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In the manuscript “Discriminant bounds for spinor regular ternary quadratic lattices”
(hereafter referred to as [CE]), bounds are obtained for the prime-power factors of positive
integers that could possibly occur as discriminants of spinor regular ternary quadratic
lattices. The purpose of these notes is to state and prove several results that, together
with the results of the on-going computer search for spinor regular ternary forms, can be
used to eliminate some potential discriminants (integers for which the prime-power bounds
are met) from further consideration.

In order to conveniently switch back and forth between the languages of forms and
lattices, let us first set some notations. In keeping with the convention adopted in the
listing of spinor regular ternary forms produced by Jagy (hereafter referred to as [J]),
the discriminant of a ternary quadratic form f will be % times the determinant of the
matrix of second partial derivatives of the form. This discriminant will be denoted by df.
According to the correspondence described on page 2 of [CE], there is an even quadratic
lattice Ly associated to such a form f. The lattice Ly is “normalized”, in the terminology
of [CE], precisely when the form f is primitive. The discriminant dLs used in [CE| equals
the determinant of the matrix of second partial derivatives of f; thus, dL; = 2df. A
positive integer d will be said to be a “regular discriminant” (“spinor regular discriminant”,
respectively) if there is a regular (spinor regular, respectively) normalized ternary lattice L
for which dL = d (or, equivalently, there is a regular (spinor regular, respectively) primitive
ternary form f for which 2df = d). The sets of all regular and spinor regular discriminants
will be denoted by R and S, respectively.

The best general upper bound obtained in [CE] for the power of 2 appearing in an
integer in S is 28. Our first result will allow us to eliminate certain integers of the form
2tdy as possible elements of S based on the results of the calculations already completed
in [J].

RESULT 1: Let dy be an odd positive integer. If there exists an integer k > 4 for which
none of 2kdy, 28+1dy, 25+2dy and 25+3d; lies in S, then no integer of the form 2'dy with

t > k lies in S.



The proof of this result rests on several results that can be extracted from [CE]. These
are summarized as follows:

(i) Suppose that L is spinor regular and ordsdL > 8, then Ap(L) is spinor regular.
(This follows from Prop. 3.2 and Prop. 5.5(a) of [CE].)

(ii) If 8|dL and L is not split by H or A, then d(Az(L)) = 1dL or d(A2(L)) = LdL.
(This result can be isolated from the proof of Lemma 2.5 in [CE).)

Proof of Result 1: If the result is not true, then there exists a smallest integer ¢y exceeding
k for which 2%d, lies in S. By the assumption that none of 28d,, 2¥t1d,, 2524, and
253d lies in S, it must be that to > k +4 > 8. Then My(L) is spinor regular, by (i). But
then d(A2(L)) € S and d(X2(L)) = 2°dy where s equals either to — 1 or ¢y — 4, by (ii). In

either case, k < s < ty. This contradicts the minimality of %y, and the proof is complete.

Our second result limits the combinations of distinct odd prime divisors that can occur

in a spinor regular discriminant.

RESULT 2: If p and ¢ are distinct odd primes such that some element of S is divisible by

pq, then there exists an element of R divisible by pg.

Proof of Result 2: Recall that in [CE], a lattice L is said to “behave well at 1, for a prime
r, if either L, is split by H or 2r? does not divide dL. Let L be a spinor regular ternary
lattice with pg|dL. Applying the argument in the proof of Lemma 4.1 of [CE] to all prime
divisors of dL different from p and ¢, we may assume without loss of generality that L
behaves well at all primes 7 # p, q. In particular, (0% (L,)) D u,Q? holds for all r # p, q,
by Lemma 3.4 of [CE].

Now consider the splitting of L, which has the form

L, (a, pPb, p7c), where 0 < B < v are integers and a, b, ¢ € Uup.

Suppose first that 3 = 1. Then it follows from repeated application of Lemma 2.7 of [CE]

that
MY D(Ly) = (@, pl, pe), where @/, € uy.
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Each of Ap(L), A2(L), . .. AS™Y(L) is spinor regular by Prop. 3.2, and (O O,
) upr, holds since the p-modular component of /\1(!)7_1) has rank two. Now consider the

case 8> 2. If B is even and B # 7, then

A

S

(LP) = <CL, b7p’y_ﬂc>a

B 8 .
AZ (L) is spinor regular, and 8(OT(AZ (Lp))) 2 upQ; holds since the unimodular compo-
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nent of A7 (L,) has rank two. If 8 is even and § = -y, then
L2 ~ 2p 2
Ap? (Lp) = {a,p°b,pc).
p-2 p-2 :
So A\,2 (L) is spinor regular, and 8(0*(\p® (Lp))) 2 up,Q2 holds since the p®-modular

B—2
component of A\,? (L,) has rank two. Finally, if 8 is odd, then

B-1 B—1
Ap? (Lp) & (a,pb,p?™ % c).

Applying the argument above for the case 8 = 1 to the lattice )\5%1 (L) then leads to
a spinor regular lattice L' for which 6(O*(L;)) 2 upr,. In all cases, we ultimately
obtain a spinor regular lattice L’ for which p|dL’ and 6(O*(L;)) 2 u,,@zz). Moreover,
0(Ot(L.)) 2 u,Q2 holds for all r # p, ¢ since applying the transformation A, only results
in scaling the form on L, and thus leaves the spinor norm group (O (L,)) unchanged.
Repeating the steps in the preceding paragraph for the prime ¢ then leads to a lattice
K for which pq|dK, K is spinor regular, and (0" (K;)) D 1, Q? holds for all primes .
The latter containments imply that the genus and spinor genus of K coincide; thus, K is

regular. Hence, dK is an element of R divisible by pg. This completes the proof of Result
2.



