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1 Introduction

I do not expect to publish this. I’ve just been adding material since about
1996, whenever the mood struck. The date above is the most recent day I
edited the file, placed there by the typesetting program.

News in 2008: This and all the related unpublished notes by Kap are now
on

http://zakuski.math.utsa.edu/~kap/

including [39] under the filename Kap Classification 1996.pdf, which explains
why you should believe that there are no other regular quadratic forms than
our list of 891 proved and 22 candidates. Kap’s classification rules are an
easier and more tractable version of the rules in Chan and Earnest [8]. I’m
keeping, and updating, this document on the same site under the filename
Jagy Encyclopedia.pdf. Meanwhile, Byeong-Kweon Oh [44] of Seoul National
University, has proved 8 of the 22 regular. From the “odd” forms in Table 1
of [31] Oh has proved one of the discriminant 1125 forms (1125: 2 7 22 -6 1
1) and discriminant 4500 regular. From the “even” forms in Table 2 of [31]
he has proved discriminants 1008, 2112, 2880, 6336, 8000, 14400 regular. So
at this point there are still 13 forms in Table 1 without proof but just one
form in Table 2 needing proof.

The article [31] by Jagy, Kaplansky, and Schiemann identifies all possible
regular positive ternary quadratic forms with integer coefficients. The word
ternary just means three variables, the word positive means that the associ-
ated symmetric matrix is positive definite. So, writing the form as g(x, y, z),
the value of g is an integer when (x, y, z) are integers, and is a positive integer
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(‘natural number’) unless x, y, z are all zero. There are at most 913 regular
ones (up to equivalence). During preparation of that article, many of the new
forms we found were proved regular, but the proofs are not included in [31].
We never mentioned the word ‘equivalence’ in that article, instead giving a
representative of each class according to the reduction scheme in Schiemann’s
dissertation. Alexander did publish his reduction criteria [48]. Some of the
significance of the work is discussed by Andrew G. Earnest in [19].

I will prove several forms regular in this note. Meanwhile, 22 of the forms
in our list of 913 were not proved regular; we call those ‘candidates’.

It seems to have become standard [4] to describe a ternary form by its
six coefficients in a specific order: given variables named (x, y, z), the 6-tuple
a b c d e f refers to T (x, y, z) = ax2+ by2+ cz2+dyz+ ezx+fxy. Notice the
funny yz, zx, xy sort of ‘cyclic’ order. I suspect that this order was chosen
because it respects permutations of the variables x, y, z, but it takes some
getting used to. Anyway, if all of d, e, f are even numbers we will call the
form ‘even’. John Horton Conway has suggested calling our ‘even’ forms
“integer-matrix,” or perhaps “matrix-integral”-see page 3 of [10]. This is
reasonable, as then the usual symmetric matrix for a b c d e f, that is







a f/2 e/2
f/2 b d/2
e/2 d/2 c





 ,

is made up of integers. If at least one of d, e, f is odd we will call the form
‘odd’. I suspect Conway would say these ‘odd’ forms were “integer-valued
but not integer-matrix.” The ‘discriminant’ of a form is the determinant of
the associated symmetric matrix for even forms, but 4 times that for odd
forms. Meanwhile, we say that the form ‘represents’ an integer n if there
are integers x, y, z such that n = ax2 + by2 + cz2 + dyz + ezx + fxy. The
word ‘regular’ indicates that all natural numbers not ruled out by congruence
considerations are represented. As we put it in [31], g(x, y, z) is regular if the
solvability of g ≡ n mod k for every k implies the solvability of g = n. Here
n and k denote positive integers (‘natural numbers’). If there is a natural
number n such that g ≡ n mod k is solvable for every k but g = n is not
solvable in integers, we call n ‘sporadic’ with regard to the form g.

There is a milder condition on positive ternaries called “spinor regularity.”
A reference showing how to find all of them is [8]. I found the spinor regular
ternaries with discriminant up to a large finite bound, see
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http://www.research.att.com/~njas/lattices/Jagy.txt .

Notice that a form does represent each of its ‘diagonal’ coefficients (a, b, c);
just set the appropriate one of the variables (x, y, z) to 1 and the others to
0. Furthermore, when the form given is a ‘reduced’ representative for its
equivalence class, using any of the methods for reduction that have been
proposed, the number a is the smallest natural number represented by the
form. In the article [31], each form is preceded by its discriminant, so that
the form x2 + 2y2 + 3z2 appears as 6: 1 2 3 0 0 0.

Articles with bits and pieces about quadratic forms in three or more
variables are: [4]. [17]. Recent survey [16]. [27] [28]. [30]. [31]. [33]
[34]. [32]. [36]. [37] [38] . There are also the books [35], [47], [15], and
recent [10].

All our efforts depend heavily on the works of George Leo Watson; see,
for example, [59], [58]. In particular, see part 7 in Watson’s unpublished
dissertation [55] if you can find a copy.

First I describe the techniques used. Then I present the proofs, first some
‘odd’ forms, then a larger number of ‘even’ forms.

2 Inequalities

Alexander Schiemann [48] defines a positive ternary quadratic form

T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx+ fxy

as reduced when:
0 < a ≤ b ≤ c,

−b < d ≤ b,

0 ≤ e ≤ a,

0 ≤ f ≤ a,

a+ b ≥ −d+ e+ f,

if e = 0 or f = 0 then d ≥ 0,

if a = b then |d| ≤ e,

if b = c then e ≤ f,

if f = a then e ≤ 2d,
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if e = a then f ≤ 2d,

if d = b then f ≤ 2e,

if a+ b+ d− e− f = 0 then 2a− 2e− f ≤ 0.

