; a=1l, c=1 or 4 use k-85,
a=l, c¢=2 or 10 use k-34 and apply theorems
5 and 7.

a2, o=1 use k=13,
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a4 or 10 and c¢=1 use k=7,
If b=2, a=1l, c¢=1 use k=17,
If b=4,a=1,c¢=1 use k=10 and apply theorems 5 and 7.
If b=7, a=1l=¢ use k=13,
If b=8,a=1,c=1 use k=14 applying theorems 5§ and 7.
It remains to apply process 1 to the underlined
forms above and to regular forms g,
() Process 1.
9g=ax2§27by2¢9022. Making use of the remark after
the discussion of process 2 we consider only those 9g for
which g ie in table I. (Interchange b and ¢ for strict
conformity with (1) in the description of process 1).
If b~l; a=1, c¢=1,2,4 or 10 use k=7,
a=2, c¢=1 use k=5.
e=4 or 10, c=1 use k-1,
If b=2, a=1l=¢ use k=7,
If b=4,a=l=¢ use k=22 applying theorems 5 and 7.
If b=7, a=lzc use k=133 and theorems 6 and 7.
If b=8, a:z=1l=c use k=133,
9f= 27ax22by2427c2z2., (Make use of the symmetry in a
and ¢ and of the remark above referred to).
If b=1, a=1l, c=1,2, 4 or 10 use k=7,
If b-2,4,7 or 8 and a=1=¢c use k=5,7,13 or 1l
respectively.
9f':ax2+27byzqalczz. Consider only those values of

&, b, ¢ underlined for ft,
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If b=1; a=1, czl, 2 or 4 use k:13.
az2, c¢=1 or 2 use k=11,
a4, c¢=4 use k:=7.
a=8, c¢=8 use k=11,
If b=2; az=1l, c=1 or 2 use k=73,
a2, c=1 use k=17,
If b=4, a=1, c¢=1 or 4 use k=13,
If b=7, a=l=c use k=73,
If b=8; a=1, c¢=1 or 8 use k=73,
a=8, c=1 use k=17,
If b=16, a=l, ¢=16 use k=73,
C. If g:axzebyzQchz only process 1 applies.,
93=ax299by2181czz.
If a-b-c-1 use k=19 and thus by the remark after
process 2 all S9g are irregular. |
D. Since no regular form g has 27 as a factor of one of
its coefficients all the forms f=ax205rby2¢3°czz where a, b
and ¢ are prime to 5 and no two of a, b, ¢ have an odd prime
factor in common and O<r<s, are irregular except those in

table III.
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VIiI, f-ax2¢p2b129pzcz2 where p is & primeZ 5 not dividing

a, and no factor is common to &, b and ¢,

Take b=c.

Lemma 6. All forms f for which gsax2+by<+czf/p2 is
one of the forms below are irregular:

(1,1,1) (1,1,8) (1,1,21) (1,1,3) (1,2,3) (1,2,5) (1,3,10).
Proof: ©Noting theorem 7 we see that a form f for which g is
one of (1) is irregular if we can find a positive integer k
such that:

a) k is prime to abe.
b) £ =k(mod 8) ie solvable if k is odd,
b!) £= k(mod 8) is solvable with two of x, y, z odd
if k is even.
¢) £= k(mod p) is solvable,
d) ##k.
We may replace ¢) by c!') (%): (%)
and d by d') k¢p®b
and d*) kfax®, This follows from a) unless a=l.

A, If axl=ab=c, take k=4pbced =8(mod 8). Obviously condi=-
tions a), b), ¢') and d") are satisfied since x?‘#ﬁ(mod 8).
d') holds if a<pb(p-4c) which is true since l<p(p-4) for all
p2S.

B. If g is one of the forms (1, 1, 5), (1, 1, 21) note
that £=1,6 or 7 (mod 8) is solvable and that fx= 2 or 6(mod 8)
is solvable with x and y odd.
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(1) If p=1(mod 4) take k-pbcea = 2(mod 4) satisfying
conditions a), b'), c'), d")., d') holds if a<pb(pw=c) which
holds with the following exceptions:

a) If p-5;c=b use k=21,

¢=21 use k=21 with theorems 6 and 7.

a-21 use k=1,
b) If p=13,c¢=21 use k=10 with theorem 5 and theorem 7.
¢) If p=17,c¢-21 use k=2 with theorem 6 and theorem 7.

(1i) If p= 3(mod 8) take k=pbc-2a=6 or 1(mod 8) accord-
ing as a=1 or a#l. k satisfies conditions a) D) c') c")
obviously. k will be positive and satisfy d') if
pbc-2a>pb(c-p). Such is the case with the following ex-
ceptions:

a) If p=11,¢ or a=21 use k=5 or 13 respectively.
b) If p=19,¢ or a=21 use k=5 or 13 respectively.
c) If p=43, a=21 use k=1,

(111) If p=7(mod 8) take k=pbce2a=5 or 1(mod 8)
according as a=1 or a#l. Xk satisfies conditions a), b), c'),
d") obviously. k will satisfy d') if 2a<pb(p=c). Such is
the case with the following exceptions,:

a) If p=7, then a#R2l. If c=21 use k=2 with
theorems 5 and 7.
(1f p=23, c=21 and 2<23.2; if p-23, a=21,
42<23+22).,
c. If g=(1,1,3), then £=1,3,5, 7(mod 8) ie solvable and
£=2,6(mod 8) is golvable with x and y odd.
(1) If a=l, b=1, ¢=3 and

b e
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a) If p=1(mod 4) take k=2pbcea= 3(mod 4),.
Conditions a), b), ¢'), d") are obviously satisfied., d4')
holds if a<pb(p-2¢) which holds unless p-5 when we use k=11,

b) If pz 3(mod 4) take k-pbcess=2(mod 4).
Conditions a), b'), ¢'), d") are obviously satisfied and
d') holds since a<pb(p-c), that is l.<p(p-3).

(ii) If a=3, b=1l=c use k=4pbcea= 3(mod 4) which satise
fies all the conditions on k since 3«p(p-4) for pz5.

D. If g is one of the forms (1,2,3), (1,2,5), (1,3,10)
note that £ 1,3,5,7(mod 8) is solvable.

(1) If a is odd use k-pbceaz 3 or 1(mod 4) according
as a=l or 3(mod 4) and thus conditions a), b), c¢'), d") are
satisfied. d') holds if a<pb(p-e¢) which is true with the
following exceptions:

a) If p-5, then a#b6, If a=1 and ¢=5 or 10 use k=19,
1 If a=3, ¢=10 use k-=17.
b) If p=7; a=1 or 3 and ¢=10 use k=11,

(11) If a=2(mod 4), then bes5 and use k-pbceaz an

odd (mod 8) and conditions a), b), o), d") are obviously

satisfied., Also d') holds since a<pb(p-c) unless p=5-¢ in
which case we use k=17,

This completes the proof of the lemma,

Theorem 8, All forms f-ax2+p<bye4p2cz2 (where p is

a prime 2 6 not dividing a and no facter is common to &, b and
¢) and those derived from such forms by processes 1 or 2,

are irregular.
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Proof:

l. We first prove that for every form F in table 1 there
exists a positive integer m such that F-mg where g is one
of the forms (1l).

a)., Consider h=x29y2+2rz2 where r=1 or 3. h=z0(mod 2)
implies x«y=~2X, x¢y-2Y are solvable for X and Y and thus
h=2g where g=X2¢Yzerz2 and thus m=2.

b). h=x24y2492%=9(X24Y%42°) since h=0(mod 3) implies
x=3X, y=3Y.

c). h=x2*3y2¢422= 4h' where h'=x'2¢3y'2’zz for
h=0(mod 4) implies xz y(mod 2), If x=y=0(mod 2) the above
is obvious. If x=yz1l(mod 2), x=y=2X, xey:=2Y are solvable
with one of X, Y even.1 h=(2x-Y)2e3Y294z2= (2Yix)293X2§4z2.
If Y=2y' is solvable for y' then take x'-X-y', If X=2y' is
golvable take x'-Y=y' and in either case we have the desired
result,

d). h=x24y244rz2 = 4h' where r=1, or 3 and h'-X24Y24rz2,

e). h=x24y248r22=-8h' where h'= X24Y24rz2 where r-1
or 3 is obtained by applying a method e;milar to that for a).

£). h=x"+By°482z°= 4(X2¢57%+258°) .

h). H=x243241622 = 16(X24Y2422) .

2., Suppose ¥ is a regular form ax®4by24032 having no factor

common to all of a, b, ¢, If p! is a prime factor of two of

l Cf. J. G. A, Arndt, Dissertation, Gottingen, 1925, p. 25:
also the corollary to lemma b in part B  of this thesis,
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a, b, ¢ we see by the discussion preceeding processes 1 and
2 that there is a positive integer t such that ¥/p'! is a
form in which no two coefficients have a factor p' in
common, If two have a factor p"#p' in common we know by
the same reasoning on F/p'Y th~t there exists a positive
integer t' such that F/b'tp"ﬁ‘ is a form in which no two
coefficients have a prime factor p' or p" in common, Thus
proceeding we see that there exists an m' such that F=m'g!
where g' is a form such that no two coefficients have a
factor in common, g' must be regular since ¥ is and there-
fore g' is one of the forms of table I, Thus, by the above
there exists an m such that P-mg where g is one of the
forms (1),

3. ©Now f is irregular unless f/p° is regular, i.e. unless
f/b2==F=mg in which case f:mfg where fg ls a form proved in
Iemma 6 to be irreguler, Thus, in any case, f 1is irregular
and it follows that any forms derived from.it by process 1
or 2 is irregular,

Corollary: All forms obtained by aprlying process 1

when p2 5 to any form are irregular. This is evident since
process 1 increases by 2 two of the exponents of p and thus

the resulting £ is of the form in theorem 8.
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VIII. f=ax2*5rby2¢saczz where O<r<g; a, b, ¢ are prime to

5 and no two of a,b,c have an odd prime factors6 in common.

We apply theorem 7 with the specified k to prove f
irregular unless the contrary is specifically stated. f
will be irregular unless derived from a form g in table I,
II or III by processes 1 and 2 applied in some order or
succession,

A, g=ax29by2ecz2 (a, b, ¢ prime to 5), Then only process
1l applies and by the corollary to theorem 8, f is irregular,
B. If g=ax245by2+czz either process 1 or process 2 may

be here applied,
(i) Process 2,
Sgrsax2+by2f5cz2= f.
If a=1; b=1; c=1,2 or 8 see table IV,

b=2, ¢=2 or 3 see table 1V.

b-6, c-3 see table IV.

b=8, c¢-8 see table IV,

If a=2; b=1 or 3 and ¢=6 see table IV,

If a=8, b=1 or 3 and c-24 see table 1V,

We have also forms f obtained from the above
by interchanging a and ¢ above, This produces no new forms
above but must be teken into account below,

6f-axeBby>e26cz> = £,

If a=1; b=1l, ¢=1 or 8 see table IV,

b=1, ¢=2 use k=31,
b=2, o= or 3 use k=29,
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b=6, c=3 use k=19,
b=8, ¢=8 use k=129,
If a=2, b=1 or 2 and c¢=1 use k=17,
b=1 or 3 and c:=6 use k-43 or 53 respectively
If 2:=3, b-2 or 6 and ¢-1 use k=17 or 7 respectively.
If a=6, b=1 or 3 and c=2 use k=19 or 29 respectively,
If a=8; D=1 or 8 and c-1 use k=17,
b=1, c=24, then f'-4n where h=2x2|-5y24150z2
1s above proved irregular,
b=3, c¢=24, then f'-4h' where h'=2x2+15y2e
15022 is above proved irregular.
If a-24,b-1 or3 and c-8 use k-61 ar 71 regpect ively,
We consider only the underlined forms f' for
126g=5¢'= 5ax24by2+1260z2 - £ ,
If a:-1-b:-c use k=19,
If a=1-b, c¢=8 then f"-4h® where h"- Bx24y24260c22
is proved irregular by taking k=19,

(i) It remains to apply process 1 to the underlined
forms above and to seemingly regular forms g but by the
corollary to theorem 8 all forms so obtained are irregular,

C. Since no regular form g has as a factor of one of its
coefficients the integer 25, all the forms f-ax2e8Tby2455cz2
where a, b and ¢ are prime to 8 and no two of a, b, ¢ have a
prime factor 8 in common and O<r:s are irregular except

those in table 1V.




40

2 2

IX., f=ax 97rby e?sczz where O<r<s; a, b, ¢ are prime to 7

and no two of a,b,c have a prime factor >7 in common,

We apply theorem 7 with the specified k to prove

f irregular unless the contrary is specifically stated.
f will be irregular unless derived from a form in table I,
I1I, III or IV (exclusive of forms 94, 98, 99) by process
1 and applied in some order or succession,

A. g=ax2+by2¢c22 (a,b,c prime to 7). Then only process
1l applies and by the corollary to theorem 8, f is irregular.

B, If gzax2¢7byzeczz either process 1 or process 2 may
be here applied.

(1) Process 2.
7g=7ax2eby2+7cz2==f.
If a=1; b=3, c¢=1 or 9 see table 1V.

If a=3, b=1, c=3 see table 1IV.
7f=ax207by2949022=-f'.

If a=1,¢=1,b=3 use k=23 to prove f'-H irregular.

If a-3,¢=3,b=1 then f'=h'=3H which is there-
fore irregular,

If a-1,¢=9,b=5, then f'=3h' which is there-
fore irregular.

If a=9,¢=1,b-3 use k=1,

It remains to apply process 1 to the underlined

forme above and to seemingly regular forms g but by the

corollary to theprem 8, all forms so obtained are irregular.




C. Since no regular form g has as a factor of one of

its coefficients the integer 49, all the forms
f=ax2¢7rby2q7°czz where &, b and ¢ are prime to 5§ and

no two of a, b, ¢ have a prime factor >7 in common and

O<rz<s, are irregular except those in table 1V,
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X, fsaxzeprbyqusczz where O<r<s, p is a prime > 7 not

dividing abe and no two of a, b, ¢ have a

prime factor >p in common,

If r22, £ is irregular from theorem 8,

If p-11, since no form in tables I to IV has a
prime »7 as a factor of one of its coefficients, the only
possibly regular forms f with p=11 would be derived by
process 1 from seemingly regular forms g:axz*byzqcza in
tables I to IV and would thus by the corollary to theorem
8 be irregular,

We may proceed similarly going from one prime to
the next proving that for every p, f is irregular and

all forms f=ax29by2fez2 not listed in tables I to

1V, where a, b, ¢ have no factor common to all three, ore

irregular.
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XI.. Reduced positive ternary quadratic forms with cross

products and Hessian £20,

We prove that all such forms above are irregular
except those appearing in table V .
1. £=(1,2,4,-2,0,0) = x%e2y24422-2yz is irregular. (H=7)
Proof: 2f=2x29(2y-z)297z2 . Now g:2x2¢Y2Q7zaso(mod 2)
implies Y4z =0(mod 2) and thus that Y=2y-z is solvable for
¥ and thus we have g/2=f, i.e., the evens represented by g
coincide with double the integers represented by f., Now
g = 6(mod 2n) is solvable for n arbitrary since g= 6(mod 8)

implies Y=2y', 2z-2z' and g':x2*2y'2*14z'2z 3(mod 8) and

therefore =3(mod 2n-1) is solvable for n arbitrary. Further-

more g = 14(mod Vn) is solvable by lemma 4b., And thus, by
theorems 4b and 4c, g= 14(mod 2N) is solvable for N arbi-
trary. But gfl4, Thus f#7 2nd £= 7(mod N) is solvable for
N arbitrary and thus by theorem 4a (which applies equelly
well for forms with cross products) f is irregular.

2, f£=(2,2,3,0,-2,0) (Hessien 10) is irregular.

Proof: As above g/2=f where g=X214y2952222(m0d 8) is
solvable with X and z odd, g#2 and thus f is irregular pro-
ceeding as above,

3, f=(1,3,4,-2,0,0) ‘(Hessian 11) is irregular.,

Proof: 3£-3x°4(3y-z)241122 , Now g=3x24¥241122=0(mod 3)
implies !eellzzéo(mod 3) and Y= 1z(mpd 3) where one of the
signs holds. Thus z-3y-2Y ie soivable for y and g/3=f.
Now g=6(mod 8) is solvable with two of X, Y, 2z odd and
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g=6{(mod 3) is solvable with Y and z prime to 3 and

thus g=6(mod 3N) is solvable for N arbitrary and g#£6.

Thus f=2(mod N) is solvable for N arbitrary, f#2 and
therefore by theorem 4a is irregular.

4, f£=(1,2,7,-2,0,0) (H=13) is irregular.

Proof: as for 1. g/2:f where g=2x°+¥2413z%= 2(mod 8)
implies Y-=2y', z=2z' and g':x2+2y'2e26z'2£ 5(mod 8) is
solvable implying that g= 10(mod 2N) is solvable for XN
arbitrary, g#10 and thus as in 1 f is irregular,

5, f=(2,2,5,2,2,2) (H-13) is irregular.

Proof; 6f=3(2x+y§z)2e(Syez)z-gzszz. Consider g:axzwzezszz.
Now g=0(mod 3) implies Y= ¢z(mod 3) where one of the signs
holde as in 3 and thus 3y+2-4Y is solvable for y. Further-
more g= O(mod 2) implies X=Y=ye+z(mod 2) and thus that
2x4y+z=X is solvable for x. Thus g/6=f. XNow g=6(mod 3)
is solvable with Y and z prime to 3, g= 6(mod 8) is solvable
with X and Y odd, g#6 and thus as for 1 f is irregular.

6. £=(2,3,3,-2,0,-2) (H=13) is irregular,

Proof: As for the form above g/6=f where g=3(:2x-y)2+2(3z-y)2
-.1:5y2:- 5X2¢2Y2413Z2§ 6(mod Zn) is solvable since gz=6(mod 8)
implies X=2x', Z-2z' and g' - 6x'2-tY2+262'2§ 3(mod 8) is
gsolvable, g=6{(mod 3) is solvable with Y and z prime to 3.
Thue gz 6(mod N) is solvable, gf8 proves f irregular.

7. £=(1,2,8,-2,0,0) (H:=18) is irregular-

Proof: as in 1 g/2=f where g=2x°4Y2415z%z 2(mod 8) is
solvable with ¥ and z odd, gz 10(mod 5") is solvable by
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lemma b and thus by lLemma 3,‘: and theorems 4b and 4c we
have g!JZO(mod 2N) is 80.}t§bl,g for N arbitrary, 10
and th:s,jf is irregular, |
8. 1:1,4,4,-2,0,0) (He15) ie irregular.
Proof: 4fz4x"e(4y-2)241622,  Now g=4x24¥241522- 42 2 0(mod 8)
for am&bse g: O(mod‘e) with x odd; - the:i Y and z are both
odd, !f gz O(mod 8) with x even we know Y¥z%(mod 8) and
‘thus 4 any case Y=z 4z(mod -4) where on§ of the signs holds.
Thue -z ¥Y is solvable for y. Now g; 8(mod 8) is
solvele with Y and z odd, g8 and thus, since £#2 and
fsz(xoé_ﬁ_) ie solvable for all N and f is irregular,
9. 1(%,2,5,-2,-2,0) (H:16) is irregular.
Proof; ff:.(qu-z)zo(x-y)zﬂzz. Now g:lz«o!zﬂzz‘s'l(mod 4)
implis X#Y¥(mod 2) and thus that xey-z =X and x-y=Y :l;.e.
2x = X¥e2 and 2y=x-Y;z“ are solvable for x and y, if z is
odd, Now.gZ 1(mod 8) is solvable with z odd and Xp¥¥(mod 2)
and thus f;om corollary 1 of demme 3, g# l(mod 2") is |
‘solvidle with z odd and X¥#Y(mod 2), Xurthermore g=1(Mod N')
is silvable for N! odd by theorem 4'5 angd: thus with 2 odd
and ¥Y(mod 2) for suppose a -6lut,1on x', y', 2z' exists;
thenx', y', 2z'+R!' is a.llo a .uolution and z is odd., 4And
if x'sy'(mod 2) we know that x', ¥y ql', 22'¢H' is a solution
with x'pfy® (mod 2)., Thus gz l(mod N) is solvable with
X£Y(a0d 2) and 2 odd for ¥ an arbitrary integer (for the
'°lutions of gi 1(mod N) are. eongruont (ud z) to the |
"!°1utiona of g 1(mod 8) if ¥.is ovonk- ‘.l'hnl f’ 1(mod ¥).
fis aolvable for ¥ u-bitrary and unco f#l. f u 1rrngu1ar.
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10, £=(1,2,9,-2,0,0) (H*17) is irregular,

Proof: As for 1, g/2:f where g:2x24Y°417z°%= 2(mod 8) is
gsolvable with Y and z odd, gF10 and thus f is irregular

as above,

11. £=(1,3,6,-2,0,0) (H=17) is irregular .

Proof: As for 3 g/3:f where g=3x°4Y°¢17z°% and since

g% 15(mod 3) is solvable with Y and z prime to 3, g#l5

we know that f is irregular as above. |

12, £=(2,3,4,2,2,2) (H=17) ie irregular.

Proof; 10f=5(2x¢yez)2+(5y+z)2934zz. Consider g=5X2¢Y2+3422.
Now gz O{mod 5) implies Yz +z(mod 5) where one of the signs
holds and thus S5y+z =4Y is solvable for y., Furthermore

gz 0(mod 2) implies X= Y zy+z{mod 2) and thus that 2xey42= X
is solvabdle for x. Thus g/10=f. Now gz 60{mod 2%) is
solvable for n an arbitrary positive integer for g= 4(mod 8)
implies X=2x', Y=2y', z:22' and g/4:5x'24y'%4342'2 2 15(mod 8)
is solvable, Also g:=60(mod 5) is solvable with Y and z
prime to 5 and thus by lemma 3, theorems 4b and 4c¢,

gz60(mod N) is solvable, g#60 and thus f is irregular.

13. £=(2,2,5,0,-2,0) (H=18) is irregular.

Proof; As for 1 g/2:f where‘g=xzo4y2’9z2= 2(mod 8) is
solvable with X and z odd, g2 and thus f is irregular as
above,

14, £-(2,3,4,-2,0,-2) (H-18) is irregular.

Proof; 4f=2(2:-y)20(4z-y)209y2. Consider gzzxzozonyzé
4(mod 8) is solvable with X, Z and y all odd, Thus as for 9

g =4(mod N) is solvable with X, Z and y all odd for ¥ an
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arbitrary integer. Under these conditions Zsjs;(mod 4)
and y-4z=¢Z is solvable for z and 2x~y=X is solvable for
x. Thus 4f £ 4(mod N) is solvable for N arbitrary,
f=1l(mod N') is solvable for N' arbitrary; f#l shows

by theorem 4a that f is irregular.

8. £=(1,2,10,-2,0,0) (H=19) is irregular.

Proof: As for 1 g/2=f where g=2x29Y2+1922¥ 6(mod 8) is
solvable with Y and z odd, g#l4 and thus f is irregular
as above,

16, f=(1,4,5,-2,0,0) (H=19) is irregular.

Proof: As for 3 g/5=f where g-5x2422419y°z 7(mod 8) is
solvable, g2 15(mod 5) is solvable with y and Z prime to
5, g#156 and thus f is irregular as above,

17. £=(2,2,7,2,2,2) (H=19) is irregular.

Proof: As for 5 g/6=f where g=3(2x¢yoz)20(3y¢z)203822;
3X°4Y24382° = 2(mod 8) is solvable with X and Y odd,

gz 18(mod 3) is solvable with Y and z prime to 3, g#l8 and
thue f is irregular as above,

18. £=(2,3,4,-2,-2,0) (H=19) is irregular.

Proof: As for 5 g/6:f where g=3(2x—z)292(3y-z)2+19222
3%242Y%4192°%z 6(mod 8) is solvable with X and z odd,

g = 6(mod 3) is solvable with Y and z prime %o 3, g#6 and
thus f ie irregular as above,

19, f=(1,4,6,-4,0,0) (H=20) is irregular.

Proof: f£0(mod 2) implies x=2X and thus f/2:21202y29322-2yz
which,noting the symmetry in X and y,is proved irregular
above in 2, Thus f is irregular,




PART B

KEGULAR FORMS

-t

R
I. General msthods and theorems, -

In addition to the methods of Dirichlet,” Dickson's
modification® and a furthei modification (gee proof for
form 11) the following élementary methodsvuéed_are numbered
for convenience, _

Method 1: see forms 5 and 13, ‘ _

Method 2: is applied to a form f=ax2+by2§2c£2(asb)
where a and b are odd., Now f=0(mod 2) implies xeyz0(mod 2)
and x#y=2X, x~y=2Y is solvaple f;r_XJandaY; Thus £/2: aXZQ
sze(b—a)(X-Y)?/2 * czz==(a¢b)xg/2.{ (aéb)@f/? + ozz-(b-a)XY.
An alternative equivalent substitution is x=2X~y, y=y giving
f/é-zax e(aéb)y /2 fczz-2aXy. This method can be applied
if the integers represented by f are kncwn to find those
represented by £/2, or conversely (eee the proof for form
6, for example), " ‘

Method 3: see the éroof for form 49.

Method 4 uses the corollary to lemma b in the follow=-

ing pages (see the proof for forms 35 and 44 for example).

The following theorems and lemmas apply chiefly to

proofs for semi-regular forms in pard ;G,:fﬁﬁ%lgince the

1 Journal fur Mathematik, vol.40 (1850), pp.228-32,
2 Bull, Amer. Math, Soc., 33 (1927), p.65. . .
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corollary to lemma b and theorem 9 apply to certain

regular forms we include the complete theory below,

Lemma a;> If x2+by? represents two integers m and
n, where b is a positive integer, it represents mn.
Proof: Suppose x2¢bya=m and x'zoby'%=n. Multiplying we get
(1) x24b!2 = X'%41Y'2 = mn where
(2) X=xx'4byy!, Y=xy'-x'y and X¥ xx'-dbyy!, Y'=xy'sx'y are
thus integers.

Theorem 10a. If f:dx2§dby2¢czz represents an
2

integer a, tﬁen g:dedeyzocmz represents ma where m is
an integer representéd by xszyz, where b is a positive
integer as well as d.

Proof: "f represents a" means that there exists a z such
that (a-czz)/d is represented by xzobyz. Thus by lemma a
we know (ma-moz?)/d is represented by x2+by2 and thus ma
is represented by g. ;

Lemma b, If x2¢by2 represents pn and mpn with x
and y prime to p in each case where n is a positive integer
and p a prime which is odd in case n>2, then xzobyzrepre-
sents m.

Proof; Suppose X2¢b32=mpn and x'zoby'a=pn where X, Y, x!,

y'! are prims to p. Then, solving (2) we obtain

xz Xx'4bYy'! _ Xx'edYy' ., -y = x!t;ivz

x!'“2dy! P

1 Used by Brahmegupta and L., Euler, see "History of the
Theory of Numbers", L. E. Dickson: vol, 2 p. 3556 and

vol.d p. 60,
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and from the derivation of (2), xR4by%:m and thus it
remains to prove that x and y are integers. We know
Xz-':--sz(mod pn) and x'zs-by'z(mod pn) and, multiplying,
(Xx')za (be')z(mod p?). Thus Xx's 2bY¥y' (mod p") where
one of the signs holds for, if p is an odd prime

Xx'z bYy'z -bYy'(mod p) implies bz O(mod p) since Y and
y' are both prime to p, which is false since b:z0(mod p)
and Xa-oszsmpn would imply X =0(mod p); if p is even
the statement also holds since n£2, and the terms on

.each side of the congruence sign are odd., If the plus

sign holds we may substitute -y' for y' since the original

equations are not affected by such a change and thus have

in any case that x is an integer. Then since x2qby2='m

and b is prime to p we know that y is an integer.

Cprollary: If f=dx29bdy29czz represents an integer
m with x2+by® = 0(mod p?) where p is a prime not dividing b

(b and 4 are positive integers), then g=dp2x20bdp2y24czz

1

represents m,~ if xz-oby2 represents p2 with x and y prine

to p.

Proof: By hypothesis there exists a z such that (m~cz<)/ds

0(mod pz) is represented by x%+by®. Thus x= y= 0(mod p)

or x and y are prime to p. In the lattgr case we know from

lemma b that (mmcz?)/dp® is represented by x®4+byS. Thus,
in any case, m—cz2 is represented by dp x obdpzyz

l cf. J.G.A. Arndt, Gottingen Thesis, 1925, p. 25, for
case p=2,
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Theorem 9. If f':x‘?'-»‘n;f2 represents an odd prime p,

where b is a positive integer prime to p, then every rp
represented by f (r a positive integer) is represented by
¢ with x and ¥ prime to p. (This theorem is used in the
proof for form 31).

Suppose rsp? (where u is an integer 21). Then,
by lemma a, with m=n-p there exist X, Y, X', Y! satisfying
equations (1) and (2) where x=x', y=y' are prime to p
gince x24by>= 0(mod p) and xz O(mod p) implies y= O(mod p)
implies xz-»byzf 0(mod pz). If Y= 0(mod p) we know
1'#0(mod p) for xy'-x'yz xy'+x'y:= 0(mod p) implies
x'y = 0(mod p) which is impossible since x' and y are prime
to pe Y'! prime to p implies that X' is prime to p and
thus in any case there exists an X and Y prime to p such
that x2+bY2= p2. Apply the same reasoning to lemma a with
m:=p and n=;p2 with the above X, Y replaced by x', y' and
find there exist an X and Y prime to p such that Xz-t‘sz: ps.

Thus proceeding this case may be established,

1

Suppose r=p°' ¢+ where t is an integer prime to p

and s is integral and> 1, If f represents p°t with x or

y= 0(mod p) then x =y =0(mod p) and setting x-px', y-py'

we see that x'24by'?=p8~2t, If x' or y' is divisible by

p, both are unless s=2, Postponing the case s=2, set

x'=px", y-py® and find that x"24by"2.ps~4t, Thus we continue
until we find an integer v, 0<v<s/2 such that x2+by?® repre-
sents p®~2V4, with not both x and y divisible by p. This
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must eventually come to pass since Xzﬁbygapt o} t implies
that not both x and y are divisible by p. (This includes
the case above postponed: e=2). Thus we have an x, and a
Y, not both divisidble by p such that xeby2= p~2Vy, [r
v=0, x, and y are both prime to P since 82 1 and our
theorem is proved. If v> 0 from the Preceeding paragraph
above there exist an x and Y both prime to p such that
x2+by2= pzv. Thus, by lemma a, there exist X, ¥, X¢t,
defined by (2) with x, substituted for x' and y for y'.
Now Yz O(mod p) implies Y'#0(mod p) for XY, =X, ¥ = Xy, X, y=
0(mod p) implies x,y= 0(mod p) implies x,=0(mod p) implies
xy 20(mod p) implies ¥,=20(mod p) which contradicts the
statement that not beth x, and Yy, are divisible by p. Since
Y'#0(mod p) and X'%40y'%-p%% implies that X' is prime to P,
we know that in any case there exists an X and Y both prime
to p such that X2+bY2= p°t=rp.

Corollary 1. If f:xz*byz represents a prime p and

if it represents mpn where n is an integer 21, then f repre-
gents m,
Proof: 1. If p is odd the hypothesis of the corollary to-~
gether with theorem 9 combiné to show that f represents pn
and mpn with x and y prime to p in each ease and therefore
from lemma b, f represents m,

2. If p=3, then b=1 and x2+y2 = 20m implies xey-2X,
x-y=2Y are solvable for X and Y and X2+Y° = 22lp, 1f n>1,

then X4Y¥:2x', X~-Y=2y' are solvable for x' and y! and
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x'zey'2=’2n'2m. Thus we may continue until we find an x

and y such that x2+y2: m.
Corollary 2, If f:dpzxz*dbpzyzeczz represents m

and x2+by2 represents p, an odd prime, where b, 4 and ¢ aré
positive integers, then dszbdy‘?‘ecz2 represents m with x
and y prime to p. (Cf. the corollary to lemma b),

Proof: There exists a z such that (msczz)/& is represented
by x4+by?=0{mod pz) and thus by theorem 9, (mpczz)/a is
repregented with x and y prime to p.

Corollary &, If f:dxszdyzépcz2 represents pm,

where p is a prime represented by xz-e'by2 and m a positive
integer and b and 4 positive integers prime to p, then
gzdxzebdy2§cz2 represents m.
Proof; There exists a z such that p(meczz)/d is represented
by xzeby2 and thus from corollary 1. (mpczz)/ﬁ is represented
by xzebyz.

Theorem 10b, If f=dx2+bdy29ncz2 represents nm where

x24by? represents all the (prime) factors of n (d and b are
positive integers prime to n), then g=dx21bdy3*czz represents
m (m and n are positive integers).
Proof: Suppose the prime factors of n are p , z......pr
where any prime appearing to the t-th power in n is repeated
t times in the display. Then from corollary 3 above:
g, = dxzobdyz-kp,_ P . .p‘.‘.c:z2 represents D, B, +. Pl
g,=dx24bdy24p, p, ...p, 022 represents P ees..Prle

g,=dx2+bdy2+cz® represents m.
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Theorem 10, If f-dx +dby24cz? and g=dx2+dby?scmz2

where all the (prime) factors of the positive integer m
are represented by x2+by2, then g represents ma if and
only if f represents a, an integer (b and d positive
integers prime to m).

This results directly from theorems 10a and 1l0b
if we note that if xz-»by2 represents all the prime factors
of an integer 1t represents that integer from 1emﬁa a.
Note 1: That it is not sufficient to say merely that n
shall be represented by x2+by2 ig illustrated by the fact
that x2414y2 represents 15 (but not 3 or 5) and while
g=x2114y2’4-15z2 represents 30, f=12914321422 does not
represent 2, However we have
Note 2: Examination of the proof of theorem 10 and corol-
laries shows that theorem 9 may be altered to read: Given
f and g where all the prime factors occuring to an odd power
in m are represented by xzeby2 and the squares of all prime
factors obcuring to an even power in m are represented by
xzebyz with x and y prime to p, then g represents ma if and
only if f represents a,

Lemma 7. f:axzibyzqc'pzzezpry2§2psxz¢2ptxy repre=~
%)

gsents no integer =pk{mod p if a and b are prime to p and

(%):-(-'-%)(%), (;—'):-(%) and p is an odd prime not dividing k.

(This lemma is used, for example, in the modification of
Dirichlet's method in the proof for form 1l).

1. ax®eby®: 0(mod p) implies x =y =z O{mod p) sinoce
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?;-.'_1:9.). uppo 24by2 = 0(mod with x or
(p)"{p)(p For, suppose ax<4by2 z 0 p) Y
prime to p. Then, since a and b are prime to p, both x

and y are prime to p and there exists a Z such that

xz z1(mod p) and a+b(yz)25 0(mod p), ab§(byz)2=. 0(mod p)

and (=2R) - 1- :.l) _a_) P-) . Thus (& :(:-J')(B) which
(p) (p(p(p us ()= (3

contradicts the hypothesis,

g 2 2 2

2, g:ak eszq-pc'z '#pk(mod p©) for gz O0(mod p) implies

2

X=px', Y=py' and g/p:apx':z?bpy'zoc'z #k(mod p) since

(.9.'.),__(%) . Set X=x4DVy+pv'z, Y-yspv"z and g becomes

P

gt a(x+pvy+pv'z)z-tb(yqpv"z)z.»pc'zzz ax2+by29pc'zz-t2apvxye
2apv'xz+2bpv'yz (mod pz). For no choice of v, v', v*
(integral) is g'= pk(mod pz) since all integers represented
by g' are represented by g. Also, since a and b are prime
to p we may choose v, v'!', v* so that avs=t(mod p),
av! z s(mod p), bv* = r(mod p). Then g'= £#pk(mod pz)
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II. Regular forms frax2sby?+cz,

(Regular forms completely dealt with in the
references given in the tables are considered below
only when a simpler proof has been found). The forms
are numbered as in the tables.

4.£(1,1,4)"#45(8n+7), 8ne3. (This proof is contained
essentially in some notes of L, B. Dickson),

f represents all 4n+l for g=x2+y2szal(mod 4)
implies that one of x, y;ig)is even, Permute if necessary ¢
and take Z=2z to prove f- g= 1(mod 4) (see notations), and
g represents all 4n=1,

| f represents no 4n+3.

f represents all evens #%k(8n§1) for, using method
2, we find f/2:xR¢y%e2z° which represents exclusively all
A45(16n414).

5.7 =(l,l,5)§(4k(8n¢3).

For every Gqf4k(8n¢7) reference to table I shows
that there exists an x, y, z such that f:x2¢y2422=-53.

Now f=5a implies that x, y or z=0(mod 5), Thus, from

symmetry, there exists an x, y, 2=5Z such that xz¢y292523=5a
which implies x24¥2 = O(mod 5) and x= ¢2y(mod §) where one of
the signs holds. Now +x=5X+2y is solvable for X and thus da
is represented by (5X+2y)24y242522= 25X245y2+2522420Xy. Thus

oo *2=2(1,1,4)F# 4¥(8n47), 8ne3 is an abbreviation under such
circumstances for "f represents exclusively all positive
integers not of the forms given®.




57

a is represented by 5K29y2952294Xy=:X2§(2X9y)21622~g.

Conversely if g represents a, f represents 5Sa and thus

g represents exclusively all 7!4k(8n'-’7)/5 =4k(8n93)'.
6.£2(1,1,6) #95(9ne3).

f represents all evens #Qk(QnQS) for, using
method 2, we have £/2:x%4y%43z2 which from table I
represents exclusively all positive integers #bk(ﬂn'esfl

f represents all odds #bk(9n+3) for g=x24y2+322§
2(mod 4) implies xey=0(mod 2) and z=22. Thus set Xx+y-2Y,
x=-y=2X and have x2¢229622 represents all odds
#bk(gn'eﬁ)/2==9k(9n43), and none of that form.

10.22(1,1,16)#4ne3, Bne6, 32ne12, 45(8ne7).

*r represents all evens exclusively not of the
last three forms above since £/2=rX2¢Y2q822 using method 2
and results for (1,1,8).

*f represents all 8neb since g=x244y2¢4z2=f555(mod 8)
for g=5(mod 8) implies y or z is even and by symmetry we
may take y=2y!.

f represents all 8n+l. This has been proved by
Arnold Chaimovitch applying results obtained by P. 8.
Nazimov "On The Application of the Theory of Blliptic
Funczioné to the Theory of Numbers® (Dissertation, 1884)
now being translated from the Ruseian by Mr. Chaimovitch.

' his method gives a relationship between the number of
representations of a by g and 5a by f here. At some future
date the writer intends to work out the details for
geveral forme proven by this method. ‘

2gee Amer. Jour, of Math.,49 (1927), p. 43,

38ee Annals of Matk. (2), 28 (1927), p.339.
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f represents no 4n43,
ll.f:(l,l,zl)#gk(9n¢6), 4k(8n+5), 49k(49n¢7e) where e=1, 2
or 4, We apply a modification of Dirichlet's method and
lemma 7, The only other reduced positive ternary quadratic
forms of Hessien 21 are: g =(1,2,11,-2,0,0),
g -(1,5,6,-4,0,0) and g,=(3,3,3,0,-2,-2) all represent 6,
g¥=(l,3,7), g(=(2,2,7,0,0,-2) and 8k=(2’3’4’0’-2’0)
all represent 7,

Thus a form of Hessian 21 representing no 9n+46 nor
49n47 cannot be equivalent to gy (i=1, ..,6) and thus must
be equivalent to T,

I. For every integer g#3 (mod 8) and not divisible by 4,
3 or 7 there exists a form h=ax213by207cz2442ryz*429zx
equivalent to £, By lemma 7, h represents no 9n+é nor

49neTe where(%)= 1l if
(1) (32 (8)-(3) - (3)-(8) =nalf)-2.

Thus we will have proved the statement above if we can find

integers b, ¢, r and s satisfying (1) such that

2., .2

Hz21:a(21be-2121r2)-21%30e° 1.e.

(2) 63e2b - at-1 where t:=be-21r2,

(3) Now (%):(3) and (%9:(%) since at-1:0(mod 63) and thus if

conditions (1) on b are satisfied, those on ¢ will follow for:

(#)=(%)=(3) (%)= () (3) vue (a2 mma (3)=(3)- (3)(3)= (3) -

/ Bisenstein, Journal fur Mathematik, vol. 41 (1851), p.169.
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A, If a is odd take s=1l, t=8.83+21kev and b=2b'.

Then 126b' = at~l and b':4+21ke(av-1)/126. For
each a we choose a W such that (-},-7):-(%) and (%):-l. Then
there exists a vz a42(mod 4) and z v'(mod 8) such that
av-l z 126w(mod 126°21)., Then (av-1)/126=w'z w(mod 21)
and W' and thus b' satisfies the conditions on w and thus
b satisfies conditions (1). Furthermore w'!' is odd from
the choice of v and is prime to a, 3 and 7. Thus we may

and do choose k so that b' is a prime )'7.1

Then if {2‘-).—_ +1, (Q')--sl and (-;-):11 also (5’-‘)—:-1.
then (575) =(ZNPNE)-2(E)=a(EY) 15D 2)-
1) If az1l or 7(mod 8) take v'=7 or 1 respectively

and have b':z 1{mod 4) ,

' —126€b
12e)_, /2 -Ut) _ :L,)_._-i.(ﬁ :(__——):/
(—;—-)—i[;:)::ﬁl and (—z-;—)—i(/_, f/ r

2) If az 5(mod 8) take v'-7 and have b'z 3(mod 4)
-2/T _[—126b _
d( ) i'/ 7)‘{";"‘)%?")”
B, If a:=2a' where a' is odd take s=1, t=4+63+21kav.
Then 63bz2a't~1 and choose v as above (omitting the
restriction vz a+2(mod 4) and k so that b is a prime except
that this time we choose w and thus v so that(§) -1, i.e.

B-
1f (ﬁ-): 21, then(ﬁ-}: +1 and ( ) 1. Take v'-1 and have

bz 3(mod 4) and thus "/ 2)ff) = 21 ena (:E’—fjn-(i"}/gz/{‘}/,

(F)-(424)-

1 "Verteilung der Primzahlen®, lLandau, vol.l,1909,p.422.
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Thus in both cases A and B there exists an r! such that
2(21t4r'?) = 0(mod b) and we can find an r (odd in case A)
such that 21rz r'(mod b) and thus (t42lr2)/b: ¢ an integer,
II1. For every integer 3a where a= 1(mod 3), a#Zl(mod 8)

and a is not divisible by 4 or 7 there exists a form

h=3ax2+by2+'7c22-e42ryz-.-42xz equivalent to £, To prove this
we seek as sbove b, r and ¢ such that

(4) (%)=-(:9-) , (—g):(%} and (%):-l and
H-21-3a(7c-21°r%)~21% that is

(5) 21b - at-1 where t-be-63r>.