The last condition is funny looking, but I checked the software he sent
me and that is exactly what he intended. He proves in his dissertation that
there is one and only one reduced form in each equivalence class.

If we define ∆ as the absolute value of the Brandt-Intrau discriminant,
so that

∆ = 4abc+ def − ad2 − be2 − cf 2,

it follows from the inequalities above that

2abc ≤ ∆ ≤ 4abc.

I wish people would tell me these things. I found the statement and most of
a proof in Watson’s book [56], in the section on Minkowski reduction, pages
27-29.

In [31] and in most of this note, the “discriminant” is given as ∆ when
at least one of d, e, f is odd, but ∆

4
when d, e, f are all even. I hope you can

adjust.

3 More inequalities

Hanke once asked me how I got nice bounds on the variables in programming
a computer search on the ellipsoid T (x, y, z) ≤ M for some large positive M,
where T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx + fxy is a positive ternary.
Well,

T (x, y, z) = (x y z) ·







a f/2 e/2
f/2 b d/2
e/2 d/2 c





 ·







x
y
z





 .

It is simple enough to confirm that the gradient of T, written as a column
vector, is

∇T (x, y, z) =







2ax+ fy + ez
fx+ 2by + dz
ex+ dy + 2cz





 = 2







a f/2 e/2
f/2 b d/2
e/2 d/2 c





 ·







x
y
z





 .
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We are going to use the method of Lagrange multipliers. It follows from
the compactness of the ellipsoid T ≤ M (the Gram matrix has positive
eigenvalues) that any of the variables x, y, z achieves its maximum. It follows
from the strict convexity of the ellipsoid that these maxima are achieved at
boundary points where T = M. Finally it follows from the smoothness of the
boundary that Lagrange multipliers will locate all such points.

Give a name F to the matrix, so

F =







a f/2 e/2
f/2 b d/2
e/2 d/2 c





 .

We need the other gradients,

∇x =







1
0
0





 = e1,∇y =







0
1
0





 = e2,∇z =







0
0
1





 = e3.

So, given

X =







x
y
z





 ,

we are solving the system

2FX = λei
X ′FX = M

X ′ = (x y z) being the transpose of X.
The matrix F has an inverse that we will cleverly name F−1. So we find

X =

(

λ

2

)

F−1ei.

The fraction doesn’t help or hurt, so we will name t =
(

λ
2

)

and get

X = tF−1ei.

Notice that F and so F−1 are symmetric. Next we use X ′FX = M, or
tei

′F−1FF−1eit = M, whence tei
′F−1eit = M. Now ei

′F−1ei is the i, i entry
of F−1, which we write as F−1

ii . So we find

t2F−1
ii = M.
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or

t =

√

M

F−1
ii

.

Recalling X = tF−1ei gives us

X =







tF−1
1i

tF−1
2i

tF−1
3i





 ,

So, maximizing x1 = x, x2 = y, x3 = z leads us to the value

xi = tF−1
ii =

√

M

F−1
ii

F−1
ii ,

or
xi =

√

MF−1
ii

In conclusion,

|x| ≤
√

MF−1
11 , |y| ≤

√

MF−1
22 , |z| ≤

√

MF−1
33 .

If supreme efficiency is needed, one then fixes, say, a value of z, and notes
that the ellipsoid section described is an ellipse. The Lagrange multiplier
method can be repeated to find, say, the maximum and minimum of y, which
are no longer of the same absolute value. Finally, with values of y, z chosen,
bounds on x come from the quadratic formula.

I worked up an example to illustrate the possible need. What follows is
an ellipsoid of revolution of a cigar shape, long in the direction of the vector
(1,1,1) and narrow in any orthogonal direction. As a result, the volume of

the cube given by the bounds |x| ≤
√

MF−1
11 , |y| ≤

√

MF−1
22 , |z| ≤

√

MF−1
33

is quite large compared with the volume of the ellipsoid. The volume of the
ellipsoid is very close to the number of integer triples to be checked that
satisfy T (x, y, z) ≤ M. Think about it.

Given a large integer W > 0, let

T (x, y, z) = (x+ y + z)2 + 3W (x− y)2 +W (x+ y − 2z)2

= (4W + 1)(x2 + y2 + z2)− (4W − 2)(yz + zx+ xy).

In the ellipsoid T ≤ 9W 2, we find the integer point (W,W,W ), at a distance of√
W 2 +W 2 +W 2 = W

√
3 from the origin. However, in the plane x+y+z =
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0, we get a circular section of the ellipsoid, and letting t now be the distance
of a point from the origin, taking x = t/

√
2, y = −t/

√
2, z = 0 tells us that√

x2 + y2 + z2 ≤
√

3W
2
. Anyway much smaller than W

√
3.

As to the comparison of volumes, the cube given by the raw x, y, z bounds
has volume at least 8W 3, being at least 2W on a side. Using the discriminant
recipe ∆ = 4abc + def − ad2 − be2 − cf 2 gives ∆ = 432W 2. The volume of
the ellipsoid T ≤ M should be

8πM3/2

3
√
∆

.

With T ≤ 9W 2, we have M = 3W 2, so the ellipsoid has volume 2π
√
3W 2.

Finally the volume of the cube divided by the volume of the cigar is

4W

π
√
3
=

(

4

π
√
3

)

W,

a bit larger than 11W
15

.

4 Tables

The first thing to look at is a copy of table 5, pages 111-113 in Dickson’s
book [15]. This shows the 102 ‘diagonal’ regular forms (ax2+by2+cz2), each
together with the numbers not representable by the listed form. I know of
no other list that puts the forms and congruence obstructions side by side.