(6) Now (%) = (%) and (%): 1= (-};:) since at-1= O(mod 21) and l
thus if (§)-=-(B) the rest of (4) holds since 1:(f)-(%)(%)
and therefore (%):(:f—) . Also (;a): ($)=(§)(§):‘/%)/$)and
thue (%) = -1.

A, If a is odd, choose t:=8+63.21kev, b=2b',

'i'hen 42b' - at-1 where as in IA for any given a, v
may be so chosen that (,7) (_) b' an 4dd integer and k
such that b' is & prime >7. Then if ($)=121 we know (4)-71
and (%)= 11.

Then (29 /7/)/(2:/ *(/and(‘/) (#(7 (/2/ (f)(7/‘i'(f/

l) If az= 3 or 5 (mod 8) take v' =8 or 3 respectively
and have b' = 3(mod 4) and( %) - 41 eand thus (ﬁ/ -T-'(f“/ ("fié/l

2) If a="7(mod 8) take v'= 5 and have b'=z 1(mod 4)
and (‘%) =% 1 and (%):?{}7:("#}:(:{;,);]

B. If a=2a' where a' is odd, teke t:-4.21%k 4 v.

Then 21b=2a't-1l where v is chosen as in the preceeding case

and k so that b is a prime > 7,
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If (2)= 21, then (7/’) = ¥1 end (%) - #1 end, teking v'= 3,
bzl(mod 4).  Then(¥F (P =(H)-11 and(F)-L)H):-7(F):
L [B: (%) - 1.
Thus in cases A and B there exists a r' such that
Ttar'2: 0(mod b') and (mod D) reépectively. We may choose
an r (odd for A) such that 2lr= r'(mod d') and (mod b)
respectively. Thus (t+63r2)/b= ¢ is an integer,
III. TFor every integer 7a where a#5(mod 8), (8‘): -1 and
a is not divisible by 3, 4 or 7 there exists a form
h:’?axzobyze3022442ryz-r42xz equivalent to f, To prove
this we seek as previously b, r and c¢ such that
M (g2 (3)-(2): (3)--(5) =ne
H:21:78(3be-21%r2)-21%, that is
(8) 21b: at-1 where t-bc-49:3r>,
(9) Now (%) - (.:;):-1 and (%} - (-%} since at-1:= O(mod R1l). And
thus if (4)=(£) the rest of (7) holds since -1=(%)-(£)(£)
and thus (£)=-(£) ana () =(5)=(E)(%) (&) (£) ana thus ()= 1.
A. If a is 0dd, choose £=8:21%k 4 ¥ and b:2b'.
Then 42b' - at-1 where as in IA for any given a,
vzv!(mod 8) may be so chosen that (%)=(‘3£) and b' odd and
k so that b' is a prime » 7, (v':z a42(mod 4)).
If (3)= #1 then £).51 ena (¥)- g1

(35) = ()F)=% (%) ana (B)=(NHNF)=7(3)

1) If a= 1 or 7 (mod 8) take v'= 7 or 1 respectively.

Then b'Z 3(mod 4) and (%3)- %1 ana (35)= FE)-(¥)-1.
2) If'az 3(mod 8) take v'= 1, Then b'= 1l(mod 4)
and [‘%‘i’)= F1 and (-_z/lt): ¥ rﬁ/) =(‘f;fj=1,
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B, If a-2a' where a' is odd, take *l',—-8-21:a

k¢ v,

Then 21b = 2a't-1 where as in IA for any given a,
vz v'(mod 8) may be so chosen that (%‘):(L;’-) and k so that
b is & prime > 7. Take v'- 3, then b= 1l(mod 4) and if
(%'): ¥1, we know (£):¥1 and (¥)- %1 and(%):('%X'?? = 21
and thUS(-i’t)::F(;,t);-F(%): -(‘%#’):-(‘ﬁ:l. Thus in cases A

and B there existe an r' such that .’5ter'2_=_ 0(mod b) (for

if r' is even in case A replace it by r"- r'+4b' and have
3tar®" = O(mod 2) ). And choose an r (odd in case A) such
that 21rz r'(mod b') or (mod b) respectively for cases A
and B, and have (t949-3r2)/b: ¢ an integer,
Iv. For every integer 2la where (% = 1=(%) , a#7(mod 8)
and a prime to 3 and 7?7 and not divisible by 4, there exists
e form h=21ax2¢by2+c22442ry‘z+42xz equivalent to f. To
prove this we seek, as previously, b, r and ¢ such that
0 (3)+(5) we (3)=(g) ona
H-21-21a(be-21%r°)-21%b, that ise
(11)  21b-=at-l where t:be=(21r)%. '
Now (T;-") = (f and 1= (“) r) since at =1= 0(mod 21) and
thus (10) follows from (11) since (BI) =1 =(€)(%) « Thus
B )16 . e )=(5)
A. If a is odd, choose t: 8+21°k ¢ v and b:-2b',
Then 42b'=- at-~l and es in IA for any given a, v
may be so chossen:z v'(mod 8) where v': ae2(mod 4) such that

avelz 0(mod 21) and k so that b' is a prime > 'I.

then (43-FZ - =(%).
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1) If az 3 or 5(mod 8) take v'= 5 or 3 respectively.
Then b' = 3(mod 4) and (%3): -1 and (%)= - (F)=-(#)=(=24): 1,

2) If a=1(mod 8) take v'- 3. Then b':= 1(mod 4)
and(,,: &l)-‘-‘("‘lb):l.

B. If a-2a' where a' is odd, teke t=4-212k 4V,

Then 21b-2a't-l where as in IA, v = 1(mod 8) is
chosen so that av-1= O(mod 21) and k so that b is a prime >7.
Then b2 1(mod 4) and (3¥)=(7NF) = 1 and thus(F)-(8)=£4)-(#)-1.
Thus in cases A and B there exists an r' (odd in case A)
such that t4r'?s= O0(mod b)., And choose an r (o0dd in case A )
such that 21lrzr'(mod b) and have (t+2.12r2)/b = ¢ an integer.
V. Thus we have proved that for any a#8ne3, 9n46, 49n¢7e
(where e=1,2 or 4) not divisible by 9, 49 or 4 there is a
form h with leading coefficient g equivalent to f, Thus f
represents all such a. Furthermore it is apparent that f
represents no a excluded. Now, since f = Q(mod mz) implies
x=2y=2z=0(mod m) where m=2,3 or 7 we see that £-mof and
the proof is completed.

13, £ = (1,2, a);!4k(16n+10) . ‘
Reference to table I shows that for every 3a#ku.6n1-14)

there exists an x, y, z such that g:xzore-tzzzz da., Now
g=3a implies that x or y=0(mod 3) and thus there exists
an x-3X for which g-3a which implies y= *z(mod 3) where
one of the signs holds. Then ty-=-3Y¢z is solvable for ¥,
3a is represented by 9X°el3Y+z)242z° and & is represented

by 31242!'2e(z*Y)2~r. Conversely if f represents a, g
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represents 3a and thus f répresents exclusively all
#4%(16n'414)/3 = 4¥(16n410).
16.£-(1, 3, 10)495(9n+6), 26°(25ns5), 45(16ne42).

We apply a modification of Dirichlet's method
and lemma 7, The only other reduced positive ternary
quadratic forms of Hessian 30 are:1

g,-(1,1,30), g,-(2,3,5) which represent 6;

%;:(1,2,15), g¥:(l,5,6), sf:(2,5,6,0,0,-2),
g-(3,8,4,-2,-2,0), g=-(2,2,10,0,0,-2), g-(2,4,4,-2,0,0)
which represent 6;

and g':(2,2,8,0,-2,0) which represents 20,

Thus a form of Hessiasn 30 representing no 9n+6 nor
”5n45 cannot be equivalent to g, (i1, ..,9) and thus must
be equivalent to f.

I, For every integer a#4k(}6n§2) and not divisible by 3,
B or 4 there exists a form h:axzesbyszczzQSOryZQSOsxz
equivalent to f., By lemma 7, h represents no 9n+6 nor
25n4b if

@ (3--(3) (%) (3) = (3)-1. (§)--2
Thus we will have proved the statement above if we can find
integers b, ¢, r and s satiefying (1) such that

H-30:16a(bo-16r2) - 3.18%be2, 1i,e.

(2) 46bs?: at-2 where t-be-15r2,
(3) Now (%)=4(%) and (g)z #(¥) since at-2: 0(mod 16), and thus

1 Bisenstein, Journal filr Mathematik, vol. 41 (1861), p.l69.
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if conditions (1) on b are satisfied, those on c¢ will
fortow for: - () =(5) =(4)E) {9 =m0 (9N
and thus (g = -1.

A, If a is odd take t:=4T, b:2B, T-4°45.15kev and s-=- 1,

Then 45B-2aT-1 and B-8¢1b5aks(2av-1)/45. Then for
any given a we can choose a w (prime to 3 and 5) such that
%)= -(%) and (¥)=-1. Then for any odd v' there exists a
v=v'(mod 8) such that 2av-1=45w(mod 464156). Then (2av-1)/s

=w'z w(mod 15) and w'! and thus B satisfies the condi-
tions on w and thus b satisfies conditions (1) on b,
Furthermore w' is odd and is prime to a, 3 and 5., Thus we
may choose k so that B is a prime >5.

Take v' = 3 and have (’—g—f#(’-%z)’({)(?)({) =(,£X3§)(£)‘ '(;B)(é)
for since T is odd B: 1l(mod 4) and since (£)=1, (£)- -1,

Also (f_r_é'),(%)_—(?l') ‘

Now if(gyz +1, then from (3) and %$-4T and (1) we have(%?: ¥l,
(f;): 41 and therefore (-%): ¥l. Thus (’—%ﬂ‘ =t($)=-(“—;’.-—4)=—(;<’)= 1
and therefore there exists an r' such that l5t+r'2; 0(mod B)
and we can find an even r such that 16r= r'(mod B) which
gives (tq:lﬁrz)/ZBr c is integral.

B. If a-2a' where a'z 3,5 or 7(mod 8), let 8:2 and
t-8+45+15kev,

Then 90b = a't-1 and as above we can choose vzv'(mod 8)

so that b is an odd integer satisfying the conditions (1) on
b, and k so that b is a prime - 5,

v CLE0)=(ENZNE) - BN () (E).
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1), If a'= 3 or 5(mod 8) take v'= 5 or 3 respective-
ly. Then b= 3(mod 4), and when (2)- +1 we have/Y)- 41 and
/19 ¥l from (1) and (3).
then (%) 12)=(3(£) - ¥1 and 29 -%(%) = #( (F)-Z%) =641

2), If a'= 7(mod 8) take v'- 5., Then b=zl(mod 4) and
(22)-%1 ana (L) #(8)=(72) =(H- 1.

Thus, as above there exists an r such that t+l5r ——o(mod b)
and ¢ is integral - (t+15r%)/b.

II. TFor every integer 3a where a= l(mod 3) and af&tk(lﬁms)
and not divisible by 5 or 4 there exists a form h=Sax2+by2+
6cz2-’30ryz+305xz equivalent to f. To prove this we seek

as above b, r, ¢ and s such that

(4) (3)--(8) - (§)=(P-) and(§)= -1 snd
H=30-3a(56bc-15°r%)-(158)°b that is

(5) _ 15bs®-at-2 where t=bc-456r2,

Now (%)zls-(-g) and (g): -(%) since at-2a O(mod 16) and
thus if (%): .b-) the rest of (4) follows for (.5?.) :(:gﬁ) =(%){%):

-/-E‘-) gives (-5-)2-1 and -1 = ( ) (%‘l gives (%): -(%) .
A, If a is odd let t-4T, b-2B and T=8-152k§v, s =1,

Then 15B-2aT~1 and as above we can choose v:v'(mod 8)
so that B is an integer satisfying the condition (*fk(%) and
k so that B is a prime > 5,

Now (5" =3 )F)- (5)(I)and taking v'= 1 we have B=3(mod 4).
If (§)= 41 then (£).¥1 and (L)-¥1 and thus (). 71.
then(F)(FNE) =(F)(F) = + 1 and(F)=4(F)-4(§)- (59 - 1

and there exists an r' such that r'245t = 0(mod B) and choose




67

r, even, such that 15r= r'(mod B) and have (45r2-et)/23= c
is an integer.

B. If a:2a' where a'z 1,5 or 7(mod 8) take s=2 and
£-8+15%Kkev .

Then 30b = a't-1l and as above we can choose
vzv'(mod 8) so that b is an odd integer satisfying the
condition (?)=(?) and kX so that b is a prime > 5,

1), If a'= 1 or 7(mod 8) take v'=7 or 1 respective-
ly. Then b: l(mod 4). When(%? = +1 we have @H:;l,égﬁ:zl.
moue (F)- (D) - 1+ (5)- 7 end ()-@F) = 7 () (¥~

2). If a': 5(mod 8) take v'-7 and have bz3(mod 4).
then (39)> 31 ana (F-E)NF)-7(F) = 3(8) (771

Thus in both cases there exists an r' such that
r'2¢5t = 0(mod b) and we choose r such that 15r= r'(mod b)
and have (45r2at)/b= c.

I1II. For every integer 5a where (%):-l, aZ10(mod 16)
and not divisible by 3 or 4 there exists a form n=5ax24by"+
50z2*50ryz+SOsiz equivalent to £, To prove this we seek
as above b, r, ¢ and s such that

O Q3 - (5 -(2) e (g2 e
H-30-5a(3bc-16°r2) - (166)%b, that is

(7)  15bs®:at-2 where t-be-75r%.
Now ()= (%) and(£)--(£) since at-2:0(mod 15) and thus
(£)= 1 and if (4)=-(%4) the remaining conditions (6) hold
ror (£)=(49)=BN5)=-(3)(5) = - (%) =nd tnus ($) = 1 and
@ -1= (8)(%) eiving (&) =(5) .
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A. If a is odd let t=4T, b=2B, T-8.15°kev and s-1.

Then 16B-=2aT-1 and as above we can choose
vr 3(mod 8) so that B is an integer satisfying the
condition (3)- -('%ﬁ) and k so that B is a prime > 5.
If(%): +1, then (36),_ +1, (Bt)= ¥l and thus(—’—’: “2)(£)- g):zl.
Mo Z)-(FNF)- (N F)= +(R)A) (H =1
Thus there exists an r' such that r'243t: 0(mod B) and
choose r, even, such that 15r: r"(mod B) and have
(75r2~tt)/‘o:o is integral,
B. If az2a' where a'Z 1,3 or 7(mod 8) take s=2,
t:8'152k#7.

Then 30b =a't-l and as above we can choose
v:v'(mod 8') so that b is an odd integer satisfying the
condition (3)=-(%) and k so that b is a prime > 5.
If (&) 1, then (£). 41 =(%) ana
‘ 1) If a'z 1 or 7(mod 8) take v':7 or 1 respectively.
Then b= 1(mod 4) and("’g) ={£)(5)/7%) -‘—‘g): ':1 and thus

(35)-B)F) = #(8)=(3*

2) If a'= 3(mod 8) take v'-1., Then b= 3(mod 4)

i T

and /’%’): +1 gives (’%9: 3(?):1 and thus in both cases as |
above there exists an r such that (76r®et)/b= ¢ is an
integer. ‘ |

IV. Por evéry integer 15a where (—:‘): -l,(%) = 1, g¢l4(mod 186)
and not divisible by 4, there exists a form.hrlbaxzobyzoczzo
30ryz+30sxz equivalent to f. To prove this we seek as

above b, r, ¢ and s such that
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© (3-(3) wa (33 e
2) )2

H:30 -16a(be~15°72)-(158)°b, that is

(9) 15bs°- at-2 where t=bo-(15r)<.
Now -(%)=(3'§): -1 and l:-(%):(f) since at-2z0(mod 15) and
thus (8) holds if b is an integer for (%)= 1=(4)(£) implies
(3)=(5) ana (£)=-1=(B)(5) 1impiies -(£)-(L) .

A. If a is odd let t-4T, b:-2B, T-8.15%k 4 v and s-1,

Then 16B-2aT-1 and as above we can choose v:z1l(mod 8)
so that B is an integer and k so that B is a prime > 5,
Then (%’)=/%)($)=(,I)/£) z ol and[%}: -{%): -(’7:'9)= _—;,’; :1 and an
r' exists such that ter'? = 0(mod B). Choose r even so
that 15r:zr'{mod B) and have (t-’lszzrz)/23= ¢ is integral.
B. If a-2a' where a'= 1,3 or 5(mod 8) take 8:-2 and
£:8.16%k + v,

Then 30b- a't-1] and as above we can choose
vz=v'(mod 8) so that b is an odd integer, and k so that b
igs a prime > 5,

1) If a'= 3 or 5(mod 8) take v'= 5 or 3 respective-
ly. Then b= 1(mod 4) and(Z-FH)N(E): 1 and(F)(8)-(22)-1.

2) If a'= 1(mod 8) take v'-3, Then b= 3(mod 4),
(;/o)t 1 and (f)=1. Thus in both cases there exists as
above an r such that (t+416%r2)/b-c is integral.

V. Thus we have proved that for every a#9n+8, 25n45 nor
16ne2 there is a form h with leading coefficient a equiva=-
lent to £, Thus f represents all suoch a. Furthermore it

is apparent that f represents no a excluded. Now
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f = 0(mod m?) implies x* ys z - O(mod m) for m=3 or 5.
Also f£=0(mod 4) implies z = O(mod 2) and thus all
X eéyzf 0(mod 4) and thus by the corollary to lemma b,
every multiple of 4 represented by f is represented with
x and y even, Thus f=m?f where m<2,3 or 5 and the proof
is complete.
17.¢ - (1,5,8)#4ns3, 8ne2, 26%(26n410).
Lt represents all 4nel#25k(25n'310) as is shown

by reference to table I and g:x®45y2e2Z2 = 1(mod 4) implies
Z=2z, i.e. g:-f=l(mod 4).

f represents no integers of the forms excluded.

f represents all z6(mod 8) not of the form 2&(2511310).
Proof: £z 6(mod 8) implies x4y : O(mod 2) and thus x+y=-2X,
is solveble for X and f/2 - g= 2X243y°+422-2Xy. The only
other reduced positive ternary quadratic forms of Hessian
20 are: forms of minimum 1 and gl=(2,2,6) which repre-
sents 5, two forms representing no odds and gé=(3,3,5,2,2,2)
which represents no 4n¢2 for 3x293y2*32292y2§2xz+2yxz
O(mod 2) implies that one of X, ¥, z is even and the other |
two both odd or both even, From symmetry take x-2X,
y+2=2Y, y-z=2Z which are solvable for X, Y and Z and g,
becomes 12X2’8Y2¢42298XY#2(m0d 4). 8ince we wish to prove
that g represents all az 3(mod 4) not of the form

25k(25n!5), for such ar a we form

‘Bisenstein, Journal fur Mathematik, vol.41 (1851), p.169,
agee Annals of Math, (2), 28 (1927), p. 340.
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i hzaxzeby2¢4cz244ryz*4sxz where b =Z3(mod 4).

Now h represents no 4n+l and thus is not equivalent to

a form with minimum 1 or to gy h represents an odd and

thus ie not equivalent to either of the forms representing

only evens, h represents as4b=2(mod 4) and thus is not

equivalent to go. Thus h is equivalent to g if we can

find integers b= 3(mod 4), ¢, r and s such that
H-20-4a(bc-r2)-4bs®; that is

2=at--5 where t=bc-r2.

bs
1. If a is prime to 5 let s=1, t=4T, T-5ke2,

Then b-4aT-5= 3(mod 4), b=20ak+8a-~-5 and since 20a

i - and 8a~b are relatively prime we can and do choose k so
\ that b is prime. Then () =(FL)-)1F)-1E--(E)-
and there exists an r such that ts+r<= O(mod b) and
(t+r®)/b = ¢ is an integer.

II. If a:5a' where a'=5we2.0 Take b=4a'T-%, s-1j2a’,
T-5ke1,

Then 5=5a'(bc-rz)-b(l!4a'e4a'2), i.e., 5¢b =
a'b(5cf4-4a')-5a'r2, b=20a'keda'«8 and choose k so that
b is a prime, Replace 5¢b by 4a'T above, divide through
by a' and have 4T+5r2= bP whe:e P-5c¥4~4a'z 23(mod 5)

gince b-4a'T=5= 43(mod 5) and bP=4T = 4(mod 5) provided we

can find integers r and P such that 4T05r2=-bP. Further-

1 This is an example of Dickson's modification of
Dirichlet's proof, See Bull, Amer., Math, Soc,, 33
(1927), p. 65.
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more since s4-4a'= 43(mod 5) we know if P, integral,
exists, P:=5c¥4-42' is solvable for ¢, an integer. Thus

it remains to find an r such that 4T+45r°=z 0(mod b).

Yow (5= T)(E)=(B)-()=-(B)=-1.GD- )= 13 -5
Thus(%??:].and such an r exists.

111, Thus we have pro%ed that for every a:z 3(mod 4) and
not of the form 25n45 nor divisible by 26 there is an h
having leading coefficient a which is equivalent to g.
Thus f/2 represents all such a. Since f= O(mod 25) im-
plies xz y:= 2= 0(mod 5) we know f=26f and the proof is

complete.