It is also impossible to make sense of any of this without seeing some
tables of ternary forms in some reduction scheme. One needs to see when
forms are alone in their genera, like x2 + y2 + z2, but just as importantly
genera with two or more equivalence classes. Jones and Pall [36] give a list
of complete genera for all the 102 regular diagonal forms.

Tables for binary forms (of small discriminant) are readily available in
undergraduate number theory books, given in Gauss reduced form. Rose’s
book [47] includes indefinite binary forms. The book of Buell [5] gives con-
siderable detail on both definite and indefinite forms, including reduction,
composition, the Gauss method of cycles for equivalence classes of indefinite
forms, and so on.

For positive ternary quadratic forms, the quickest method is probably to
check Neil Sloane’s web site,
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www.research.att.com/~njas

and

http://www.research.att.com/~njas/lattices/Jagy.txt

Then click on Catalogue of Lattices. Then Brandt-Intrau Ternary Forms.
Then Ternary Quadratic Forms. Then either Odd TQF or Even TQF .
Caution: the website had the words ‘Odd’ and ‘Even’ backwards last time
I checked. Furthermore: the number before the colon preceding each form
is NOT the discriminant, it is just some cumulative count of the number of
forms in the table. Finally, the discriminants for even forms are inflated by a
factor of 4 (most authors do that, actually). So the discriminant of x2+y2+z2

is given as 4. The tables were computed by Alexander Schiemann.

5 Recognizing Irregular Forms

Once a table of forms is available, split up into genera, recognizing the failure
of a form to be regular is pretty easy: most irregular (positive) ternary forms
miss some very small number that they should get. We call such numbers
‘sporadics’ to save space; it appears helpful to use the word ‘sporadic’ as
both noun and adjective, depending upon context.

For example: even discriminant 7. There is a genus of two classes, with
reduced representatives x2 + y2 + 7z2 and x2 + 2y2 + 2yz + 4z2. The genus
represents all natural numbers other than 72k+1(nonresidues mod 7). That
is, all such numbers are represented by at least one of the two forms given,
usually by both. However, there is no solution in integers to x2+y2+7z2 = 3,
so the first form is irregular, and the number 3 is ‘sporadic’ for the first form.
There is no solution in integers to x2+2y2+2yz+4z2 = 7, so the second form
is irregular, and the number 7 is sporadic for the second form. Further, it
was not necessary to know precisely what numbers are eligible for the genus!
The first form misses 3, but the second form gets it (x = 1, y = 1, z = 0), so
the first form fails to be regular. The second form misses 7, which the first
form gets (x = 0, y = 0, z = 1), so the second form fails to be regular. That’s
enough. Details on this are in [37].

In a genus of three or more classes, one may compare the (reduced) forms
in pairs, or collect together all numbers represented by at least one of the
forms up to some convenient bound, then check whether each of the forms
gets everything in that list.
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A word on bounds: these are positive forms, so a finite set of triples
(x, y, z) needs to be checked to find out what numbers a given form represents
up to some boundM. Indeed, as real numbers in R3 the set {form ≤ M} is an
ellipsoid, and the number of lattice points in the ellipsoid is well approximated
by its volume. The volume is just CM3/2/D1/2, where the constant C can
be inferred from the volume of a sphere, and D is the discriminant. So I
evolved the idea of checking a constant number of lattice points by making
M proportional to D1/3.

Here is a situation that gives some idea of conservatively large bounds:
the even discriminant 8000 has many genera. One of those is a genus of
two classes, given by A: 3 27 107 -26 2 2 , and B: 12 27 28 -12 8 4 . Now in
reduced forms, the first coefficient is the smallest natural number represented,
meaning that we are told that B misses the number 3 and is irregular. Not
obvious: the form B (and so the genus) gets the number 803, but form A
misses the number 803, so A is also irregular. That 803 is the largest among
forms I checked; we could call 803 the largest ‘first sporadic’ I ever found. It
is also the largest in the sense of D1/3 that I mentioned earlier. As a result,
I came to the experimental result that any form that represents all eligible
numbers up to 41D1/3 was very likely regular. Also noteworthy in this regard
is 29: 1 2 4 1 1 0, which has 87 as its ‘first sporadic’. Now, there are some
‘candidate’ forms in [31]. The candidates each hit their eligible numbers up
to 2 million. If one of the candidates is actually irregular, that throws my
experimental result out the window.

6 Representing Prescribed Numbers

Irving Kaplansky wrote an article on forms that represent all odd natural
numbers [38]. This question is a finite search, for an elementary bound
on determinants of matrices shows that any form representing the numbers
{1, 3, 5, 7} has a discriminant no larger than 77. That bound is achieved, by
x2 + xy + 3y2 + 7z2, but this form misses 13 and 17 and probably other odd
numbers. For even forms, the discriminant is no larger than 15, achieved by
x2 + 3y2 + 5z2, but that one misses 11 and 15.

If a ternary form hits the numbers {1, 2, 3, 5}, its discriminant is bounded
by 40 (or 10 for even forms in my convention). Examples are x2 +2y2+5z2,
which is regular, and x2 + 2y2 + yz + 5z2, which is not.

The record for representing consecutive small numbers is x2 +2y2+ yz+
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4z2, of discriminant 31. It is not regular. It represents all the numbers from
1 to 30, then misses the number 31. Indeed, it appears that it only misses
numbers divisible by 31 (I can’t be certain about that). The form is called
‘Little Methuselah’ in John Horton Conway’s book [10].

Another form with prime discriminant that appears to represent all nat-
ural numbers prime to its discriminant is 29: 1 2 4 1 1 0, or 2y2 + yz +
4z2 + zx + x2. This form is given incorrectly in William Duke’s survey [16].
Anyway, if one adds a particular binary to it, giving 2y2+yz+4z2+zx+x2+
29u2+29uv+29v2, the form in five variables represents all natural numbers
except 290. Conway has referred to this form as ‘Methuselah’ in talks. Con-
way’s conjecture is that this quinary form gives the world record, that any
positive quadratic form that represents the numbers from 1 to 290 represents
all natural numbers (see [16]). The Fifteen Theorem [10] is for even forms
only, and states that a positive even form that represents the numbers from 1
to 15 does represent all natural numbers. Any such positive ‘universal’ form
has at least four variables. An acceptable proof of the Fifteen Theorem was
eventually given by Manjul Bhargava [3]. Conway himself did not publish his
work with Schneeberger on the problem, instead writing a short article [11]
to serve as a preface for Bhargava’s paper.

A positive ternary form must miss an infinite set of natural numbers,
containing at least one arithmetic progression. In contrast, an indefinite
ternary form such as xy + z2 may be universal (including negative integers)
yet be irreducible. An indefinite binary that represents a nonzero proportion
of integers is reducible ( such as x2 − y2 or xy.) A positive binary fails to
represent almost all natural numbers. Indeed, in the last chapter of volume
II of his book ‘Topics in Number Theory’, William Judson LeVeque [42]
shows that the count of natural numbers less than n that are expressible as
x2+ y2 is approximately Cn√

logn
, where the constant C = 0.7642... is given by

a certain infinite product. I like to think of the expression Cn√
logn

as being the

geometric mean between n and the number of primes less than n, at least up
to a constant multiple.

7 Diagonal Forms

A diagonal form has zero coefficients for the yz, zx, xy terms. The termi-
nology is reasonable, as the associated symmetric matrix is then diagonal.
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The discriminant of a diagonal form is just the product of the three coef-
ficients (of x2, y2, z2). It turns out that 102 diagonal forms are regular, a
result in Jones’s dissertation [32]. Proofs that all 102 specified are regular
were published in [36].

The beginning of wisdom is the theorem that all positive integers n that
are not of the form 4k(8t+ 7) are expressible as the sum of three squares; so
we say that any such n is represented by the quadratic form x2+y2+z2. This
result is due to Legendre(1798). Gauss proved it independently at roughly
the same time, but his proof first appeared in his book Disquisitiones Arith-
meticae (1801), section 291. It is proved in section 9.2 of Harvey Rose’s
book [47]. Rose gives the simplest-looking proof, which uses Dirichlet’s fa-
mous result(1837) on primes in arithmetic progressions. It is also proved in
Dickson’s book [15]. Indeed, Dickson proves several related results, and gives
a list of all 102 regular diagonal forms, together with the numbers each fails
to represent. Finally, Burton Wadsworth Jones [35] gives a proof that illus-
trates the use of genus theory, but apparently refers eventually to Dirichlet
as well. Conway gives a quick proof [10].

Once one form is proved regular, others follow: A:x2+2y2+6z2 represents
all positive integers except 4k(8m+5). B:x2+ y2+5z2 represents all positive
integers except 4k(8m + 3). C:x2 + y2 + 2z2 represents all positive integers
except 4k(16m+ 14). D:x2 + 2y2 + 3z2 represents all positive integers except
4k(16m+10). E:x2+y2+4z2 represents all positive integers except 4k(8m+7)
and 8m+3. You see, most forms have more than one congruence obstruction
attached. F:x2 + y2 + 9z2 represents all positive integers except 4k(8m + 7)
and 9m± 3.

If we leave diagonal forms for a moment: G:x2 + y2 + 3z2 + yz + zx
represents all positive integers except 4k(16m+6). The form has discriminant
10. Note that form G appears in our shorthand as 10 : 1 1 3 1 1 0. Next,
H:2x2 + 2y2 + 3z2 + 2yz + 2zx + 2xy represents all positive integers except
4k(8m + 1). The form has discriminant 7, of all things. To provide a form
that misses only those numbers of the form 4k(16m+ 2), we may use either
the even form I: 1 3 5 2 0 0 or the odd form J: 1 1 5 1 1 1. Both I and J are
considered discriminant 14 in our notation.

For each form A-J, there is a short proof of regularity, using explicit
formulas for expressing the form (multiplied by its discriminant) as the sum
of three squares.
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8 Ramanujan and x2 + y2 + 10z2

Apparently Dickson became interested in positive ternary forms because of
a 1916 article of Ramanujan [46]. Ramanujan was investigating diagonal
forms in four variables; in that article he commented that x2 + y2 + 10z2

represents all even numbers not of the form 4k(16m+6), but the odd numbers
(3,7,21,31,...) not expressible as x2+y2+10z2 appeared to follow no definite
pattern. Later computations confirmed that the form misses odd numbers
as large as 679 and 2719, but appears to miss no odd numbers larger than
2719. Jumping to the present day, Ono and Soundararajan [45] have shown
that all odd numbers missed (these are ‘sporadic’) are squarefree, and that an
appropriate Generalized Riemann Hypothesis implies that 2719 is the largest
sporadic.

If a positive integer n is even but not of the form 4k(16m+ 6), then n/2
is not of the form 4k(8m + 3), so that we may write n

2
= r2 + s2 + 5t2. It

follows that n = (r − s)2 + (r + s)2 + 10t2.
If a number n is divisible by 5 and not of the form 4k(16m+6), then n/5

is not of the form 4k(16m+ 14). We may write n
5
= r2 + s2 + 2t2. It follows

that n = (2r − s)2 + (r + 2s)2 + 10t2. This one was pointed out by Ono and
company.