’f represents allz O(mod 4) not of the form
25k(25n310) for £f=0(mod 4) implies x:2X, y-2Y and thus
f/4=>X295Y2*222 which, from table I represents exclusively
all positive integers f25k(25n210).

20.f = (1,2,6)#4k(8n05).

I
k) w7

"
Apply method 1 (see proof for form 13) to prove

that for every 3af4k(8n+7),g=x2§2y2*222 represents 3a with

2=3Z, x= 1y(mod 3) where one of the signs holde. Thus

(EXey)zezyzelazz represents 3a and a is represented by
2X2¢(X¢y)2¢622~'f. Also if f represents a, g represents
3a and thus f represénte exclusively all #lk(8n§7)/3 =
4¥(8n'+5).

¥ See Annals of Math, (2), 28 (1927), p. 340,
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R2.f=(1,2,10)#8na7, 25k(25n35).

f-a=z0(mod 2) implies x=2X and f/2=g=2X24y245z2
which reference to table I shows represents all and only
those positive integers not of the form 25k(25n'310).

f represents no 8nas?.

f represents all 4nel%25k(25n35) for if gz2(mod 8)
Y and z are even and thus 2x294Y292022 represents all
z2{mod 8) not of the form 25k(25d310).

f represents all 8ne3,
Proof: The only other reduced rositive ternary quadratic

forms of Hessian 20 are: g-(1,1,20), g;:(l,4,5),

g,=(1,4,6,-4,0,0), gq:(2,2,5) which represent no
8n¢3‘[gs;x2§(2y-z)21522] ; &-(1,3,7,-2,0,0) which repre-
sents no 4n42 since 35r=3x2+(3y-z)2¢20z2#2(mod 4);
g‘-_(2,3,4,0,0,~2) which represents no 4n+l since 2g‘=(2x-y)2-1
5y2eazg#2(mod 8); two forms which represent no odds: and
g7=(3,3,3,2,2,2) which represents no 4n+2 (see proof for
form 17)., Since we wish to prove that f represents all
az3(mod 8) where a is not of the form 25k(25ﬁ35) for such

an a we form

h=ax24by2+022+2ryz¢23xz where b : 2(mod 4).

Now h represents an 8n+3 and thus is not equivalent to

g (i:1,.,4) nor to the forms which represent no odds. h
represents b=2(mod 4) and thus is not equivalent to gg nor
gye h represents a+bz 1(mod 4) and thus is not equivalent

to gg. Thus h is equivalent to f if we can find integers
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b:2(mod 4), ¢, r and s such that

2
H=20=a(be-r>)~bs".

I. If a is prime to 5 take t=2T, b=2B, T:=40k+1l, s=1
where t:bc-rz.
Then B-aT-10-40ak+11a~10z 7{mod 8) and since 40a
and lla-10 are relatively prime we choose k so that B is-
: =1y _paT _[-l2 ,5 Ty _
an odd prime. NOW(E)—/:&—‘):—(%):{%)—{ T)-(f)s(f) = 1 and

thus there exists an r' such that ter'S= O0(mod B)., Choose

rzr'(mod B) and even and have (t-’rz)/bzc is an integer,
II. If az5a' where a'=5w+2 z 7(mod 8) let b=2B, B-a'T-10,
T-40k+5%4, s:lzza' and r=2r',
Then 2o=5a'(bc-r2)-b(132a')2.
10:5a' (Be-2r'2)-B(1s2a")%,

Then B:a'T-10-a'(40k+5¥4)~10=40a'ke (5¥4)a'~10: 5(mod 8)
and since 40a' and (5¥4)a'-10 are relatively prime we choose
kX so that B is a prime > 5,

We then have from the above: lOr'za'+lO4B:a'B(6c4'4-4a')
=a'BP where P=5c¥4~4a', Substitute a'T for 104B on the
left, divide through by a' and have lOr'z-t'l‘:BP where
Pz#2(mod 5) since B:a'T=2(mod &) and BP=T:41(mod 5) pro-
vided we can find integers r' and P such that 1(11"24T=BP.
Furthermore since ‘4‘4-45'5 ¥2(mod 5) we know that if P,
integral, exists, P-=5c¥4-4a' is solvable for ¢, an integer.
Thus it remains to find an r' such that 10r'%4T= 0(mod B).
How(BDGNENE): (3)=-1 1F) 68 4D D= 1B 42D 1D 2
Thus(_/’/‘r):l and there exists an r* such that 10T+r"®: 0(mod B),

choose 10r'z r"(mod B) and have (T-thr'z)/B=P an integer.
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III. Thus we have proved that for every az3{mod 8)
and not of tune form 25k(25n35) ﬁor divisible by 25
there is an h having leading coefficient a which is
equivalent to f, Thus f represents all such a, Since
fz O{mod 26) implies x:z y:zz z0(mod 5) we know f:25f
and the proof is complete.

23.f=(1,2,16)#8n+5, 8n47, 16n410, 4k(16n+l4). (This proof
is contained essentially in éome notes of L.E.Dickson).

f represents all 8n+l, 8n43 for g=x2+2y2*4zgsl or
3(mod 8) implies Z=2z and thus g-fzl or 3(mod 8) and
reference to table II shows that g represents all 8nsl
and 8n+3,

f=-2a implies x 1is even and f/2=2xz¢y2+822 which
reference to table II shows represents all #8n95,4k(8n+7)
thus completing the proof, since f represents no 8ns+5,
8ns7,

25.f=(1,4,4)#4n+2, 4n+3, tk(ane7). (This proof is contained
essentially in some notes of L. E. Dickson),

The only odds represented by f are of the form |
4n+l and g-x24y2+42%-f = 1(mod 4) since gzl(mod 4) implies
x or y is even and thus f represents all 4n+l since g
does from table I,

f-2a implies x is even and thus f-4F where F=x2+
y2+22. Thus f represents no 4n+2 and represents all

multiples of 4f4k(8n¢7) and none of the form 4X(8ns7).
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26,f=(1,4,6)#16n+2, 9k(9n+5).

f-2a implies x=2X and f/2=2X2¢2y29322 which, from
table II, represents exclusively all #8nsl, 9k(9n+6).

f-a an odd integer. Then consider g=x2+y2¢6z2
which represents exclusively all fék(9n+3) and gz 1l(mod 2)
implies X or y even and thus g-=fzl(mod 2),

27.£=(1,4,8)#4n+3, 4ns2, 4°(16n+14), (This proof is contained
essentially in some notes of L. E. Dickson),

f=2a implies x=2X and f/‘t;‘-xzﬁyzelzz which represents
exclusively all ¢4k(16n+14). Thus also f#4n42,

f -a an odd integer implies a = l(mod 4) and g:xz-t
y2+822 represents all 4n+l, gzl(mod 4) implies X or y is
even and thus g-fz1l(mod 4) and f represents all 4n+l.

28.f =(1,4,12)7#4n+2, 4ns3, Qk(gn*é).

£=2a implies x=2X, f/4=X%+y®43z° which represents
exclusively all positive integers #@k(9n+6). Thus also
f#4na2,

fra an odd integer implies a= 1(mod 4) and g-x°+

zéa implies 2=22, g represents all positive odd in-

%y2+3z
tegere.fbk(gnfé) and thus f- gzl(mod 4) represents all
4n'41795(9n46),

20.£=(1,4,16)#4n+2, 4ns3, 16n+12, 45(8n47).
f:2a implies x-2X, £/4:X%4y°442° which represents
exclusively all positive integers #4n+3 nor 4k(8n+7). Also
then, f#4n+2,
f-a an odd integer implies a=1l(mod 4). g=x24+y°4162°

represents all 4n+l, g=l(mod 4) implies x or y even and thus
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f=g=1(mod 4) and f represents all 4nsl.
30.£=(1,4,24)#4n+2, 4n4+3, Qk(9n+3).

f=2a implies x=2X, f/l=129y2Q622 which represents
exclusively all positive integers'#gk(gnQS). Thus also
f#4n+2,

f-a an odd integer implies azl(mod 4),. g=x294y2$6z2
represents all a (#1(mod 4)) #Qk(9n+3). g=a implies z=22
and thus g=fzl(mod 4) and f represents all 4nel#9k(9n'e5).

31.f=(1,4,36)#4n+2, 4na3, 9n43, 4k(8n+7).

f-az0(mod 3) implies x=3X, y=3Y and £/9:X244¥%442°
which represents exclusively all positive integers #4ns+2,
4n+3, 4k(8n¢7). Thus also f#9ns3,

f-az0(mod 2) implies x-2X and f/4-X°4y°49z° which

‘ represents exclusively all positive integers ¥9n15,4k(8n+7).
f represents no 4n43., It remains to prove
f represents all a=zl(mod 4) prime to 3. Now f is
equivalent to x2*4(y+32)2+362%a?+2y242(Gzey)z. We prove
that all 4nel prime to 3 represented by g=x2*2y2¢222, that
is, all 12n+l, 12046 are represented by x2+2y242(6z4y)°
and thus by f.

1) a=12n+4l, g=z1l(mod 12) implies y:Z(mod 2) and yz22(mod 3

where one of the signs holds and thus 6z¢y=4Z is solvable
for z,

2) a:12n4b. gz 5(mod 12) implies y: Z(mod 2) and, by
interchanging y and Z if necessary, we may take x:= 3y(mod 3y

where one of the signs holds and Z is prime to 3., Since g
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represents all 12n45 we know that for any a=12n+5 there

exists a Z such that x2+2y2:a-22%50(mod 3). Thus by

theorem 9 (with p=z3, b=2) we know that a-2z° is represented

by x2¢2y2 with x and y prime to 3, Thus there exists a

solution of g=a for which y: $2(mod 3), 624y =4Z is solva-
ble for z, and the proof is complete.
43.f:(2,3,8)#8ns1, 32ns4, Qk(9n+6).

fza an odd integer implies az43(mod 8), g=2x2+2y2+
3z2:a implies that either x or y is even and thus
ﬂ g:fz #+3(mod 8) and f represents all such a #Qk(9n46) since
g does,

f:2a implies y=2Y, f/2-x°46Y°+42° which represents
all and only those positive integers not of the form 16n+2,
9k(9n+5).

32.f=-(1,6,16)#9k(9nes), 8nt3, 16n+2, 64n48,

fra an odd integer implies az+l(mod 8). g=x%46y2s
42% 8 then implies 2:=22, g:fszl(mod 8) and thus f represents
all 8ngl exclusively not of the form 9k(9n§5).
f-2a implies x:2X, f/2:2X2’3y2e822 which from the

proof preceeding represents exclusively all positive

integers #8ngl, 32n+4, gk(sn*e) thus giving the desired
result for f.
33.£2(1,8,8)#6n+5, 4n+2, 4n+3, 4k(an*7). (Thie‘proof is con-
tained essentially in some notes of L.E.Dickson).
£z2a implies x=2X, f/4:X%42y%42z2 which represents
exclusively all positive integers #4k(8n+7). Thus also
f#4ne2 .,
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f=za an odd integer implies a= 1(mod 8). g=x2+

2Y2ﬁ22%:a implies ¥Y=2y, 272z and thus g=fzl(mod 8) and f
represents all 8n+l, since g does,
34.f=(1,8,16)#8n45, 4ns+2, 4n3, 4k(16nel4). (This proof is
contained essentially in some notes of L. E. Dickson),
f-2a implies x=2X, f/%=X2f2y2+4zz which represents
exclusively all positive integers #4k(16nel4). Thus also
f#4ns2,

fza an odd integer implies a:l(mod 8). g:x2¢8y2+
4z°- a implies 2:22 and thus g:fzl(mod 8) and f represents
all 8n+l since g does.,

35.£(1,8,24)#4n42, 4n+3, 45(8nes).

f represents all 8n+4l for consider g:x2+2y2+6z3:8n41
implies y = z(mod 2). Thus y<43z%: 0(mod 4) for g-8n+4l and
the corollary to lemma b, (d-2, b-3, p:2) applies to prove
that g represents 8ns+l with y and z even (since g repre-
sents all 8n¢l) and thus f represents all 8n+l.

f represents no 8n45, 4n+3, 4n+2.

f=4a implies x=2X, £/4=X%42y°462z° which represents
exclusively all positive integers not of the form 4k(8n¢5).

37.£:(1,8,40)74n43, 4n42, 8n45, 32n428, 25k(25n35).

fza an odd integer implies azl(mod 8), g:-x2+2y°%
10z°: a implies y-2Y, z:-2Z and thus f-g:1l(mod 8) represents
all 8nel not of the form 25%(26ne5).

f-2a implies x-2X, f/4=X242y2+1023 which represents
all positive integers exclusively not of the forms 8n+7,

28%(26n45).
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39.f=(1,16,16)#4n42, 4n+3, 8ns+5, 16n+8, 16ns+12, 4k(8n+7).
f=a an odd integer implies a:zl(mod 8). g-=xS+4y<s
1622 - a implies y=2Y and thus f-g=zl(mod 8) represents all
8n+l since g does.,

£-2a implies x=2X, f/4:XZ44y°+4z°

which represents
exclusively all positive integers not of the forms 4n+2,
4n+3, 4k(8n¢7).
40.7=(1,16,24)#4n+2, 4na3, 8ns5, 64n48, gk(gnea).
f-a an odd integer implies azl(mod 8). g:-x744y<s

2

6z = a implies y=2Y, 2=2Z and thus f-gzl(mod 8) represents

all 8nsl not of the form Qk(9ne3) since g does.
f-2a implies x-=2X, f/1=X2+4y2+6z2 which represents
eXclusively all positive integers not of the form 16n+2,
Qk(gnos).
41.£=(1,16,48)#4n42, 4n+3, 8n+5, 16n+8, 16n+12, Qk(gneﬁ).
f-2a implies x-2X, f£/4=X244y2412z2 which represents
exclusively all positive integers not of the forms 4n+2,
4na 3, Qk(gnﬁé).
f represents no 4n+2, 4n+3, 8n+d5 obviously, It re~

mains to prove

f represents all a=8n+1#9k(9n'¢6). We know that
for any such a there exists an x, y, 2z such that g=x244y24
122°_ a., Now gzl(mod 8) implies y= z(mod 2). Thus
y24322- 0(mod 4) for g-8nel and the corollary to lemma b,
(a-4, b-3, p-2) applies to prove that g represents 8nsl
with y and z even’if 8n¢1#9k(9n'¢6) and thus f ;epresents'a.

43, Ses immediately preceeding the proof for form 32,




81

44;f=(2,5,6)¢4k(

Consider g=x°+3y2410z% 2a#9%(9n+6), 25%(25n420),

8nal), gk(9n+3), 25k(25n310).
4k(16n92) » Reference to table I shows that g represents
all such 2a, Now g=2a implies x:y(mod 2) and thus the
corollary to lemma b applies (d=1, b=3, p=2) to prove
that g represents 2a with x-2X, y=2Y and thus g/2:f repre-
sents all such a,

46,f=(3,8,8)#4ns1l, 4n+2, 8n+7, 32n+4, 9k(9ne6).

f=2a implies x:=2X, f/4=3X%42y°42z°% which represeits
exclusively all positive integers 7#8nsl, Qk(gn*G). Thus
also f#4n42,

f-a an odd integer implies aZ 3(mod 8)., g=3x2%42y24
2z° = 3(mod 8) implies y=2Y, z=2Z and thus f:gz3(mod 8)
represents all such a not of the form 9k(9n+6).

47.£2(5,8,24)#4%(8ns1), 4ne2, 4ne3, 95(9ns3), 26%(25ns410).

f represents all 8n15:a%9k(9n+3), 25k(25n310) for
g:2x2*6y2+5z2=-a implies xzy(mod 2) and thus the corollary
to lemma b applies to prove that, since g represents all
such a, it represents a with x and y even (take p=2, b=3,
d=2) ‘and thus that f represents all such a.

f represents no 4n42, 4n43, 8n+l obviously,

! f=2a implies x=2X, f/4=5X242y24622 which represents

exclusively all positive integers #lk(enol), 9k(9n¢5),
26%(26n410). Also f#4ne2.

49.1=(1,3,6)#3042, 45(16ne24).
Every integer (positiye);a¢4k(16n+14) nor 3n+2 is repre-
sented by g:szyzezzz. For every such‘a, f-a implies
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x2; yzs zz(mod 3) or x%#&z(mod 3). Thus, on account of
the symmetry in x and y there exists a gsolution of f-a
with y= ¢z(mod 3) where one of the signs holds. ‘Then
¥4z = 3y 1is solvable and a is represented by xZQ(SYhz)ze
222=X2Q3(ZQY)2Q5Y2 which is equivalent to f and thus f
represents all such a and none others.
50.£=(1,3,9)#95(9n46), 3ns2,

f-a prime to 3 implies a= 1(mod 3) and g=x°43y°s
2°Z 1(mod 3) implies x or z=0(mod 3) and thus £ g=1(mod 3)
represents all 3n+l since g does.

f=3a implies x=3X, f/3=5X29y2*322 which represents
exclusively all positive integers not of the form 9k(3n+2).

52.7=(1,3,18)#3n+2, 9n46, 4k(1en+1o).

f-a prime to 3 implies a= 1l(mod 3) and g=x%43y°s
2z°z 1(mod 3) implies z-3Z and thus f£-g=1(mod 3) repre-
sents all 3n4l not of the form 4k(16n§10) since g does.

f=3a implies x=3X, f/3=3X24y21622 which represents
all positive integers not of the forms 3n+2, 4k(16n414)
and none others,

53.f:(1,3,30)f9k(3n42), 25k(25n310), Lk(16n¢6).

Reference to table I shows that g:x2¢5y2e10z2
represents exclusively all 3a#9k(9nQ6), Zbk(25n35),
4¥(16n42). But g-3a implies x-3X, z=3Z and thus g/3= f
represents all such a and none others.

65.£=(1, 6, 6)78n83, 95(3n42).
Reference to table II shows that g=3x242y242z2
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represents exclusively all 3a#8nsl, 9k(9n+6). But
g=3a implies y-3Y, 2z-3Z and thus g/3-f represents all
such g and none others,

56.£-(1,6,9)#45m42, 95(0ne3).

fza prime to 3 implies aZl(mod 3) and g: x°4+6y°42< a
implies x or z Z0(mod 3) and thus f-gzl(mod 3) represents
all 3n+l since g does,

f=3a implies x-3X, f/3=3X292y2+322 which repre-
gents exclusively all positive integers not of the form
Qk(Snol).

69.f=(2,3,6)#3ns+1, 4k(8n+7).

Applying method 3 as for form 49 we see that every
integer a#4k(8n+7), 3n4l is represented by g-x°+2y<+2z°2
with x= 3y(mod 3). Then 3x=&Xey is solvable for X and
have a is represented by 6X2¢5(y+x)292z2 which is equiva-
lent to f,

(Note: this proof may also be made using the
corollary to lemma b on the form g'= x243y°462° = 0(mod 2) ).

57.£=(1,6,18)#3n42, 9n+3, 4k(an+5).

f-a prime to 3 implies azl(mod 3) and g-x2+6y°4
2222 1(mod 3) implies z=3Z and thus f:g=1(mod 3) represents
all 3n+l not of the form 4k(8n+5) since g does.

£f-3a implies x:3X, f/3=3X%42y%462% which, from
above, represents exclusively all positive integers not of
the form 3ns+l, 4%(8n+7).

7L.2 = (2,3, 12)#16n46, 9%(3n41).
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f=a an odd integer, Consider g:2x2¢3y2+322: a.
Then y or z is even and thus f-gzl(mod 2) and f represents
all odds not of the form Qk(anl) and none such since g
does,
£=2a implies y-2Y and £/2:x°46Y%462z° which repre-
sents exclusively all positive integers not of tae forms
9k(3n+2), 8n+3.,
58.f:(1,6,24)#8n13, 9k(5n,2), 32n412,
fza an odd implies a2z +l(mod 8), Now g=x2*6y2+
6z2351 or 7(mod 8) implies y or z is even and thus
f:gzgl(mod 8) represents all such a not of the form
9k(3n92) since g does,
f-2a implies x:2X, f/2=2X243y2+1222 which, from
above, represents exclusively all positive integers #16n46,
Qk(3n+l).
59.7=(1,9,9)79n43, 3ne2, 4°(8ne7),
f=a prime to 3 implies a®l(mod 3) and g=x2e+y°sz<%a
implies that two of x, y, z arez O(mod 3), Thﬁs = g=1 (mod 3)
represents all such a not of the form 4k(8n+7) and none
such,
f-3a implies x-3X, f/9:X29y2ez2 which represents
exclusively all positive integers<#4k(8n¢7). Thus also
££9ns2 3,
60.£:(1,9,12)#3n+2, 4043, 9%(ons6).
fza prime to 3 implies aZ 1l(mod 3)., g=xR+y2+121z2s
azl(mod 3) implies x or yz O(mod 3) and thus f-g=zl(mod 3)

and thus represents all such a not of the form 4n+3.
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f=3a implies x=3X, f/3=5X2*3y2Q4z2 which repre-
sents exclusively all positive integers not of the forms
4nel, Qk(3n¢2).
77.f:(3,3,7)#4k(8n+1), Qk(5n+2), 49k(49n47e) where e=3,5 or 6,
Reference to table I shows that g:xz’y2+21z2 repre-
sents all Sgﬁlk(8n+3), 9k(9n+6), 49k(49n+2le) where e=3, 5
or 6., But g:3a implies x:=3X, y=3Y. Thus g/3=f which
therefore represents all such a and none others,
61.f=(1,9;21)#3n+2, Qk(9n46), 4k(8nf3), 49k(49n17e) where
. ezl, 2 or 4.
fza prime to 3 implies a: 1(mod 3). Then g-xRay<s
212°- az 1(mod 3) implies x or y:z0(mod 3) and thus
fzgz1{mod 3) represents all 3nel not excluded above and
none excluded.
f-3a implies x-3X, £/3=5X2¢3y24722 which from above
represents exclusively all positive integers not of the
forms Qk(3n+2), 4k(8n¢l), 49k(49nf7r) where r=3, 5 or 6.
78.£: (3,3,8)74ne1, 8ne2, 95(3nel).
f-a an odd integer implies a:= 3(mod 4)., Now

2+3y2+2z2=a implies 2z:2Z and thus f-=gz3(mod 4) repre-

g=3x
sents all 4n43 not of the form Qk(3n+l).
f-2a implies x:z y(mod 2) and applying method 2 we
have f/2:aX2i3Y2+4z2 which represents exclusively all
positive integers not of the forms 4n+l, Qk(3n¢2).
62.7:(1,9,24)£3n42, 4n+3, 8ne6, 95(on43).
fza prime to 3 implies az l(mod 3). Now g:x2+yze

2

242z - a implies x or y= O0(mod 3) and thus f-gzl(mod 3)
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represents all 3n+l not of the forms 4n+3, 8n46 since g
does,
f=3a implies x:-3X, f/3=5X2+3y2¢822 which, from thae
preceeding proof, represents exclusively all positive
integers not of the forms 4n+1l, 8na2, 9k(3n+l).
65,f:(1,24,24)#4n+3, 8n+5, 4n+2, 32n+l2, 9k(3m2).
fza an odd implies aZ 1(mod 8). g:x2+6y29622: a
implies y:=2Y, 2z=2Z and thus f-g:l(mod 8) represents all a
not of the form 9k(3n+2).
fz2a implies x-2X, f/4=X2+6y2+622 which represents
exclusively all positive integers not of the forms 8n+3,
9k(3n+2). Thus also f represents no 4n+2.
82.2:(3,8,24)73ne1, 4nsl, 4ne2, 45(8ns7).
f= 2a implies x-2X, :/4=3X212y2*622 which represents
exclusively all positive integers not of the forms 3nsl,
4k(8n*7).
f#4n+l, 4ne2, 3nel, 8ne+7 obviously. It remains to
prove
f represents all at 3(mod 8) not of theform; Znel.
g:31292y206z2.=a implies y = z(mod 2) and thus the corollary
to lemma b applies to prove that, since g represents all
such a, it represents a with y and z even (p=2, b-c, d:=2)
and thus that f represents all such a.
66.£:(1,24,72)#3n+2, 9ne3, 4n+3, 4ne2, 45(8n46).
fza prime to 3 implies azl(mod 3)., g=x"+24y%¢
8z% - az 1(mod 3) implies z:3Z, and thus frgzl(med 3) repre-
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k
sents all 3nsl not of the forms 4n+3, 4n42, 4 (8n+5)

since g does,

f=3a implies x:=3X, f/5:3X248y2424z2 which, from
the preceeding proof represents exclusively all positive

k
integers not of the forms 3n+l, 4n+l, 4n42, 4 (8n47).

69. See immediately following the proof for form 56.

70.£2(2,3,9)£3ns1, 9ne6, 45(16ns10).

fza prime to 3 implies a:z 2{mod 3). g:2x2+3y2ez2=a
then implies 2-3Z and thus frgz2(mod 3) represents all

3ne2 not of the form lk(16n+10) since g does,
f=3a implies x:3X, £/3:6X%4y°43z° which represents
exclusively all positive integers not of the forms 3n+2,

4¥(16ns14).

71. See immediately following form 57,
k
72.£=(2,3,18)7£9 (9n+6), 3n+l, 8n+l,

f:a prime to 3 implies az 2(mod 3), 24 3y°

+3y"+
a then implies x or z Z O0(mod 3) and thus f:g:l(mod 3)

g=2x
222:

represents all such a not of the form 8nsl.

fz3a implies x=3X, f/5:6x2¢y24622 which represents
exclusively all positive integers #Qk(3ne2), 8n+ 3.

73.£2(2,3,48)#16n46, 8ns+l, 64ne24, 9¥ (3ne1).

fza an odd integer implies aE:S(mod 8).

g=2x2e
Syzelzzzz

a then implies z=2Z and thus f-g:+3(mod 8) repre-
sents all such a not of the form 9k(3n¢1) since g does,
f=2a implies y:-2Y, f/2=x?96!292432 which represents

exclusively all positive integers not of the form 8ns3,
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k
32n+12, 9 (3ns2),

74.£=(2,6,9)#3ns1, 9n+3, 4k(an+5).

2 o2

fza prime to 3 implies az 2(mod 3), g=2x“46y~as
zz: a then implies 2:3Z and f-g:z2(mod 3) thus represents
all 3n42 not of the form 4k(8n+5).

f=3a implies x:3X, £/3=6X2*2y293z2 which repre-
sents exclusively all positive integers not of the forms
dnel, 4k(8ne7).

76.£2(2,6,15)79% (3ne1), 25%(25n45), 45(8ne3).

Reference to table II shows that g=2x295y2*622
represents all Sa¢9k(9n43), 25k(25n:15), 4k(8n¢9). But
g:%a implies x:=3X, y:-3Y and thus g/3 :-f which thus
repregents all such a and none others,

77. See immediately following proof for form 60.
78, See immediately following proof for form 61.
80.f=(3,4, 36)#3n+2, Qk(9n46), 4n+l, 4na2.

f-a prime to 3 implies a: l(mod 3), g:3x2+4y2e
422: a implies y or 2z O(mod 3) and thus f-gzl(mod 3) and
f represents all 3n4l not of the form 4n+l, 4ne+2.

f=3a implies y=3Y, f/3-x%412Y°412z° which repre-
sents exclusively all positive integers not of the forms
4n+3, 4na2, 9k(3n+2).

81,f=(3,8,12)74n+1, 4n42, 9k(3n¢l).

f-a an odd integer implies aZz 3(mod 4). g=3x298y2’

3z°: a then implies x or z= O(mod 2) snd thus £-g=3(mod 4)

represents all such a not of the form 9%(3nel).
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2

f=2a implies x=2X, f/4=3X 92y2*3zz which repre-

sents exclusively all positive integers not of the form

Qk(Snel). Thus also f#4ns2,

82, See immediately following the proof for form 65,
83,f=(3,8,48)#4n+1, 4n42, 64n+24, 8n47, gk(3n+1).
fza an odd integer implies a = 3(mod 8). g:5x2+
8y2912z%:a then implies 2z=2Z and f£rgz3{mod 8) represents
all such a not of the form Qk(3n+1) since g does,

2§2y2*12z2 which repre-

fz2a implies x-2X, f/4:z3X
sents exclusively all positive integers #16n46, 9k(3n+1).
Thus also f#4n+2. |
84.f=(3,8,72)#3n41, 8n47, 4n+l, 4n+2, 32ne+4, 9k(9n+6).
fza prime to 3 implies az2(mod 3). g=3x?+8y2§822= a
jmplies y or z = 0(mod 3) and thus f=gz2(mod 3) represents
all such g not of the forms excluded since g does.

2 which repre-

£=3a implies y=3Y, f/3=x2424Y%424z
sents exclusively all positive integers #4n+3, 4n+3, 8ns+5,
32n+12, gk(3n42).
85.f=(3,16,48)#4n+1, 4n+2, 8ns7, 16ns4, 16n+8, 9k(5n42).

Reference to table II shows that g=x2+16y2+4822

fepresents exclusively all 3a#4n46, 4n+3, Qk(9n+6),16n124,
16n+12, 8n421, But g=3z2 implies x:3X, y=3Y and thus
g/3:=f represents all such g and none others.
86.f (8,9,24) #3nsl, 4ne3, 9ne3, 4ne2, 45(8nab).
. ; - = 8x%4 y° 2,
fza prime to 3 implies az2(mod 3). g=8x“+y“+24z%: 2

then implies y=3Y, f:gz2(mod 3) thus represents all such a
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not of the forms excluded and none excluded.

f=3a implies x=3X, f/3=24X243y29822 which repre-
sents exclusively all positive integers #4nel, 3n+l, 4ne2,
4k(8n47).

87.f=(8,15,24)7#4n+1, 4ns2, 4k(8m3), 9k(3m1), 25k(25n35).

Reference to table II shows that g=24x2+5y2*8z2
represents exclusively all 3a74n+3, 4ns6, 4k(8n*9),
gk(gn-»s), 25k(25n315). But g=3a implies y=3Y, 2=3Z and
thus g/3 =f represents all such & and none others.

88.f=(l,5,5)7‘5ﬁ§2, 4k(8n1-7).

Applying method 3 as for form 49 w68 see that
every integer a#%k(8n+7), 5n42 is represented by g=x29y2+z2
with y2+225 (mod 5) i.,e., with yazzz(mod 5) where one of
the signs holds. Then 5Y42z= 4y is solvable for Y and a
is represented by X2Q(5YQZZ)2?Z%=X2?5Y215(ZQZY)Z which is
equivalent to f,

89.f=(l,5,10)#25k(5n32). ‘

Reference to table I shows that g=x2¢2y?+5=2 repre-
sents all 5@#25k(25n310). But g=b6a implies x=8X, y=5Y and
thus g/5ff represents all a#?ﬁk(Snzz) and none others,

90.£(1,5,25)#5n42, 251410, 45(8ne3),

f=a prime to 5 implies a= 41(mod 5). g:x2¢5y202%=a
then implies x or zz= O0(mod 5) and thus fzgz ¢ 1(mod 5)

represents all such a not of the form 4¥(8n+3) since g

does,
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f=5a implies x=5X, f/5:5X24y2+5z2 which represents
exclusively all positive integers #bns2, 4k(8ne7).
91.f=(1,5,40)#4n+43, 8Sns+2, 26k(5n:2).
Reference to table I shows that g:xzeﬁyzeBZz repre-
sents exclusively all 5a#8ns10, 4n+15, 25°(25ns10). But

g-5a implies x:=5X, z:=5Z and thus g/5:f represents all such

a and none others,
92.f2(1,5,200)#5n42, 4n43, 8n42, 25k(25n310). \\\

fmet f-a prime to 5 implies aZ +1(mod 5). g=x245y°+8z% a

”M~¢%&z then implics 2:52 and f=gz #l(mod 5) represents all such &
not of the forms 4n+3, 8n+R since g does,

f=6a implies x=5X and f/5=5X24y2+40z2 which repre-

sents exclusively all positive integers not of the forms

4n+3, 8ns2, 25%(5ne2).
93.72(1,10,30)#9"(9ne6), 25%(5n42), 45(8ne5).
Reference to table II shows that g:2x2+6y2+6z2
represents exclusively all Sa#Qk(QnQ5O), 25k(25n310),

k
4 (8n425). But g=5a implies x=8X, z-5Z and g/5-f repre-

gents all such g and none others.,
94.f=(l,21,21)¢©k(3n+2), 4k(8n¢7), 49k(7n+e) where e:3,5, or 6,
Reference to table I shows that g=x2+y2+2122 repre-~
sents exclusively all 21af4k(8n+l47), Qk(9n+42),49k(49n+213)

where ez3, 5 or 6., But g=2la implies x-21X, y=21Y and

thus g/21-f represents all such g and none others,
95.2-(1,40,120)74n42, 4ne3, 45(8ne6), 9%(9nes), 25¥(6ns2),

Reference to table II shows that g=5x3+8y2+24zz
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represents exclusively all 5a#4n4+10, 4n+15, 4k(8n+25),
9k(9ne30), 25k(25n:lo). But g=ba implies y=5Y, 2z=52 and
g/5=f represents all such a and none others,
96.1(2,5,10)#8n43, 25%(5ne1),

Reference to table II shows that g:x242y2¢10z2
represents exclusively all 5a#8n+15, 25k(25n35). But
g=5a implies x=BX, y-5Y and g/5-f represents all such a
and none others,

97.£2(2,5,15)#0%(9n43), 26"(5ns1), 45(16ne10).

Reference to table I shows that g:x2§3y2*10z2
represents exclusively all 5a#9k(9n415), 25k(25n35),
4k(16m50). But g-5a implies x=BX, y:=5Y and thus g/5:=f
represents all such a and none others,

98.f:(3,7,7)#©k(9n46), 49k(7n+e), 4k(8n¢5) where e-1,2 or 4.

Reference to table I shows that g=x2+y2421z°
represents exclusively all 7@#4k(8ne35), Qk(9n¢42),
49k(49n+7e) Where ezl, 2 or 4, But g=7a implies x=7X,
y=7Y and g/7=f represents all such a and none others.

99.f=(3,7,63)#3n42, Qk(gnéﬁ), 4k(8n+5), 49k(7n+e) where e-l,
2 or 4.

Reference to table III shows that g:x2+9y2421z2
represents exclusively all 7a#3ns+14, 9k(9n¢42), 4k(8n+35),
49k(49ne7e) where e-1,2 or 4., But g=7a implies x=7X, y=7Y
and g/7-f represents all such a and none others,

100.£=(3,10, 30)#9%(3ne2), 25%(5ns1), 4%(8n47),

Reference to table IV shows that g:x2+10y2¢30z2
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X
represents exclusively all 3a#9 (9n46), 25k(5n33),
4¥(8n421), But g:3a implies x=3X, y=3Y and g/3:f repre-

sents all such a and none others.
k k
101.£2(3,40,120)#4ns2, 4nel, 4(8n47), 9" (3n42), 25 (5nsl),
Reference to table IV shows that g:x2¢40y29120z2

represents exclusively all 3a¥4n+6, 4na3, 4k(8n+21),

Qk(9n96), 25k(5n:3). But g-3a implies x=3X, y:=3Y and g/3=f

represents all such a and none others,
102.f=(5,6,15)#9k(3n+1), 25k(5n32), 4k(16n+14).

Reference to table III shows that g=x293y2+3022
represents exclusively all SQ#Qk(5n¢5), 25k(25n310),
4*(16n470). But g=5a implies x:5X, y=5Y and g/5=f repre-
sents all such g and none others,

103.£=(5,8,40)#4n42, 4n+3, 8n¢l, 32n412, 25k(5n31).

Reference to table II shows that g- x°48y°+40z°
represents exclusively all 5a F4n+15, 4n+10, 8n45, 32n+69,
26k(25n35). But g=Ba implies x:=5X, y=5Y and g/5=f repre-

gents all such a and none others.
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III. Regular reduced positive forms f=ax29b12+czz+ryz+

sxz+txy i.e.(a ,b,e,r,s,t) of Hessian <20,

(Regular forms completely dealt with in the refer-
ences given in Table V are considered below only when a
simpler proof has been found.%Also, since the proofs are
similar to those in the prece@iing paragraph, only the
essential details are given below),

104.22(1,2,2,-2,0,0) #45(8n45) . (H=3).

Using method 1 we see that all and only the 3a
represented by (1,1,1) are represented by g=x2-9(5Y+x)2-9
(:’:Z-ex):a and g/3= (x#YeZ)292Y2+2ZZ -2YZ is equivalent to f,

lOS,f:(l,l,l,l,1,1)#4k(16n*14). (H=4/8).

We know g=3x2+y2+822 represents all multiples of
4f4k(16n¢10), since 3x24y2422'%z 0(mod 4) implies Z':=2z.
g=12a implies Y42 = 4y is solvable for Y if the proper
sign is taken, and 2X+Yez=x is solvable for X since
x4y £ 9(mod 2) and thus all 123,#4"(16-:1’10) are represented
by g':ﬁ(ZXQYhz)ze(3Y§z)2¢822 and g'/12=f. This is an
applidation of Method 1,

106.f = (1,2, 3,-2,0,0)}‘25k(25n35) . (H=5).

Apply method 2 to prove g= yz-tzxz’bzz:(zY-z):ZQsza-
652°= 0(mod 2) and g/2=f.

107.f = (1.1,1.0.0.r1)#9k(9n’6). (B=6/8) .

1 i.,e. f represents exelusively all positive integers not
of ths form 4X(8n45),
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" 2 2
Apply method 2 to prove g=(1, 3,4)=(2X-y) +3y +

4z25 O(mod 2) and g/4-f.,
108,.f=(2, 2, 3,2,2,2)#4k(8n+1) . (H=7),
Using method 1 we note that every 7a%4k(8n+7) is
represented by g-x%+y24z2., Now f£-7a implies x=y=z2=0(mad?)
or xa#y%#z%£x2(mod 7) for suppose y?=z2(mod 7); then f=7a

implies x2;5y2(

mod 7) which is impossible unless

xz y=zo(mod 7)., Therefore there exists a solution X,¥,2
such that xzfzyzf 422(mod 7) and thus xz44y(mod 7) (where
one of the signs holds) and x=2bz(mod 7) where b is #1 or
-1, Then 2Yy=7Y42x,-bz=7243x are solvable for Y and Z and
7a is represented by g'=x2¢(7Y§2x)24(7Z+3x)2 and g'/7 of
Hessian 7 represents exclusively all a#4k(8an). But f

1s the only reduced form of Hessian 7 and minimum 2 and

{ » thus f is equivalent to g'/7.
109.£2(1,3,3,-2,0,0)#4n+2, 45(16ns14). (H-8).

f represents all 4af4k(16n¢l4) for, from the proof
for form 105, we know g=3x29y29822 represents all
12a#4k(16n+10) and for g=12a, 3Y~-z=:y is solvable (for
one of the signs) and thus all such 12a are represented
by 3x%4(3Y-2)%4822 and thus g/3=f,

It remains to prove that f represents all odds.

The other reduced forms of Hessian 8 are h=(1,1,8),

h'=(1,2,4) and g'=(2,2,3,-2,-2,0) all of which represent
2. For every odd a we prove the existence of a form

h“:axzoby2¢4czaf4ryz¢4xz equivalent to f. If a+b=0(mod 4),
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h" represents no 4n+2 and thus is not equivalent to h, h!

or g', Thus h" will be equivalent to f if we can choose

integers b= ~a(mod 4), ¢, and r such that
H-8:a(4bc~4r2)-4b,

That is, brat-2 where t=bc-r2,

Let t:8kev and have b=8ak +av-~2 where, for any a and odd

v, k may be chosen so that b is a prime,

1) If az3(mod 4) take v:1. Then bzl(mod 4) and(F)=(¥)=(3)- 1.

2) 1f azl(mod 4) take v=5. Then bz3{mod 4) ande?:%%ﬂ:-;?-l.

zet; 0(mod b)

Thus in both cases an r exists such that r
and thus (rzqt)/b:'c is an integer and h® exists equiva-
lent to f. Thus f represents all odd a, Furthermore
)ﬂ since h"™ represents no 4n42, f represents no 4ns+2,
110.£2(2,2,3,~2,~2,0)#4ns1, 16116, 45(16n+14). (H=8).
2f:(2x-z)2¢(2y-z)294z2 #2(mod 8) and thus f repre-
sents no 4nsl.

f represents all 4n+3 since X24Y2+422;6(mod 8)
implies 2x-z= X, 2y-z=Y are solvable for x and y.

f represents all 2a#16n+6, 4X(16ns14) for f:-2a
implies z=2Z and f/2:(x=2)24(y-2)%4422 which is equivalent
to (1,1,4).

lll.f=(1,2,5,-2,0,0)7‘4k(8n+7). (€= 9).
By Dirichlet's proof for the form g:xzﬁyz’zszr

. k
every 9a not of the form 4 (8n¢7) nor divisible by & there
is a proper representation of 98 by g, i.e. 9a is repre-

sented by g with no factor common to all three of x,y and z.
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Then since g=4g, for every 9a}‘4k(8n+7), there exist
integers x,y and z having in common no prime factor
greater than 2 such that xzfy?’ezz_-.-ga. Now g=9a and

any one of x, y, 2=0(mod 3) implies x=y =2z 0(mod 3) and
thus there exist x,y,z all prime to 3 such that xzeyzéz%:a
and making use of the symmetry of g in X, y and z we have
further that there exists a solution x, y, z of g=9a for
which x, y, z are prime to 3 and 4x22y22z2(mod 9), i.e.
such that 2x= 4y(mod 9) (where one of the signs holds)

and 2bx = z(mod 9) where b is <1 or -1 since 2xZ -y(mod 3)
and 2x = y(mod 3) implies yz= O(mod 3) and similarly for
2bxz z(mod 9). Then 4y = 9Y42x and bz-9Z42x are solvable
for Y and Z and 9a is represented by g!:xzo(QYHZx)zé
(9Z-ei?ac)2 and thus g'/9 of Hessian 9 represents exclusively
all positive integers ;‘4k(8ne’7). The only reduced forms
of Hessian 9 and minimum 1 are f and h=(1,1,9) and
h'=(1,3,3). Now h does not represent 3, h' does not
represent 2 hota of which are represented by g'/9 which
also represents 1 and thus g'/9 is equivalent to f,
112.2:(2,2,3,0,0,-2)#3nsl, 4°(8n47). (H=9).

Apply method 2 to prove g=(1,3,5)=(2x-y)2-»3y2*6z25
0(mod 2) and g/2:=f.
128.£=(1,3,7,-2,0,0)#4ne2, 26°(25n45). (E=20).