Now there is just one other equivalence class in the same genus as 1 1 10 0
0 0, containing the form 2 2 3 2 0 0, which refers to 2x2+2y2+2yz+3z2. The
results of Jones on ‘regularity of a genus’ show that every eligible number n
is represented either by 1 1 10 0 0 0 or by 2 2 3 2 0 0. Usually both.

Just to make trouble: passing from even forms back to a Regular odd
form. You see, the form G from an earlier section, x2 + y2 + 3z2 + yz + zx
represents all positive integers except 4k(16m+ 6). Fix the letters x, y, z for
this paragraph. If z is even, write x = r−t, y = s−t, z = 2t, the quantity t is
an integer, and the polynomial G becomes r2+s2+10t2. If the sum (x+y) is
even, switch to x = r+s, y = −r+s, z = t, with result 2r2+2s2+2st+3t2. If
z and (x+y) are both odd, use x = r+s+t, y = r−s, z = −t; again, r, s, t will
be integers, the result is again 2r2 + 2s2 + 2st+ 3t2. We have just explicitly
constructed the Jones result, that every eligible number is represented by
either 1 1 10 0 0 0 or 2 2 3 2 0 0.

How did I decide on the quantities z and x+y in the preceding paragraph?
Well, we know that u2 ≡ u mod 2, so that x2 + y2 ≡ x+ y mod 2. Thus the
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parity of z and x+ y clearly influences the parity of

x2 + y2 + 3z2 + yz + zx = 3z2 + z(x+ y) + (x2 + y2);

the form cannot be even unless both z and x+ y are even. Note that x2+ y2

might be 2 mod 4, in which case the result need not be divisible by 4 even
when z and x+ y are both even.

9 Hsia , x2 + y2 + 10z2 and me

John S. Hsia, in a letter to Irving Kaplansky(dated June 1993), proved that
x2+y2+10z2 represents all eligible numbers of the form 3m+2. This result is
not mentioned in [45]. As all odd numbers are eligible, being not of the form
4k(16m + 6), it follows that x2 + y2 + 10z2 represents the entire arithmetic
progression 6m+ 5. Here’s my proof of this fact.

We begin by assuming that a natural number n ≡ 2 mod 3 is represented
by the genus, in particular by the genus mate 2x2 + 2y2 + 2yz + 3z2. That
is, we assume n = 2x2 + 2y2 + 2yz + 3z2, and show how to express n as
u2 + v2 + 10w2.

First, check all 27 triples (x, y, z) with values mod3. With n ≡ 2 mod 3,
one of two things happens: (A) x ≡ ±z mod 3, or (B) y ≡ z ≡ 0 mod 3, but
x is not divisible by 3.

For case (A), two formulas suffice:

9n = (2x− 3y + z)2 + (2x+ 3y + 4z)2 + 10(x− z)2,

9n = (2x− 3y − 4z)2 + (2x+ 3y − z)2 + 10(x+ z)2.

Note that either one of the formulas suffices to prove that x2 + y2 + 10z2

represents all eligible multiples of 9; this result is a tiny part of the Ono
square-free result. Now we’re in the case where x ≡ ±z mod 3. So, in one of
the two formulas, all three of the linear combinations given describe numbers
divisible by 3. Pretend it’s the first one: we get

n =
(

2x− 3y + z

3

)2

+
(

2x+ 3y + 4z

3

)2

+ 10
(

x− z

3

)2

.

It would be similar for the second formula.
In case (B), the above formulas don’t immediately help. Here y ≡ z ≡

0 mod 3, but x is not divisible by 3. Recall n = 2x2 + 2y2 + 2yz + 3z2. If
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y, z are actually 0, then n = 2x2 = x2 + x2 + 10(0)2. If at least one of y, z is
nonzero, we can apply the following result:

Lemma Given m = 2y2+2yz+3z2, withm nonzero, and withm divisible
by 3, we can construct m = 2s2 + 2st + 3t2, with s, t prime to 3. Proof:
Induction on the power of 9 dividing m, combined with specific instances of
Gaussian composition for binary forms.

(i) If m ≡ ±3 mod 9, then m
3
satisfies the conditions to be represented as

m
3
= a2 + 5b2. Now one of a, b will be divisible by 3 and the other will not.

We have explicitly m = 2s2 + 2st+ 3t2, with s = −a + 2b and t = a + b.
(ii) If m ≡ ±9 mod 27, then m

9
satisfies the conditions to be represented

as m
9
= 2c2+2cd+3d2. Both c and c+d will be prime to 3. We have explicitly

m = 2s2 + 2st+ 3t2, with s = c+ 4d and t = 2c− d.
(iii) If m ≡ 0 mod 27, (the induction step) then we will have m

9
= 2e2 +

2ef + 3f 2. Both e and f will be prime to 3. We have explicitly m = 2s2 +
2st+ 3t2, with s = e− 3f and t = 2e + 3f.

This establishes the Lemma, which is very much in the spirit of the Jones
dissertation [32]. So we now have n = 2x2+2s2+2st+3t2, with the important
point being x ≡ ±t mod 3. That means we are back in case (A), and can use
one of the two formulas given. Done.

10 Homotheties: the equation P ′AP = B

Here the notation P ′ refers to the transpose of P. The matrices A and B
are symmetric positive definite and have integer or half-integer entries, so
that in any case 2A and 2B have integer entries. The matrix P is required
to have integer entries but is probably not symmetric. Furthermore P may
have determinant other than ±1, so that we allow A and B to have different
determinants. There will simply be no solution if detB/ detA is not an
integer square.