The only other reduced positive ternary quadratic
forms of Hessian .20 representing an odd asre: g =(1,1,20),
g=(1,2,10), g - (2,2,6), g :(2,3,4,0,0,-2) all of which
represent 2; ;’-:(1,4,5) and g= (1,4,6,-4,0,0) which
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represent 6; g7:(3,3,3,2,2,2) represents no 4n+l for
gzan odd implies that one of x, y, 2z is odd and the

other two both odd or both even., From symmetry take x

odd, y+2=2Y, y-z=2Z which are solvable for Y and Z and
gn becomes 5x2*9Y24-422+4xY¢ 1(mod 4).

Thus a form of Hessian 20 representing no 4n+2
and representing a positive integer = 1(mod 4) cannot be
equivalent to gy (i=1, ..,7) and thus must be equivalent
to £ if it represents an odd.

I. For every odd a #25k(25n35) and not divisible by 25,
there exists a form h=ax29by2+4czze4ryze4sxz equivalent to

f. h represents no 4n+2 if we choose b so that a+bz0(mod 4)

) and since by this choice either b or a is=1(mod 4) we

will have proved our statement if we can prove the existence

of integers b= ~a(mod 4), ¢, r and s such that
H-20-a(4bc-4r2)-482b; tnat is
azb=at-5 where t=bc~r2.

A, If a is prime to 5 take s=1l,

1) If a=1l(mod 4) take t=4T, T=20k-3. Then b-80ak-12a-5%

3(mod 4) and, choosing k so that b is a prime we have

(P {D-AE)(F)=-F)1.

2) If az 3(mod 4) take t:2T, T=20ke1l, Then b=40aks22a-52

5(mod 8) and, choosing k so that b is a prime we have
(D-(ED=AD ) HF.

B. If ac5a' where a'z42(mod 6)., Take s8-8 and have
5b-att-1,
1) If az 1(mod 4) take t:4T, T-100ksv where v. is chosen
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£l(mod 4) and so that 4va'z 21(mod 25). Then b=80a'ks
(4a'v-1)/5= 3(mod 4) is prime to 5. Choosing k so that
b is a prime and noting that 4va'=Z 21(mod 25) implies
(’—‘C)=(§)= -1 we have(%)’/’gr)r-[;br) =[5.T3’) =1,
2) If a=z 3(mod 4) take t=2T, T=100ks+v where v is chosen
£1{mod 4) and so that 2va'z 6(mod 25)., Then b=40a'ks
(2a'v-1)/6 = 1(mod 8) is an integer prime to 5. Choosing
k so that b is a prime and noting that 2va'z 6(mod 25)
implies(%) =[3—£) = 1 we have (’—z—r)s(f):é,l?-)zfgkl.
Thus in cases A and B an r exists such that

(ter2)/b is an integer ¢,
II. ©For every 4a¥26n46 and not divisible by 25 there
exists a form h=4ax2¢4by29c2294ryze25xz equivalent to f.
h represents no 4n42 if ¢ is odd for h=0(mod 2) implies
2=2Z and h=0(mod 4), Since for ¢ odd either c+2s or ¢
is 21(mod 4) if s odd and a 4nsl is thus represented by
h we will have proved our statement if we can prove the
existence of integers b, r, an odd ¢, and an odd s such
that

H=20=4a(4bc-4r2)-4b32; that is

b5224at-5 where t=bo-r?, Take r=2r' and

2

have t=bec-4r'" and t and b odd will insure us that c 1is

odd if it exists,

A, If a is prime to 6§ take s=1, t=20ke3 and have b=8Qaxe

12a-8. Choosing k so that b 1s a prime we have (gt) {2}

:%):-(.'g) = 1.
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B, If a=5a' where al;zz(mod 5), take 8-5, t-100kav
where v is chosen = 3(mod 4).so that 4a'v= 16(mod 25).
Then b-80a'ke(4a'v-1)/6 is prime to 6 and k may be chosen
go that b is a prime. Noting that 4a'v= 16(mod 25) implies
(%):{%): -1 we have (;Zz):(—f-): “{éf-—é) =~(#)= 1.

Thus in cases A and B there exists an r" auch taat
t+r“2§70(mod b) and since either r" or r"4b is even we
know there exists an r' such that t44r'25f0(mod b) and
an integer c=(t+4r'2)/0b exists,

III. Thus we have proved that for any a odd or= O(mod 4)
and not of the form 25n45 nor divisible by 25 there is a
form h with leading coefficient a equivalent to f and
) representing no 4n+2, Thus f represents all such a and
no 4n+2. Now 3£=3%x24(3y-2)2420z2= 0(mod 5) implies x=5X
and 3y-z=6Y and 3f/5=15X245Y%4422=0(mod 5) implies
z =0(mod 6) and thus y= 0(mod 5) we have f = O(mod 25)
implies x=y =z = 0(mod 5) and f=256f thus proving that f
represents exclusively all positive integers not of the
forms 4n+2, Zbk(25n!5).
113.£-(1,1,2,1,1,1)#26%(26ns5), (H=10/8).
Consider g-=form 128, Then from above 33:3x2+

(5y—z)2120z350(mod 4) implies x¢3y-z=x4y-2 = 0(mod 2) and

thus xey-z==2X, z=-Z are solvable for X and Z. Thus
g-(2Xay42)243y°+72%42y2 = 42,
114.£2(1,2,6,-2,0,0)74%(8n45).  (H=11).
As in the discussion for form 111, 1la#4*(8ns7)
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is represented by g=x2*y2¢zz with x, y, z prime to 1l for
g=lla and z=0(mod 11) implies x= y=0(mod 11). For
such a solution (x, y, z prime to 11) there exists a b
such that ('bx)z':" 1(mod 11), Then f=1lla implies (by)24

2552(bz)2 (mod 11) or

)2

(bz)25 10(mod 11) and thus (Dby)
= 1(mod 11)

{

(bz)zE 1{mod 11) and (by)zs (mod 11) or (by
and (bz)zE 9(mod 11). Thus, making use of the symmetry

of g in x, y and z there exists a solution X, ¥, 2 of
g=lla (x, y, z prime to 11) such that 5x2;y%szz(mod 11) or
such that x25y2(mod 11) and z2=9x2(mod 11). But z<%9x<
(mod 1) implies 5z°%=x2(mod 11) and, thus on account of
symmetry, the second case is included in the first and

we have that there exists a solution of g=lla with x, y, z
prime to 11 such that x2=y2=5z2(mod 11) 1i.e. x=4y(mod 11)
(Where one of the signs holds) and x=4cz(mod 11) where o

is #1 or «1, (Note that this is also true of f=1la with
Xx=y=2z=0(mod 11) ). Then 4y=11Yex, 0z=11Z43x are
solvable for Y and Z and lla is represented by xa+(llthx)2+
(11243x)2=g! and thus g'/1l represents exclusively all
positive integers not of the fornm 4k(8n45), and is of
Hessian 11, The only reduced positive ternary quadratic
forms of Hessian 11 are f, &:z(l,l,ll) which represents no

11(11nee) where (%)= -2 and g,=(1,3,4,-2,0,0) which

represents no 1ll(llnee) since 3g = 3x24(3y-z)24112°%. Thus
neihher}gr nor g, represents 22 which is represented by

g'/1l thus proving that g'/1l is equivalent to f.




102

115.8=(1,4, 4, -4,0,0)#4n+2, 4ne3, 95(9ne6). (H=12).

g=x2¢y2+32%:af.0 or 1(mod 4) implies x¢z= O(mod 2)
or y+z= O(mod 2), From symmetry take yez = O(mod 2) and
have 2Y-z =y is solvable proving g- £= 0 or l{(mod 4).

116.£=(2, 3, 3,2,2,2)#8n41, 4k(8n+5). (H-12).

Apply method 1 as for form 104 for 3a represented
by g;x2¢y294zz and find that 3a is represented by 4x°4
(3Y¢x)2e(3Z¢x)2: g' and g'=3f' where f' represents
exclusively all positive integers not of the forms 8nsl,
4k(8n+5). ‘The only reduced forms of Hessian 12, minimum
2 and representing an odd are f and g"=(2,2,3) which does
not represent 6 which is represented by f', Thus f' is
equivalent to f,

117.f=(1,1,2,-1,-1,o)¢%k(9n+3). (H=12/8) .
g:x29y2+62250(m0d 4) implies x=y=2z(mod 2) and
thus x:2X-2z, y=2Y-z are solvable for X and Y and g/4=f.
118.f:(1,1,2,0,0,-1)f4k(16n+1o). (H=12/8).

From the proof for form 106, g:x2¢5y2¢822 repre-~
gents all multiples of 4#4k(16n¢10). g=4a implies 2X~y-x
is solvable for X and g/4=f.

119.f=(1,3,5,-2,0,0)f4k(16n*2). (H=14).

Uee method 1 as for form 108 with 7af4k(l6nol4)
represented by g:2x2§y2+22 and find that there exists a
solution g=7a with x= ¢y(mod 7) (where one of the signs
holds) and z=2bx(mod 7) where b is 41 or -1, Thus
2y=-1TT¢x and bz=7Z¢2x are solvable for Y and Z, and 7a is
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represented by g'=2x29(7ka)2e(7Z92x)2 and g'/7 represents
exclusively all positive integers not of the form
4k(16n+2). The reduced forms of Hessian 14 and minimum

1 are f, h=(1,1,14) and h'=(1,2,7). But h and h' repre-

sent 2 which g'/7 does not represent and thus f is equiva-
lent to g'/7.
121.f=(2,2,5,0,0,-2);!9k(9n-93), 25k(25n310), 4k(8n+1). (H=15).
g=x295y2e10z2:2a implies x=2X-y is solvable and
g/2=f.
122.1‘.‘:(2,3,3,0,0,-2)#4k(8n+l). (H=15).
Apply method 1 as for form 13 with 5&#4k(8n43)
represented by g=5x29y2*zz and find there exists a solution
) for which 2=32, 4y=3Y¥-x are solvable for Y and Z for one
of the signs, and thus 3a is represented by gh=5x24(3Y-x)2f
9z2 and g'/3=f. |
123,£=(1,4,5,-4,0,0)78n42, 8n+3, 32n412, 4k(8n+7). (H=16),
£=x24 (2y-2)24422 obviously represents no 4n43,8n42,
f represents all a= 6(mod 8) for g=X29Y214z2=a
implies 2y-2=Y is solvable for y and g=fz6(mod 8),
f=4a implies x=2X, z=2Z and f/l=X29(y-Z)21422. It
remains to prove

f represents all azl(mod 4). g-a implies X#Y(mod 2).

If g=a with z odd permute X and Y if necessary and take Y
odd having 2y-zzY solvable for y. If g-a with z even,
permute X and Y if necessary and take Y even having 2y-z=Y
golvable for y. Thus in any case 2y-z=Y is solvable for y

and g =f = 1(mod 4),
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, .
124.£=(2,3,3,-2,0,0)7#8n+1, 4 (8ns7). (H=16).
The only other reduced positive ternary quadratic

forms of Hessian 16 and minimum greater than 1 are

g=(2,2,5,-2,-2,0) which represents no 4ne3 since 2g:(2x-z)2e
(2y-z)2e82%£6(mod 8) and g'=(3,3,3,~2,-2,~2) whicn repre-
sents no 4n+2 by the same reasoning applied to g, in the
proof for form 17, and a form g" which represents no odds.
We secek to prove first

f represents all a=8n¢3, For sueh an a we con-
struct h:axzeZbyzeaczzqaryz¢8xz with bE:l(mod 4), Now h
represents no 8nzl, it represents a 4n+3 since either a or
2bea 18 =3(mod 4) represents a an odd and thus h is equiva-

lent to f if we can find, for every a=8n43, a bzzl(mod 4)

and integers ¢ and r such that
| H:16=2(16bc-16r2)-32b, that is

2b-at-1 where t=be-r?,
Take 1=8ke+v where va =3(mod 4) and have b=4aks(va-1)/2.
For aEE:S(mod 8) take vzl or 3 respectively and have
bz4l(mod 4) and, choosing k so that b is a prime, have
(i?)ﬁ%ﬁ =i%%9)=l. Thus an r exists such that rzetzo(mod b)

2et)/b determines ¢ as an integer. Also, since h

and (r
represents no 8n+l nor 8Sn-1l, f represents no integers of
~that form,

f=2a implies y+z = 0(mod 2) and applying method 2

we get £/2:(1,2,4),
) 126.£:(3,3,3,2,-2,~2)#4n4+1, 4ne2, 45(8n47). (H=16).
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fza an odd or even integer implies one of X, Y,2
is odd or even respectively and the other two both odd
or both even. By symmetry we may take y+z = 0(mod 2) and
have y+z-2Y, y-2=2Z are solvable for Y and Z and all and
only the integers represented by f are represented by
g=3%x%44Y°+82°%- 4xY=2x74 (2Y-x)%2822. Thus the only odds

represented by f are = 3(mod 8). And we see that g-(1,2,8)

1

3(mod 8) or =0(mod 4).
126.f=(1,1,3,1,1,1)#4k(64n+56), 4n+2, (H-16/8). (This proof
is contained essentially in some notes of L. E. Dickson),

We first prove that f represents all odd integers
a. 2f is the only reduced form of Hessian 16 with all
coefficients even., Thus we seek a form h=23x2¢2by2¢2czze
2ryz+2xz of Hessian 16; that is, we wish to find integers
b, ¢, r such that

H;16=2a(4bc-r2)-2b; that is,

b-at-8 where t=4bc-r. Take t-32k, k-2Tsl,
b=8b' and have b'-4ak-1 = 3(mod 8) and T may be chosen so
that b' is a prime. Then@?)#’%ijs(z’f—}:(:%'):(f): 1 and an
r'=2r exists such that te4r2§ O(mod b), and thus (t¢4r2p%:c
an integer.,

It remains to prove that f represents exclusively
all evens not of the form 4k(64nQ56), 4n+2. Now f= xzoyzo
Raxyexz +yz = (14x)(ley)(1ez)exyz+l = 0O(mod 2)., Then if
any one of x, y, 2z is odd, xyz = 1(mod 2) and all are odd.

Since x, y, 2z are all odd or all even we may set
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Xz=Za2X, y=-2-2Y, 2:2 and get f/4-g where g is form 105,
Thus also f#4n+2.
127.f=(1,l,3,0,0,-1)#9k(3n+2). (H=18/8),

Apply method 2 to g=(1,3,12) letting x-2X~y to
prove g/4:=f.

128, See immediately following the proof for 112,
129.£-(2,3,4,0,0,-2)#4n+1, 25%(25ns8). (H=20),

Apply method 2 to g=(1,5,8) letting x=2X-y to
prove g/2=f,

131.£=(3,3,3,2,2,2)#4n4l, 4na2, 25k(25n35). (H=20).

As in the proof for form 125 all and only the
integers represented by f are represented by g=3x2+8Y24
4Zze4xY. Thus f represents no 4n<+l, 4n+2.

g and therefore f represents all az3(mod 4) not
of the form 26%(265n45) for 2g-(4Ysx) 45324822 and y'245x°s
szzis(mod 8) implies 3y‘=4Y+x is solvable for Y where one
of the signs holds.

g=2a implies -x=2X is solvable for X and g/4:-g'
where g' is form 106 (with x and z interchanged).

131.£2(1,1,3,-1,-1,0)/45(16n46). (H=20/8).
g-x24y72452°%:0(mod 2) implies xey+z:= O(mod 2) and
thus that xey+z:2X, ~x4y+2=2Y are solvable for X and Y
and g/2:=f,
132.r=(1,2,2,2,1,1)#26%(25n210), (H=20/8).
Form 106;: g=x%42y24322-2yz:0(mod 2) implies z-x:=2Y,

z4x=2Z, y:=-X are golvable for X,Y and Z and g/2:f.
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IV, Certain regular reduced positive forms f:ax2+by2*czz+

ryzesxzstxy i.e, (a,b,¢,r,s,t) of Hesgian >20,

(No attempt is made to prove the forms not included
in this list are irregular though such is in general true
for forms of Hessian <50, Also, since the methods used
are the same as those in the preceeding sections, proofs
are abbreviated to a minimum).

133,f=(1,4,7,~4,0,0)#4n+2, 9k(9n+3). (H=24).
f=x2e(2y-z)2¢6z2:ggo,l,s(mod 4) where g:X21Y24622
for g=1(mod 2) implies XZY(mod 2) and thus for any
solution X, Y, 2z we can interchange X and Y if necessary
so that Yez = 0(mod 2) and 2y-z:Y is solvable; and gz0(mod 4)
» implies XzY¥zz(mod 2) and 2y-z=Y is solvable.
f represents no 4n+2,
134.£2(2,2,7,-2,-2,0)#4ns1, 8ns6, 95(9n43). (H:=24).
2f= (2x=2)%4 (2y~2)24122°% X4 Y24122°26 (mod 8).
f#1(mod 4) since 2f#2(mod 8). £/2=(1,1,12),.
135.f2(3,3,3,0,0,-2)#4n+1, 16n+2, 45(16n410). (H=24).
3f=(3x-y)2+8y299z22 X2+8y2’9z2_—‘_' 0(mod 3) and X2+
ayz-egzz:gdz-fayz'rzzzo(mod 3) since g= 0(mod 3) implies
X or 2% 0(mod 3),
136.f=(1,1,4,0,0,-1)#4n+2, Qk(9n¢6). (H=24/8).

£-x24 Yo Xy E(my)z-xys O(mod 2) implies x:=2X, y=2Y
and f/4-g where g is form 107. It remains to prove

) f represents all odd integers a> O not of the form
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Qk(9n96). The only reduced forms of Hessian 24 and all
coefficients even are 2f and g=(2,4,4,2,2,2) which repre-
sents 4. We exhibit a form h with all coefficients even,
of Hessian 24 representing no 8n+4 and having 2a as the
leading coefficient:
1) If a is prime to 3 bnd odd) take
h:2ax298by2920z2+l&ryz*sz which represents no
8ne4 if c¢ is odd since h52ax2¢20z2+2xz;z(x+z)2423~l)x2+
(2c-l)22(mod 8) and h=0(mod 4) implies x=zz=0(mod 2) and
thus h=0(mod 8)., Thus we seek integers b, ¢ odd, r such
that
H:24:2a(16bc-64r2)-8b; that is
b:-4at-3 = 1{mod 4) where t=bc-4r°, Taxe
t=12k41 where k is chosen so that b is a prime and thus,
since t is odd, ¢ is odd if it exists. Then (:.% ~(%)(;ﬁ):
(%)::l and there exists an r':2r such that t+4r25,0(mod b)
and h 1is determined.
2). If a=z3a' where a'Z l(mod 6) form

h:6a‘x2+8by2 2

4202448ryz+6xz which, as above, regpre-
sents no 8n+44 if ¢ is odd and will be determined if we can
find integers b, r and an odd c¢ such that

Hz24-B6a16bc-1444472)-72b; that 1is,
2

3b=4a't-1 where t-bc-36r~. Take t-12k+l cho.s:ing

X so that b-4a'kse(4a'-1)/3= 1(mod 4) is a prime and taus,
gince t is odd, ¢ is odd if it exists. Then (.33./:(%):(%2)-_

:El.).-l and r':6r exists so that t+36r< = 0(mod b) and h s
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determined.
3) We have proved that f, then, represents all odd
integers a#9n+6 nor divisible by 9. Now fs(x¢y)24z2(mod 3)
and thus f =0(mod 3) implies z=3Z and x=3X-y are solvable
and £/3=3%P4y%4122%-3Xy = 0(mod 3) implies yz 0(mod 3)
implies x=0(mod 3) and thus f/9=f and the proof is
complete.
137.£=(2,3,5,0,0 ,-z);-‘zsk(snzl). (H=256),
2f:(2x-y)2¢5y2¢1022:(1,5,10)2 0(mod 2) using method 2.
158.1‘:(1,2,2,-1,0,-1);4169k(169ne13e') where e'=1,3,4,9,10 or
12, (H=26/8). (This proof is contained essentially in
some notes of L, E. Dickson), Since 2f is the only
reduced form of Hessian 26 with all coefficients even it
is sufficient to exhibit, for any aflsgk(lsgmlse'), not
divisible by 169, a form h=2ax2¢2by2§Zczz+2ryz¢23xz of
Hessian 26, That is, we seek integers b, ¢, r and s such
that
H:26=2a(4bc-r2)-2b92.
1) If a is prime to 13 let s=1 and have bzat-l3 where

t=4be-r®, Let t=4T where T-13ks2 and, choosing k so that

b is a prime, have (-;t}:(:/,r)-‘—(;é)—’ ,{,;_2) —“"Z,‘,Z}—‘ 1.

2) If a=1l3a' where a'=2,5,6,7,8, or 1l(mod 13) i.e.
(%%:r-l. Choose an even integer e so that s=zl-ea' is
divisible by 13. Then bel3+ar®-a'bP = 0 where P-4-l3cs
2e-eza'. Take b-8a'm=13 where m is prime to 26, Replacing

only the first b by its value and cancelling a' we get
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8ms13r°-bP= 0, Hence 8m(l-a'P)= 0 and a'P= 1(mod 13).

To show that v=P-Zese”a! is divisible by 13, note that

a'v = (l-ea')z.— szgo(mod 13). Also v will be divisible by
4 and hence will yield an integer ¢ if r is even, so tnat
P is divisible by 4. It remains only to show that
-8°l£’>m:—’x2(mod b) is solvable, TFor, since b is prime to
13 we can add a multiple of b to one root x and obtain a
root x divisible by 13, If it be o0dd we add 13b and get a
root x713r, r even, We have("b/z'}: I,/ﬁ%) ;ééi):(%ﬁ}:{_,'_;l ’

(Lb"—):/}né)ﬂf’}, (‘8;3"')—.1. Thus we have proved that f represents

all positive integers a#lsgk(lsgnel:Se') and not divisible
by 169, where (f—;—):—l.