The rows of P find their way into substitution formulas relating one
quadratic form to another. For example, if A is the matrix of the form 26:1
3 9 2 0 0 with B being the matrix of 26: 2 2 7 0 2 0, which is in the same
genus. These forms are not equivalent, so there will be no solutions without
some multiplier. That is, we will show a solution to P ′AP = 9B. We will
then show the same information in formulas with substitutions.
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





1 −2 1
2 −1 −1
7 1 1













1 0 0
0 3 1
0 1 9













1 2 7
−2 −1 1
1 −1 1





 = 9







2 0 1
0 2 0
1 0 7





 .

Let
g(X, Y, Z) = X2 + 3Y 2 + 2Y Z + 9Z2.

Let
h(x, y, z) = 2x2 + 2y2 + 7z2 + 2zx.

Then
g (x+ 2y + 7z,−2x− y + z, x− y + z) = 9 h(x, y, z),

which means that

g
(

x+ 2y + 7z

3
,
−2x− y + z

3
,
x− y + z

3

)

= h(x, y, z).

So, if A represents the form f and B represents the form g, we are describing
a linear change of variable. If we use capital V to refer to the column vector
with entries x, y, z, then a solution P corresponds to the formula f(PV ) =
g(V ). Notice that when the determinant of P is equal to 1, so that P is called
‘unimodular’, then the inverse of P is also unimodular. In this case the forms
are called ‘equivalent’, as the change of variables is invertible.

Often the word ‘homothety’ is used for the mapping A 7−→ P ′AP when
the determinant of P is not restricted to 1. Many examples of this occur in
the present article. With H,M matrices associated with forms in the same
genus, I get some cheap proofs of regularity from multiple solutions of the
equation P ′HP = 4M. In considering x2 + y2 + 10z2, I used two solutions of
P ′HP = 9M. To show that x2+y2+10z2 represents eligible even numbers, we
solved P ′HP = 2R, where the matrix R is associated with the known regular
form x2 + y2 + 5z2. For multiples of 5, we solved P ′HP = 5R, where this
time the matrix R is associated with the known regular form x2 + y2 + 2z2.
In general, a solution of P ′HP = qR, with q prime and R representing a
regular form, shows that the form represented by the matrix H represents
eligible multiples of the prime q. A solution of P ′AP = q2B, with q prime
and B representing another form in the same genus, shows that the form
represented by the matrix A dominates that of B on multiples of q2, but much
more can sometimes be proven from such expressions. It’s worth emphasizing
the importance of finding several solutions of P ′AP = C. See especially the
section on 26: 1 3 9 2 0 0.
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11 Genera

Quadratic forms of a fixed number of variables, fixed as to the collective
parity of mixed coefficients, and fixed discriminant split into a finite set of
equivalence classes. Here equivalence is by matrices of integers with deter-
minant +1.

For binary forms, we get Gaussian composition and a group structure,
and the basic question is which primes are represented by which forms of the
discriminant. Deciding on whether a composite number is represented by a
certain form is effectively a question of composition. The set of elements in
this ‘class group’ that are squares in the group is called the ‘principal genus’.
The identity in the group is called the ‘principal form’. The class group is
commutative, so the principal genus is a normal subgroup. Each genus is a
left coset of the principal genus.

For ternary positive forms, there is no group structure. In two papers in
the same issue of the AMS Transactions [33] and [34], Burton W. Jones
showed that any number satisfying the relevant congruence conditions for
representation by the forms of a genus is, in fact, represented by at least one
form in the genus. A form that represents all numbers ‘eligible for its genus’
is called ‘regular’ after Leonard Eugene Dickson [14]. It follows that any
form in a genus containing only one equivalence class of forms is necessarily
regular.

I should say that the equivalence relation of being in the same genus is
slightly stronger than rational equivalence, it is rational equivalence ‘without
essential denominator’. If two forms are given by symmetric matrices A and
B, and the forms agree as to ‘odd’/‘even’ and have the same discriminant,
then the forms lie in the same genus if there are an integer matrix P of
determinant k such that P ′AP = k2B and GCD(k , 2 disc) = 1, as well
as the reverse: Q′BQ = j2A with GCD( j , 2 disc ) = 1. If we divide
the matrix P by k , we see a rational equivalence between A and B that
is ‘without essential denominator’ in the phrase of Siegel. This definition of
genus is discussed in detail in Jones’s book [35]. With three variables, the
question of whether j, k are positive is irrelevant. But for binary forms, a
change of variable with determinant −1 gives us the important ‘opposite’
form, which is not necessarily equivalent to the original but is in the same
genus.

It turns out that regular positive ternary quadratic forms are all contained
in genera with four or fewer equivalence classes. Indeed, only twice do we
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find four classes: the diagonal form 1 48 144 0 0 0 of discriminant 6912 is
in a genus of four classes. Also, the odd form 1 3 37 3 1 0 of discriminant
432 is in a genus of four classes. The latter was proved regular by Earnest
et al [1]. All other regular forms are in genera with three or fewer classes.
I. Kaplansky has found a unified method for proofs of regularity that avoids
the use of spinor genera or of Tits buildings, and handles some thirty-six
forms. These include all the forms proved regular in [50].

Returning to the 432 form, the formula

4(x2 + 3y2 + 37z2 + 3yz + zx) = (2x+ z)2 + 3(2y + z)2 + 36(2z)2

allows us to deduce its regularity from that of the diagonal form (1,3,36),
along with (1,3,9) and (1,3,12) for special cases.