£/13:g:6X%45Y242224 5XYaX2-Y2 for £= (xe6y)°
2(ze3y)2(mod 13). But 2 and -2 are quadratic non-residues
of 13, Hence f = 0(mod 13) if and only if X+6y and z43y
are, Then x=22413X, y=-z413Y and f£=13F where F-=2z2-13zVs
1ax2926Y2e13xr whence F represents no residue of 13 (and
f#169n+13e'). Replacing z by Z243Y and then Y by Y-X we
get g.

£2169f for by its origin g=F=2(Z+3Y-3X)3(god 13).
Hence g is divisible by 13 if and only if Y-X44Z413y. Then
g-13g!' where g'——X2MXZ+622§15X¥¢392y-p65y2. Replacing in
turn X by x-2Z, x by x-6y, 2 by 2-3y, y by -y, we get f,
thus completing the proof,
139.£2(1,6,6,-6,0,0)73n+2, 9ne3, 45(8ne5). (H=27).
2£-2x2¢3(2y-2)24922=(2, 3,9) = 0(mod 2).
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140.£=(2,3,5,0,-2,0)#3n+1, 95(ons6). (m-27).
2= (2x=2)2465°492%- (1,6,9) = 0(mod 2).
141.£:(1,4,8,-4,0,0)74n42, 4ne3, 49k(49n97e) where e=3, 5

or 6., (H=28),

f-2a implies x=2X and f-4g where g is form 120.

f repfesents no 4n¢2, 4n+3 obviously. It remains
to prove

f represents all a=l(mod 4) not of the form
49k(49n¢7e). The properly reduced forms (forms representing
odds) of Hessian 28 are f, gl=(1,1,za), gz=(l,2,l4), 8.~
(1,4,7) and forms of minimum 2 or 3. Now g, and g, repres=
sent 2 and g3 represents 11, We exhibit a form h of Hessian
28, with leading coefficient a and representing no 4n+42 nor
4n+3, which is therefore equivalent to f:
1) If a is prime to 7 (andsl(mod 4) ), take

h=ax2*4by2*4c2214ryz+4xz and seek integers b, ¢, r
g0 that

H= 28=a(16bc-4r2)-16b; that is,

4b-at-7 where t=4bc-r2.
Let t=7+16kev where v is chosenz=1l(mod 7) so that av=3(mod 8).
Thus t=Z3(mod 4) and b=28aks(av-7)/4. Choose k so that b is
a prime and have&f?=é§)=/??=(%?ﬁ{¥?: 1 and an odd r exists
such that tercs 0{mod b) and thus ter2: 0(mod 4b) and ¢
exists., |
2) If a=7a' where a'= 1,2 or 4(mod 7) and a'= 3(mod 4), take

h=73'x294by2+4cz2¢28ryz¢28xz and seek integers b, c,
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r 80 that H:28=7a'(16bc-l42-r2)-46142b, that is
28b=a't-1 where t:4be-49r2,
Let t=7°+16k¢v where v is chosen so that a'v =29(mod 56).
Thus (;J:l, t=3(mod 4) and b=4a'ks(a'v-1)/28. Choose k
8o that b is a prime »7 and haveﬁgvféé):ﬁ%¢k¥9="£97%751
and an odd r'-7r exists so that te49r2£ 0(mod 4b) as
above,
3) f:x21(2y-z)247z2 and thus f=49f and the proof is complete,
! 142,f=(2,3,6,-2,0,~2)#8n4+85, 4k(8n+1). (g-28),
i Apply method 1 as for form 108 for 7afbn¢3,4k(8n+7)
represented by g:4x2+y2+z2 and find that 7a is represented
by g':4x2+(7Yix)24(7ZeSx)2 and thus g'/7 represented ex-
) clusively\all positive integers not of the form 8n45,
4k(8n+l). The only properly reduced forms (representing
odds) of Hessian 28 and minimum 2 are h=(2,2,7) which does
not represent 3, h'=(2,3,5,-2,0,0) and h*=(2,4,5,~4,-2,0)
which represent 5 and £, Thus g'/7 is equivalent to f.
143.f:(l,1,5,1,1,1)f4k(16n92). (H=28/8),
Form 108: g=(2,2,3,2,2,2)= 0(mod 2) implies z=22
and thus g'=(2,2,12,4,4,2) of Hessian 28 represents all
evens #4k(8n11). The only reduced forms of Hessian 28

with all coefficients even are (2,2,8,-2,-2,0) and

(2,4,4,0,0,-2) which represent 4 and £f. Thus g' is equiva-

lent to 2f.
144.£=(1,5,8,-4,0,0)78043, 45(6ne?). (H=36).
Apply method 1 as for form 111 for 9q#8n¢3,4k(8n+7)
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represented by 4x2+y2922 and find 9a is represented by
4x2-t(9Y+2x)2-;(Qqu)2. Thus g is represented by g:(x+2Y+Z)2e-
' 57°4822-4¥Z which is equivalent to f.
145.£2(3,4,4,~4,0,0)£4n41, 4ne2, 95(3ne2), (E-36).

£=3x%4 (2y-2)243222(3,1,3)= 0 or 3(mod 4).

146.£=(1,1,6,0,0,-1)#3n+2, 45(16n+14), (HE=36/8).
2f-g = 0(mod 2) where g is form 112,
l47.f:(l,2,3,-2,-1,0)#4k(16n+l4). (H=36/8) .
2f=(2y-z)2¢2x2-.-522-2xz=gz O(mod 2) where g is forn
111,
148.f=(2,2,2,1,2,2)#9k(3n¢1). (H=36/8),
21‘:(2x*y+z)2f3y2’322=(1,3,3) =z 0(mod 2), for x%=
y742°(mod 2) implies X= yez(mod 2).
149.f:(1,2,3,0,-1,o)f4k(16n+1o). (H=44/8),
2f-g=0(mod 2) where g is form 114.
150.£: (1,6,9,-6,0,0)#3n+2, 4%(8ne3). (m-45).
f:x2+5y2+(:’>z-y)2:(1,5,1) 20 or 1(mod 3),
151.£=(2,2,15,0,0,-2)79%(3n41), 26 (25n45), 45(8ne3). (1-45).
2f= (2x-y)243y243022-(1, 3,30) = 0(mod 2).
152.£=(1,8,8,-8,0,0)#4n42, 4ns+3, 4k(8n+5). (H=48),
f=x2-92(2y-z)2+622_-(1,2,6) =0, 1 or 4(mod 8),.
153.£2(3,3,6,-2,-2,0)#8n41, 8ne2, 32n+4, 45(8ned). (H-48).
3£ (3x~2)%4(3y-2)241622=(1,1,16) = 0(mod 3).
154.£2(3,3,7,2,~2,~2)4ne1, 4ne2, 45(8ne5). (H-48).
af- (:Sx-y-z)zfz(2y-z)2+18z2=1242‘12*18z25 9(mod 12),
for g:XZQZY‘quazzal(mod 4) implies Y4z = O(mod 2),g:=0(mod 3)
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implies X=4¥(mod 3) where one of the signs holds and
g=(1,2,2)= 0(mod 3).

3f#4n+3, 4n+2 implies f#4n+l, 4n42.

156.£=(2,5,6,0,0,~2)#3n4+1, Qk(9n+3). (H=54),

2f=(2x-y)%+95%2122% (1,9, 12) = 0(mod 2).

157.£=(1,1,10,0,0,~1)#%(on46), 26%(25n45), 4°(16ns2).
(H=60/8) .
2f- g=0(mod 2) where g is form 121,
158.£=(1,3,3,1,1,1)745(16n42). (H-60/8).

Applying method 2 to form 122 we see that all the
evens represented by form 122 are represented by
g=(2,6,6,2,-2,0). That is, g represents all evens not
of the form 4k(8n+1) and none others. The reduced forms

) of Hessian 60 with all coefficients even are (2,2,16,-2,-2,0)
(2,4,8,0,-2,0), (4,4,4,0,0,-2) and (4,4,6,2,4,4,) which
represent 4, form 2g' where g' is form 157 and thus does
not represent 30, and f. Thus g, of Hessian 60 is equiva-
lent to f,

159.f (2,5,7,-2,-2,o)¢9n33, 4k(8nql). (H=63).

Apply method 1 as for form 108 for 7a%9n33,4k(8n47)
represented by (9,1,1) to find 7a is represented by
9x2+(7be)2¢(72¢2x)2 and thus a is represented by 2(x+Z)2e

7¥°452%42xY = g and replacing x by -X-Z, then interchanging

Y and 2 we find f is equivalent to e
160.£=(3,3,8,0,0,-2)#4ns1, 4ne2, 45(8ne7). (H=64).
32=(3xy)%48y%42432%-(1,8,24) = 0(mod 3).

]
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161.£=(1,9,9,-6,0,0)#3n42, 4n+3, 16n46, 4k(16n+l4). (H=72).
£-x°4(3y-2)24822-(1,1,8) = 0 or 1(mod 3).
162.f=(1,1,12,0,0, ~1)#4n+2, 9k(3n+2). (H=72/8).
Reference to part 3) of the proof for form 136
shows that g/3:3X%4y%4+1222-3Xy where g is form 136, Replace
¥ by X4Y and find g/3 becomes f.
163.f=(l,10,10,-l0,0,0)#@k(ané), 25k( 5n42), 4k(8nf5).(H:75).
2r=2x245(2x-3)%415y2- (2, 5, 16) = 0(mod 2).
164.£-(1,8,12,-8,0,0)#4n+2, 4n+3, 25k(25n:5). (H=80).
£=x%42(2y-2)% 41022-(1,2,10)= 0 or 1(mod 4),
166.f:(2,3,20,0,0,-2)#25k(5n31), 4n+l. (H=100),
21 (2x-3)%455%4402%(1, 5, 40) = 0(mod 2).
l67.f:(2,5,5,3.1,-1)#169k(13n+e) where e-1,3,4,9,10 or 12.
(H-338/8),
Reference to the proof for form 138 shows that

g/13-f where g is form 138,
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V. Partial proofs for the six forms f:axquyzqczz in

tableg I to IV not yet proved regular.,

24.,f=(1,2,32) represents exclusively all positive integers
not of the forms 8n+5, 4k(8nf7), 16n410, 16n+14, or
32n+20 provided it represents all 8n43, 8n+l. (f repre-
sents all 8ne+3, Sns+l < 1000),

f=2a implies x-2X and f/2-(2,1,16). f obviously

represents no 8n+5, 8n47,.

36,f={1,8,32) represents exclusively all positive integers
not of the forms 4n+3, 8n45, 4n+2, 32n+420, or 4k(8n+7)
provided it represents all 8nsl,

f=2a implies x=2X and £/4=(1,2,8).

Note: complete results for this form would follow
from complete results for form 24 since f=x2¢2y2+32223
1(mod 8),

38,£=(1,8,64) represents exclusively all positive integers
not of the form 4n+3, 8ne¢5, 4n+2, 32n+420, 32n+28, 64n+40
or 4k(16n¢l4) provided it represents all 8n+l, (f repre-
sents all 8n+l < 1000),

f=2a implies x=2X and f/4=(1,2,16).

54.f=(1,3,36) represents excluéively all positive integers
not of the form 3n42, 4n+3 or 9k(9n16) provided it repre-
sents all 24n+l., (f represents all 24nel < 1000),

f=3a implies x=3X and f/3=(3,1,12) for which
results are known,

f=2a implies a-2a' and £/4-=(1,3,9) using the
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corollary to lemma b,

f represents all 4n43 =1(mod 3) for g:x2+5y2+9z25
3(mod 4) implies 2z=22Z and f- g=3(mod 4), It remains to
prove

f represents all at24n+413, We know 2 is repre=-
sented by g,

1) If g-a with z even, a is represented by f.
2) If g-a with y and z odd, then x is odd and g represents
a with 3(y®432%) = 0(mod 4) and thus by the corollary to
lemma b, g represents a with y and z even and thus a is
represented by f.
3) If g=a with y:-2Y and z odd, then x:=2X and g becomes
4X2el2Y2e9z2§ 5(mod 8) which implies X#¥(mod 2) and thus
x+y=2y' = 2(mod 4) and x-y-2x'Z 2(mod 4) and a is repre-
sented by (2x'-y')2+5y'24922 where ¥' is odd and thus,
from 2), f represents a.

64.f=(1,12, 36) represents exclusively all positive integers
not of the form 3n42, 4n+2, 4n43, or Qk(gn*s) provided it
represents all 24n¢l.

f=2a implies x=2X and f/4=(1,3,9).

f represents all a=5(mod 8) not of the forms
3n+2, 9k(9n16) since g=x2+3y2¢362251(mod 4) implies y=2Y
and thus f-g=1(mod 4). This also shows that complete

results for form 64 will result from those for form 54.

67.£=(1,48,144) represents exclusively all positive integers

not of the form 3n+2, 4n+2, 4n+3, 16n+8, 16n412, 8ns+5, or
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9k(9ni6) provided it represents all 24n+l and all 96ns+4.
f=2a implies x=2X and £/4=(1,12,36) showing also
that f represents all 96n+4 would follow from the proven
result that (1,12,36) represents all 24nel,
Note: f represents all 24n4l if (1,12,36) does by

use of the corollary to lemma D,
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PART C

SEMI~REGULAR FORMS

Since the number of semi-regular forms is so
great and since, in many cases, proof may easily be
derived from known results for regular forms, only a
few proofs are given below to illustrate methods by
which results may be obtained, It is to be noted that
by the application of theorem 10 alone, proofg for an
infinite number of semi-regular forms result., Also
proofs for semi-regular forms without cross products
often result from proofs for regular forms with cross
products., Only the essentials of the proofs are given
below - the details being analogous to previous methods
described in detail,
f:(l,l,7)150,l(mod 4)#%9k(49n47e) where e:=3, 5, or 6.

g=(1,4,8,-4,0,0)= £z0 or 1(mod 4), g is form 141.
(See method 2).
£2(1,1,10) = 0(mod S)flk(lenfé) is obtained by applying
theorem 10 to (1,1,2) with m= 5,
£-(1,1,14)= 0 or 2(mod 8)#49k(49n+7e) where e:3,5, or 6.

Apply method 2 to f to find £/2-(1,1,7).
£=(1,1,15) = 0(mod 5)#9k(9n+3) is obtained by applying
theorem 10 to (1,%,3) with m= 5,

1

Similar notation is used throughout this section to mean
(for 1) f represents all positive integerekEO or 1(mod 4)
except 49k(49n+7e) and none of the form 497 (49n47e).

119
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5.f=(1,1,18) = 0(mod 2) or = 0(mod 9);59n_e:5, 4k(16n+l4).
Apply method 2 to f to find £/2=(1,1,9).
£/9=(1,1,2),
6.f=(1,1,20) = 0{mod 4) or (mod 5);‘4k(8n+3), 8ns+7,
/4 = (1,1,5).
For multiples of 5 apply theorem 10 to (1,1,4)
with m= 5,
7.£2(1,1,25) = 0(mod 5)%4k(8n§7) is obtained by applying
theorem 10 to (1,1,5) with m= 5,
8.f=(1,1,27) =0(mod 9);49k(9n46).
£/9 =(1,1,3).
9.£=(1,1, 30) =0(mod 5);:’9k(9n+6) by application of theorem 10
to (1,1,6) with m=5,
10.£=(1,2,9) = 0(mod 2) or (mod 3);!4k(16nf14).
Setting x=2Y~-z, yX in f we get f/2:g where g is
form 111,
£=(1,2,1) = 0(mod 3) for (1,2,1)=3a implies x or
z =0(mod 3),
11.£=(21,2,11) 2 0(mod 2) or (mod ll);ﬁk(lelO).
Applying method 2 to f by setting y=X, x-2Y-z we
get £/2:-g where g is form 114.
Applying theorem 10 to (1,2,1) with m=11 we have
the result for multiples of 11,
12,£-(1,2,12)= 0(mod 2) or (mod 3)/4k(16n+10).
£/2:(2,1,86).
Applying theorem 10 to (1,2,4) with m=3 we have
the result for multiples of 3.

1}
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13.£=(1,2,15) = 0(mod 3)#25k(25n35) by application of theorem
10 to (1,2,5) with m~= 3,
14.£=(1,2,18)= 0(mod 3) or (mod 4);-‘4k(8n+7).
For multiples of 3 apply theorem 10 to (1,2,6)
with m= 3,
£/2 =(2,1,9).
16.£=(1,2,22) 0(mod 4) or (mod 11) or 1(mod 8)#4%(8nes).
£/2=(2,1,11).
For multipleés of 11 apply theorem 10 to (1,2,2)
with m-11,
It remains to prove that f represents all 8nsl,
We know g=x2¢2y2111z2 represents all 16n+2. But g:2(mod 8)
implies x:-2X, 2:=22 and 2X2¢y2¢2222 represents all 8ns4l,
16.£(1,3,5) = 0(mod 3)#26%(25n410).,
| For f:=3a implies 5&:(3z-x)243y245x2=5g where g is
form 106, and conversely g=a implies f=3a.
17.£=(1,3,7) =0(mod 7)f9k(9n+6) by application of theorem
10 to (1,3,1) with m=17,
18.£=(1,3,8) = 0(mod 3) or (mod 4)#4ne2, 4k(16n+10).
f-4a where a%lk(16n+lo) for g=x2+3y242z2 represents
all such 4a and g=4a implies 2z=22Z.
£-3a implies 3&:(3z-x)293y298x2= 3g where g is form
109 and conversely g:-a implies f=3a.
19 £=(1,3,14) = 0(mod 3)%41((161'“6).
f-3a implies 3az(3x—z)2+3y2914z%=33 where g is

form 119 and conversely g-a implies f=3a.
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R0.f=(1,3,16) = 0(mod 2) or z1(mod 8)74ne2, 16n¢8,9k(9n05).
f-2a implies 2a:(2x-y)2+3y291622:4g where g is
form 136 and conversely 2g- a implies f-2a, (f is ir-
regular as to 8n+5, 8n+3 for £#5,11),
f:=az=l(mod 8) if afsk(gms) since (1,48,16)
represents such a.
21.£=(1,3,20) = 0(mod 3)#4n+2, 25k(25n310).
f=3a implies 3a=(3x-2)243y242022-3g where g is
form 128 and conversely g-a implies f-3a,
22,£=(1,4,5) =0(mod 4) or (fmd 5)754k(8m3), 8n+7, or=1(mod 4).
f=a=0 or 1(mod 4). g:xzfyz-obz‘?':a implies that
two of x, y, 2 are even and thus f-a,
f=5a1ﬂ¥(8n13), 8n+? is obtained by applying theorem
10 to (1,4,1) with m=5,
23.f-(1,4,7)= 0,1(mod 4)7%9k(49n+7e) where e=3,5, or 6,
£-(1,1,7)=0 or 1(mod 4).
24.£=(1,5,6) = 0(mod 2) or (mod 5);!4k(16n-.2).
f-2a implies 2a:(2x-y)2-t5y2t622=23 where g is form 122,
For multiples of 5 apﬁly method 1 to prove that
f-5a implies Sa:(5x¢2z)245y2*62%:5(y2+2(x¢z)2+3x2)=-5g
where g is equivalent to (1,2,3) and conversely g-a implies
f-5a,
26.£=(1,6,7) = 0(mod 7)%bk(9n03) is obtained by applying
theorem 10 to (1,6,1) with m="7,

_ k
26.1-(1,6,8)>1(mod 2), = 0(mod 3) or (mod 4)7/8ne3,4" (8nes).
f-a=7(mod 8) for g=(1,6,2) represents all such a
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and g-a implies z-=2Z.
f-a = 1(mod 8) since (1,24,8) does,
f-3a implies 5a=(3x—z)296y2+8z2:3g where g is form
124 and g-a implies f=3a,
£/4-(1,2,6). (f is irregular as to 4n+2 as is
evidenced by taking k-=2).
27.£-(1,6,42) =0(mod 7);‘9k(3n§2), 8n45 by applying theorem
10 to (1,6,6) with m =7,
28.£-(1,7,7) =0, 3(mod 4)%49k(7n+e) where e=3,5 or 6 for

f=g/7 where g=(1,7,1).
29,f-(1,7,12) = 0(mod 28)7—‘9k(gn+6).
g:x2*3y29722 represents all 28a%9k(9n96) and
g-28a implies x<=y2ez2(mod 4). If y=2Y, f represents 28a.

p—

Otherwise y-x(mod 2) and by the corollary to lemua b, g
represents 28a with x and y even,thus completing the proof,
30.£-(1,7,24) = 0(mod 28)79%(9ne3).
g=(1,6,7) represents all 28n;49k(9n‘+3) and g-28n
implies y:2Y,
| 31.1:(1.11,22)?:Q(mod 22)%4k(16n+l4), for f=11g where g-(11,1,2).
32.£-(2,2,5)= 7(mod 8) or =0(mod 4) or (mod 5)754k(an+3).
f represents all 8ne7 for g:xzey2+bzzs7(mod 8) ime
plies x:zy(mod 2) and apply method 2 to prove £ g=7(mod 8).l
£/2=(1,1,10) for which we know results.