12 Jones-Pall, Theorem 5

In the massive article [36], great use is made of their Theorem 5, which is
(partly) proved elsewhere. The theorem refers to x2+ y2+ cz2 for c = 1, 2, 3.

For c = 1 : If n is not a square , n ≡ 1 mod 8, then the number of
solutions to n = x2 + y2 + z2 with one of x, y, z being divisible by 4 is equal
to the number of solutions with one of x, y, z being congruent to 2 mod 4.
Notice that two out of three of x, y, z are even and they are congruent mod 4.
For example, taking n = 41, each of the triples (0,4,5) and (3,4,4) contributes
24 solutions to the 0 mod 4 pile, taking into account permutations and sign
changes. The collection of 2 mod 4 solutions gets 48 total from (1,2,6), giving
the required equality.

For c = 2 : If n is not a square , n ≡ 1 mod 8, then the number of
solutions to n = x2+ y2+2z2 with one of x, y being divisible by 8 is equal to
the number of solutions with one of x, y being congruent to 4 mod 8. Notice
that we ignore z. For example, taking n = 73, each of the triples (0,1,6) and
(3,8,0) contributes 8 solutions to the 0 mod 8 pile, and (1,8,2) contributes
another 16, making 32 total. The collection of 4 mod 8 solutions gets 16
each from (4,5,4) and (4,7,2).

For c = 3, we require 1 mod 24 : If n is not a square , n ≡ 1 mod 24, then
the number of solutions to n = x2 + y2 + 3z2 with one of x, y being divisible
by 6 is equal to the number of solutions with one of x, y being congruent
to 3 mod 6. Notice that we ignore z. For example, taking n = 193, each of
the triples (7,12,0) and (0,1,8) contributes 8 solutions to the 0 mod 6 pile,
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while (1,12,4) and (6,7,6) each contribute another 16, making 48 total. The
collection of 3 mod 6 solutions gets 16 each from (9,10,2),(8,9,4), and (2,9,6).

13 Jones-Pall, Theorem 4 : Squares

On the same page 177 of [36], Theorem 4 discusses rewriting squares as
x2+y2+cz2 for c = 1, 2, 3.We will give the results for primes only. Nontrivial
expressions p2 = x2 + y2 + cz2 can be shown to exist using various special
cases of the identity (r2+As2+Bt2+ABu2)2 = (r2−As2−Bt2+ABu2)2+
A(2rs− 2Btu)2 +B(2rt+ 2Asu)2.

For c = 1 and an odd prime p, we are writing p2 = x2 + y2 + z2 with at
least two of {x, y, z} nonzero. Permuting labels so that x is odd, Theorem
4 says that if p ≡ 1 mod 4, then y ≡ z ≡ 0 mod 4. However if p ≡ 3 mod 4,
then y ≡ z ≡ 2 mod 4.

For c = 2 and an odd prime p, we are writing p2 = x2 + y2 + 2z2 with
at least two of {x, y, z} nonzero. Permuting labels so that x is odd, note
y ≡ 0 mod 4 and z is even. Theorem 4 says that if p ≡ 1, 3 mod 8, then
y ≡ 0 mod 8. However if p ≡ 5, 7 mod 8, then y ≡ 4 mod 8.

For c = 3 and an odd prime p 6= 3, we are writing p2 = x2+ y2+3z2 with
at least two of {x, y, z} nonzero. Note that z must be even. Permuting labels
so that x is odd, Theorem 4 says that if p ≡ 1 mod 3, then y ≡ 0 mod 6.
However if p ≡ 2 mod 3, then y ≡ 3 mod 6.

14 Rewriting Squares 2

Occasionally it is necessary to show that there is a way to write some n2 in
a nontrivial way as x2 + y2 + cz2, especially in the cases c = 1, 2, 3. If n = 1,
there will be no alternative expression from the obvious. If, however, n ≥ 2,
we consider an appropriate prime p that divides n. Next we show that there
is an expression p2 = x2 + y2 + cz2 such that at least two out of three of
the numbers x, y, z are nonzero. Finally, the appropriate expression for n2

results from multiplying all three of x, y, z by the integer n/p.
From my little Acta Arithmetica paper, suppose

n = r2 + As2 +Bt2 + ABu2.
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Then

n2 = (r2 − As2 − Bt2 + ABu2)2 + A(2rs− 2Btu)2 +B(2rt+ 2Asu)2.

The first example is x2+y2+2z2. We will show that for all n ≥ 2, we can
write n2 = x2+ y2+2z2 with at least two of the numbers x, y, z nonzero. As
mentioned, it suffices to consider the question for all primes p. For example,

22 = 12 + 12 + 2 · 12,

32 = 02 + 12 + 2 · 22,
52 = 32 + 42 + 2 · 02,
72 = 12 + 42 + 2 · 42.

Generally, if p ≡ 1 mod 4, then p = x2 + y2 with xy 6= 0 and x2 6= y2.
Then p2 = (x2 − y2)2 + (2xy)2.

If p ≡ 3 mod 8, then p = x2 + 2y2 with xy 6= 0. Then p2 = (x2 − 2y2)2 +
2(2xy)2.

If p ≡ 7 mod 8, then p = x2 + y2 + 2z2 with xyz 6= 0. Then p2 =
(x2 − y2 − 2z2)2 + (2xy)2 + 2(2zx)2. Note that the first term (x2 − y2 − 2z2)
must be odd, therefore nonzero. ©©©©

The second example is x2 + y2 + z2. We will show that we can write
n2 = x2+y2+z2 with at least two of the numbers x, y, z nonzero, unless n is
a power of 2. Note that the only expression for 4 as the sum of three squares
is the trivial

22 = 02 + 02 + 22.