1l BSee J.G.A.Arndt, Gottingen Thesis, 1925, p.26.
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2

f=6a implies 5a=2(5x*2y)2+2y ¢Szg=5(zg¢2(yQ2x)2¢

2x2)= Sg where g is equivalent to (1,2,2), and conversely
g=a implies f=5a,
33.£=(2,3,4) = 0(mod 2) or (mod 3)#k(16n410).
£/2=(1,6,2).
For multiples of 3 apply theorem 10 to (2,4,1) with
m=3 and 4=2,
34.f=(2,3,21) =0(mod 7)#9k(3n-.1) for 2f=g where g=(1,6,42),
35.£:(2,3,24)= 1(mod 2) or =0(mod 4)#3n+1, 8nsl, 4k(8n¢7).
f represents all 8n+5#l(mod 3) for g=(2,3,6) repre-
sents all such and g= +5(mod 8) implies 2z=22,
f represents a-24n+19 since (8, 3,24) does.
£/4 =(2,3,6).
36.f=(2,11,22)= 0(mod 44) or = 11(mod 88)#k(8n+7), for f-1lg
where g=(22,1,2).
37.f=(3,4,8) =0(mod 3) or (mod 4)Z4n+l, 4n.+2, 4k(16n+lo).
For multiples of 3 apply theorem 10 to (4,8,1)
with m=3, d-=4,
| £/4=(3,1,2).
38.£-(3,8,21) = 0(mod 28)7‘9]‘(3!191).
g-=(2,3,21) represents all 28af9k(3n+1) but g=28a

implies x=2X and thus f represents all such 28a.,



PART D

TABLES

Table I,

Regular forms axzebyzeczz (i.e. (a,b,¢) ) where no two of

a, b, ¢ have a factor in common,
No. Fornm Represents exclusively all positive Reference
integers not of form - %

X
1 (1,1,1) 4 (8ns7)** 1
2 (1,1,2) 4k(16n+14) 2

k
3 (1,1,3) 97 (9n+6) X, 3,2
4 (1,1,4) 8n+3, 4k(8n¢7) T
5 (1,1,5) 4 (8n+3) 4,4,1
6 (1,1,6) 9% (9n+3) 54,1

k
7 (1,1,8) 4n+3, 4 (16n+l4), 16n+6 4

k
8 (1,1,9) n+3, 4 (8ne?) 4
o  (1,1,12) 4n+3, 95(9n+6) 4
10 (1,1,16) 8n+6, 4n+3, 32n+l2, tk(8n+7) T
k k k
11 (1,1,21) 4 (8ne3), 9 (9ne6),49 (49ne¢Mr)rad, 2 ard T
12 (1,1,24) 4n+3, sk(9n¢3), 8n+6 4
k
13 (1,2,3) 4 (16ne10) 2,7
k
14 (1,2,8) 26 (25n410) 2,5
k
16 (1,3,4) 4ne2, 9 (5ne6) 5
k

16 (1,3,10) o¥(5n46), 25%(26ne5), 4 (16m3 T
17 (1,5,8) 4ne 3, 8n42, 25k(25n31w) T

*For references corresponding to the numbers given see
bibliography after these tables.
Z,B are used to denote partiel proofs in references 1 and
3 respectively, o
T: proved in this thesis - see preeeeding pages.

**¥k integral and 20, .

.
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Table II.
Regular forms axz?byzeczz where two of a,b,¢ have a factor
2 in common but no two have a prime factor
greater than 2 in common,
No. Form Represents exclusively all positive Refererce
L integers not of form-

18 (1,2,2) 4 (8n47) 2

19 (1,2,4) 4k(16n¢14) 2

20 (1,2,6) 4%(8nes) T

21  (1,2,8) 8n45, 4%(8ns7) 5

22 (1,2,10) 8n+7, 25k(25n35) T

23  (1,2,16) 8n+5,8n+7,16n410, 4k(16n414) T

24 (1,2, 32) *

26 (1,4,4) 4n+3,4nf2,4k(8n¢7) T
b 26 (1,4,6) 16ne2, 9k(9n¢3) T
| 27  (1,4,8) 4n+2,4n+ 3, 4k(16n+l4) T

28 (1,4,12) 4n42,4n43, 9k(9n¢6) T

29 (1,4,16) 4n42,4n¢5,355¢12, 4k(8n17) T

30 (1,4,24) 4n+2,4n+3, 9k(9n*3) T

31 (1,4, 38) 4n+42,4n4+3,9n43, 4k(8n¢7) iy

32 (1,6,16) 8ne¢ 3, 16ng2, 84n48 9k(9n45) T

33 (1,s8,8) 4n+2,4n¢3, 8neb 4k(8n+7) T

34 (1,8,16) 4n02,4n13,4k(16n014),8n&5 T

36 (1,8,24) 4ne2, 4n43, 4%(8ne5) T

*Only results completely proved are given in tables I to
IV. 8ee paragraph V in Part p. feor partial results,
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(Table II continued)

No. Form Represents exclusively all positive Reference
» ‘integers not of form =~
36 (1,8,32) *
an (1,8,40) 4ng2,4n*5,8nt5,52n128,26k(25n:5) T
38 (1,8,64) *
39 (1,16,16) 4n+2,4n*3,16n¢12,16n48,8n+5,4k(8n47) T
40 (1,16,24) 4n§2,4n43,8n45,64n+8,9k(9n¢3) T
41 (1,16, 48) 4n¢2,4n+3,8n+5,16n¢8,16n412,9k(9n+6) T
42 (2,2,3) 8n+1, Qk(9n¢6) 578
43 (2,3,8) 8ntl, 32n+4, 9k(9n46) T
44 (2,5,6) 4k(8n¢l), 9k(9n+3), 25k(25n310) T
45 (3,4,4) 4n+l, 4n+2, 9k(9n+6) 5
46 (3,8,8) 4n+1,4n42,8n47, 32n+4, 9k(9n¢6) T
47 (5,8,24) 4n+2,4n¢5,4k(8n+1),9k(9n93),25k(25n310) T

*Only results completely proved are given in tables I to

Iv.

S8ee paragraph ¥ in Part B for partial results.
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Regular forms ax
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Table III,

242129022 where two of a,b,c have a factor

d_in common but no two have a prime factor

greater than 3 in common,

b

No, Form Represents exclusively all positive Reference
- integers not of form -
48 (1,3,3) 9k(3n¢2) 3,2
49 (1,3,6) 3ne2, 4k(l6nel4) T
50 (1,3,9) 3ne2, 9k(9n*6) T
51 (1,3,12) 4ns+2, gk(Snez) 5
62 (1,3,18) 5n¢2,9n+6,4k(16n*10) T
53 (1,3,30) gk(sﬁ;z),zsk(zsntlo),4k(16n*5) T
54 (1,3, 36) *
55 (1,6,6) 8n43, 9 (3ne2) T
.56  (1,6,9) 3ne2, 9k(9n43) T
57 (1,6,18) 3042, 9neB, 45 (Enes) 1
58 (1,6,24) 8ne3 ,9%(3ne2), 32ne12 T
59 (1,9,9) 3n+2, 9n43, 4k(8n+7) T
60 (1,9,12) 3n+2, 4n+3, 9k(9n46) T
61 (1,9,21) 3n42, 91fgn15), 41((8n¢3,49k(49m'h‘) where r=12 ar4 T
62 (1,9,24) 3n’2,8n*6,4n43.9k(9n¢3) T
63 (1,12,12) 4n+2,4nq3,9k(3n¢2) 5
64 (1,12, 36) *
65 (1,24,24)  4ne3,8ne6,4ne2, 320412, 9%(3ne2) 7

P

*Only results complatelyproved are given in tables I to IV,

S8ee paragraph ¥ in

Part BT for partial results,
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(Table III continued)

No. TForm Represents exclusively all positive Reference
integers not of form -

66 (1,24,72) 4n+2,4nf5,3nf2,9n¢3,4k(8n¢5) T
67  (1,48,144) *

68 (2,3,3) 0% (3ne1) 3
69 (2,3,6) 3nsl, 45(8ne7) 7
70 (2,3,9) 3n+l, 9ne6, 4k(16nolo) T
71 (2,3,12) 16n46, 9 (3nel) .
72 (2,3,18) 3n41,8n41, 9 (9n46) T
73 (2,3,48) 16n36,9k(3n+1), 8nsl, 64ne24 T
"4 (2,6,9) 3n+l, 9ne3, 4k(8n¢5) T
75 (2,6,15) o¥(3nel), 26%(25ne5), 4%(8ne3) 7
76 (3,3,4) 4n+l, 9%(3ne2) 3
™M (3,3,7) 9k( 3ne2), 4k(8n+1), 49k(49ne7r) where r=3,5 or6 T
"8 (3,3,8) 4n+l, 8na2, Qk(3n¢l) T
79 (3,4,12) 4nel, 4ne2, 9%(3n42) 5
80 (3,4, 36) 3n+2, 4nel, 4n+2, 95(9neé) T
81 (3,8,12) 4nel, 4ne2, 95(3nel) T
82 (3,8,24) 3nel, 4nel, 4ne2, 4%(8ne7) T
83 (3,8,48) 4n+l, 4ne2, 64n+24, 8ns+7, 9k(3n+l) T
84 (3,8,72) 5n¢1,4n+1,4n¢3,8n*7,32n44,9k(9n+6) T
85 (3,16,48)  dnel,4ne2,8n47,16ned,16ne8,95(3n42) T
86  (8,9,24) 3nel,4ne2,4n43, 9ned, 45(8ne5) T
87  (8,15,24)  4nel,4n+2,45(8ne3),9%¥(3ne1),26%8mE) T

*Only results completely proved are éiven in tables I to
See paragraph ¥ in Part B’ for partial results,

Iv,
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Table 1IV.

Regular forms ax2¢b1?§022 where two of a,b,c have a prime

{ factor greater than 3 in common.

' No, Form Represents exclusively all positive Reference
§ integers not of form -
i 88 (1,5,5) 5ns2, 4" (enem) T
| 89  (1,5,10) 25 (5n42) T
; 90 (1,5,25) 261410, 4k(8n*3), 5n+2 T
i 91  (1,5,40) 4ne3, 8ne2, 26%(6ne2) 7
| %ﬁ;ﬁﬁ;ﬁ? 92 (1,5,200) — 5142, 4n43, 8ne2, 26" (25n410) L S AN
E 93 (1,10,30) 9k(9n+6), 25k(5n32), 4#(8n§5) T
94  (1,21,21) 9%(3ne2), 458ne"), 4957npz) where r=350r6 T
) 95  (1,40,120) 4n+2,4n+3,4k(8no5),Qk(gnfé),25k(5n32) T
| 96 (2,5,10) 8ns3, 255(5n41) T
97  (2,5,15) 9¥(9ne3),26%(5ne1), 4*(16n410) 7
| 98 (3,7,7)  9%9n+6), 4(8ne5), 49(Tner) where r-12 w 4 T
’ 99  (3,7,63) 3na2, 9K(9n46), 4lfsn+5),491i7n,r) where r=1,2 or 4 T
100 (3,10,30) - 9k(3n¢2),25k(5n,1), 4k(8n+7) T
101 (3,40,120) 4n+l,4n+2,4k(8n+7),Qk(Snﬁz),ZSk(Sn:l) T
102 (5,6,15) 9k(3nfl),25k(5n12), 4¥(16n+14) T
103 (5,8,40) 4n+42,4n43,8n4+l, 32nel12, 25k(5n31) T

Note that all forms f:axszyzoczz not listed in

tables I to IV are irregular when 1 is the greatest common

divisor of a, b, and Ce




A%
AL@N(’/
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Table V

Regular reduced positive forms axzoby2+cz2§rZZésxzqt§x

(i.,e. (a,b,¢c,

r,s,

t) ) of Hessian <20,

No. Form Represents éXclusively all Reference
bPositive integers not of
form -

104 (1,2,2,-2,0,0) 3 4% (8n45) 2T
106 (1,1,1,1,1,1) 4/8. (16nf14) T
106 (1,2,3,-2,0,0) 5. 26" (25n45) 2,T
107 (1,1,1,0,0,-1) 6/8. 9k(9n16) 5,T
108 (2,2,3,2,2,2) 7. k(8n-;1) T
109 (1,3,3,-2,0,0) 8. 4n+2, & (16n+14) T
110 (2,2,3,-2,-2,0) 8. 4n+1,16n46, 4k(16ne14) T
111 (1,2,5,-2,0,0) 9, 4k(8n+7) T
112 (2,2,3,0,0,-2) 9. 3nsl, 4k(an*7) T
113 (1,1,2,1,1,1)  10/8. 25k(25n:5) F 5, T
114 (1,2,6,-2,0,0) 11. 4X(8n45) 7
115 (1,4,4,-4,0,0) 12. 4n42, 4ne3, 9k(9n§6) T
116 (2,3,3,2,2,2) 12, 8n+l, 4k(8n¢5) T
117 (1,1,2,-1,-1,0) 12/8. o¥(ome3) 5 H4HE
118 (1,1,2,0,0,-1) 12/8. 4%(160410) - ! T
119 (1,3,5,-2,0,0) 14, 4 (16n+a) T
120 (1,1,2,0,-1,0) 14/8. 49k(49n47e) where e=3,5,or6 5
121 (2,2,5,0,0,-2) 15,  9%(9ne3),26%(26ns10), 4Nens) T

? The number given after each form is the value of the Hessian.
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(Table V

continued)

Represents exclusively all Reference
positive integers not of

(2.3.3.0.Qf2)
(11425)-49000) 16.

(1,1,3,1,1,1)

(3' 3, 3’2’2’2)

(1,2,2,2,1,1)

Note:

15.

(2,3,3,-2,0,0) 16,
(3,3,3,~2-2,-2) 16,

16/8.

(1,1,3,0,0,-1) 18/8.
(lo 5:73'200v0) <0,
(2,3,4,0,0,-2) 20,

20,

(lvlv 3,*1.,"1,0) 20/8 .

20/8,

form =~

8ne2, 8ned, 32n¢12,4k(8n47)
k
8n+l, 4 (8ne7)
4n+l, 4n¢2, 4k(8nf7)
k
4n+2, 4 (64n+56)

k
4n+2, 26 (25n45)
4nsl, 26%(25n45)
k
4n4l, 4n+2, 25 (25n46)

4k(8n+l)

9k(5n+2)

4k(16n96)
26k(26n910)

The forms listed in this table are the only

21 3 13 3 4

5,T

2 3 3 13 3

regular positive reduced ternary quadratic forms with cross

products

and Hessian 220,

/ The number immediately after each form is the value of the
Hessian, '
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Table VI

No,

Form

Hegsgian > 20,

Represents exclusively all Reference

Positive integers not of
form -

lopg 133
afort 134

bl 135
upﬁ% 136
plpwe 137
At 138

el 139
(o140

My 141
slort 142

L1435

144
Wl45
ot 146

w147
Wit g 48

(1,4,7,-4,0,0)
(2,2,7,-2,-2,0)
(3,3,3,0,0,-2)
(1,1,4,0,0,-1)
(2,3,5,0,0,-2)
(1,2,2,-1,0,-1)
(1,6,6,=-6,0,0)
(2,3,5,0,-2,0)
(1,4,8,-4,0,0)
(2,3,6,-2,0,-2)
(1,1,5,2,1,1)
(1,8,8,-4,0,0)
(3,4,4,-4,0,0)
(1,1,6,0,0,~1)
(1,2,3,-2,-1,0)
(2,2,2,1,2,2)
(1,2,3,0,-1,0)
(1,6,9,=6,0,0)

1

24,
24,
24,
24/8.
25,

26/8. 169516914 136) where ez1,3,4,9,10 or 12

27.
27.
28,
28 .
28/8,
36,
36,
36/8.
36/8 .
36/8,
44/8,
45,

4n42, 9k(9n+3)
4n+l, 8n46, Qk(9n45)
4ns+1,16n+2, 4k(16n+lo)

4n42, Qk(9n+6)

25k(5n31)

3042, 9n+3, 45(8nes)
3n+l, 9k(9n*6)

4n42, 4143, 4949n4%) where ez 3,5 or 6

8ne5, 4k(8n§1)

4k(16n*2)

8n+3, 4%(8ne7)
4nsl, 4ns2, Qk(3n¢2)
- 3ns+2, 4k(16n¢l4)
4%(
9k(3n¢1)

16n+l14)

4k(16n010)
3n+2, 4k(8n43)

T
T
T
T
T
T

T
T
T
T
T
T
T
T
T
T
T
T

Spudeats

1 The number given immediately after each form is the value
of the Hessian,
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(Table VI continued)

Represents exclusively all Reference

positive integers not of

form -

ol oo

(2,2,15,0,0,-2)
(1,8,8,-8,0,0)
(3,3,6,=2,-2,0)
(3,3,7,-2,-2,~2)
(2,2,2,-1,-1,~1)
(2,5,6,0,0,-2)
(1,1,10,0,0,-1)
(1,3,3,1,1,1)
(2,5,7,-2,-2,0)
(3,3,8,0,0,-2)
(1,9,9,-6,0,0)
(1,1,12,0,0,-1)
(1,20,10,-10,0,0)
(1,8,12,-8,0,0)
(1,2,7,0,0,-1)
(2,3,20,0,0,-2)
(2,6,6,3,1,=1)

45,
48,
48,
48.
50/8,
54.
60/8.
60/8 .
63.
64,
72.
72/8.,
75.
80,
98/8.
10Q,

338/8. 16913n4e) where e=1,3,4,9, 10

9% (3ne1), 26 (25n45), 4Ky

k
4n+2, 4n43, 4 (8ns5)

k
8ns1l,8n42,32n44,4 (8n+5)

4n+l,4n92,4k(8n+5)

3n¢l, Qk(9n+3)
9" (9n+6), 26 26ns5), 45 16n42)

k
9ne3, 4 (8n+l)
4n¢l,4n+2,4k(8n+7)

25k(5n31)

4¥(16n42)

k
3n+2,4n+43,16n46,4 (16n+14)

4n42, 9k(3n¢2)
9%(9n46), 26X (6ne2), 4% (8ne5)

4n42,4n43, 25k(25n35)

49k(7nfa where e=3,5,0r 6

k
4n+l, 25 (5n31)

or 12

H 32 13 =1

0-30‘*—3'—3’-3#—]'—3*3*—36*—]01
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Table VII.

Certain semi-regular forms (a, b, ¢).

1

1

No. f A B Reference
1. (1,1,7) 4m, 4mel 49k(49n97e) where e=3,5 or 6 T

2m “(16n46) 4
2. (1,1,10) X

5m 4 (16n46) T
3. (1,1,14) 8m, 8m¢2 49k@9n*7a where e=3,5 or 6 T
4. (1,1,15) 5m 9k(9n¢3) T
5. (1,1,18)  2m,9m 9ne3, 45(16n+14) T
6, (1,1,20)  4m,5m 4¥(8n43), 8ne7 T
7. (1,1,25) Bm 4k(8n+7) T
8. (1,1,27) 9m 9k(9n¢6) T
9. (1,1,30)  6m 9*(9n46) T
10. (1,2,9)  2m,3m 5 (16n414) -
11, (1,2,11) 2m, 1llm 4k(16n+10) T
12. (1,2,12)  2m, 3m 45(16n410) T
13, (1,2,15) 3m 25k(25n35) T
14, (1,2,18) 3m, 4m 4k(8n¢7) T
16, (1,2,22) 4m,1lm, 8mel 4% (8n45) T
16, (1,3,5) 3m 26% (25n410) 7
17, (1,3,7) "m 9% (9n46) T
8. (1,3,8) 4m, 3m 4n+2, 4k(16n110) T
19. (1,3,14) m 4%(16n46) ?
20. (1,3,16)  2m,8mel  4n+2,16n48, 95(9n46) T

e represents all positive integers of the forms A except
those of the forme B and f represents no integer of the

forms B,
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(Table VII1 continued)

1

1

Mo, " f A B Reference
21. (1,3,20) 3m 4ne2, 26%(25n410) T
22, (1,4,5) 4m, 5m, 4mel 8n+7, 4k(8n¢3) T
23, (1,4,7)  4m4mel  495(49ne%e) where e=3,5,0r 6 T
24, (1,5,6) 2m, 5m 4k(16n12) T
25, (1,6,7) M 9% (ons3) T
26, (1,6,8) 2mel,3m,4m 8ne3, 45(8ne5) T
27. (1,6,42) Tm 8na5, 9k(3n+2) T
28, (1,7,7) 4m, 4me 3 49k(7n+e) where e=3,5 or 6 T
29, (1,7,12) 28m 9¥ (9n46) T
30. (1,7,24) 28m gk(gnqa) T
31. (1,11,22) 22m 4% (16n414) 7
8me 7 - 3

32, (2,2,5) "

.(;m,5m 4 (8n+3) T
33. (2,3,4)  2m,3m 4% (16n410) T
34, (2,3,21)  m o (3n41) T
36. (2,3,24) 2mel,4nm '~ 3n+l, 8ns+l, 4k(8n¢7) T
36. (2,11,22) 44m,88mall 4¥(8na7) T
. (3,4,8) 3m, 4m 4n+l, 4n+2, 4k(16n+10) T
38, (3,8,21) 28m Qk(SnQI) T

w cdditisn (Mye ) (1, 1 at) 4o s of

2age, Abpa. L furomidd

Yﬂﬁ, (1, 1, 3 /p. 77"
Kewark  Npe 0%:;6%@ £748

, Muld by T
oin of 2t AT}

Tt represents all positive integers of the forms A except
those of the forms B and f represents no integer of the

form B,
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4.

)1 )
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