For odd primes: if p ≡ 1 mod 4, then p = x2 + y2 with xy 6= 0 and x2 6= y2.
Then p2 = (x2 − y2)2 + (2xy)2.

If p ≡ 3 mod 8, then p = x2 + 2y2 with xy 6= 0. Then

p2 = (x2 − 2y2)2 + 2(2xy)2 = (x2 − 2y2)2 + (2xy)2 + (2xy)2.

If p ≡ 7 mod 8, then p = w2 + x2 + y2 + z2 with wxyz 6= 0. Then

p2 = (w2 − x2 − y2 + z2)2 + (2wx− 2yz)2 + (2wy + 2zx)2.

Note that the first term must be odd, therefore nonzero. ©©©©
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The last example is x2 + y2 + 3z2. We will show that we can write n2 =
x2 + y2 + 3z2 with at least two of the numbers x, y, z nonzero, unless n is a
power of 3. Note that the only expression for 9 is the trivial

32 = 02 + 32 + 3 · 02.

On the other hand,
22 = 12 + 02 + 3 · 12.

For odd primes: if p ≡ 1 mod 4, then p = x2 + y2 with xy 6= 0 and x2 6= y2.
Then p2 = (x2 − y2)2 + (2xy)2.

If p ≡ 1 mod 3 then p = x2 + 3y2 with xy 6= 0. Then

p2 = (x2 − 3y2)2 + 3(2xy)2.

If p ≡ 11 mod 12, then p = +x2 + y2 + 3z2 with xyz 6= 0. Then

p2 = (x2 − y2 − 3z2)2 + (2xy)2 + 3(2zx)2.

©©©©

15 The Jones lemmas

The following is Theorem 9 (page 51) in the unpublished Ph.D. dissertation
of Burton Jones, U. of Chicago 1928 [32].

Lemma(Jones). Iff = x2 + ky2 represents an odd prime p, where k is
a positive integer prime to p, then every mp represented by f ( m a positive
integer ) is represented by f with x and y prime to p .

The lemma fails when m = 0.
Next, from page 52 of Jones’ dissertation: if n is positive, n and p are

represented by x2 + ky2, and n = mpa with m prime to p, then m is also
represented by x2 + ky2. For this separate argument it is not necessary to
require k 6= p, and we permit p = 2. Indeed, the argument can be modified
to apply to forms of the type x2 + xy + ky2, so the fundamental restriction
in this paragraph is simply that the binary form represent 1. For example,
if a nonzero number n is represented by x2 + xy + 3y2 and n is divisible by
11, then n/11 is also represented, and so on if n was divisible by 11a, a ≥ 2.

Corollary(Jones). Finally, as a corollary, if n and p are both represented
by x2 + ky2, p is an odd prime and k is prime to p, and n is nonzero and
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divisible by p, then we have a representation n = x2+ ky2 with x, y prime to
p.

Recently, these results have been used in this form [38] : if n is nonzero,
divisible by 5 and is the sum of two squares, then there is an expression
n = x2 + y2 with x and y prime to 5. Another example [37] is: if n has an
expression as x2 +2y2, n is nonzero and n is divisible by 3, then we can take
n = x2 + 2y2 with x, y both prime to 3. In an earlier section of this note, I
showed: Given m = 2y2 + 2yz + 3z2, with m nonzero, and with m divisible
by 3, we can construct m = 2s2 + 2st+ 3t2, with s, t prime to 3.

16 Difficulties with forms not proved regular

The main process in the work of [31] was a means of taking all forms known
regular and producing new ones with higher discriminants. Prof. Kaplansky
eventually put some of the process into recognizable theorems:

Theorem For odd forms only: if the discriminant D is divisible by 4,
and the form is regular, there is a regular form of discriminant D

4
.

This can be placed in very concrete terms: The original form is equivalent
to one with coefficients a b 4c 2d 2e f, where f is odd. The form with
discriminant D/4 is equivalent to a b c d e f.

Theorem For odd forms only: if the discriminant D is divisible by pk,
for k ≥ 2 and p an odd prime, and the form is regular, there is a regular
form of discriminant D

p
or D

p2
or D

p4
.

Eventually it turned out that it was not necessary to keep the D
p2

bit, but

perhaps D
p4

must remain: there is a form, odd of discriminant 2592 = 32 · 81,
that is probably regular. Its coefficients are 5 9 17 6 5 3. There are two regular
odd forms of discriminant 648, which is 2592

4
; I forget which is relevant. But

there is no odd regular form with discriminant 864 or 288 or 96, those being
the quotients of 2592 by 3, 9, and 27 respectively. There is, however, a regular
odd form of discriminant 32, and there’s the p4 quotient.

We used a variety of ways for constructing even regular forms out of odd
ones, and several ways for using even forms to get new even regular ones with
higher discriminants. The regular odd forms with squarefree discriminant
were found by Watson [55], and the results above show how to descend from
any odd regular form to one with squarefree discriminant.

In the present note, I have been lazy about even numbers and numbers
that have common divisors with the discriminant. This is a metatheorem:
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for a form that does turn out to be regular, even numbers and multiples of
primes dividing the discriminant should cause no difficulties.

Here’s an example: even 5184, the form 3x2+16y2+16yz+112z2. Suppose
we examine multiples of three: set 3x2 + 16y2 + 16yz + 112z2 = 3A. Change
variables by y → y+z, giving 3x2+16y2+48yz+144z2 = 3A. It follows that y
is divisible by 3, so we set y → 3t, leading to 3x2+144t2+144tz+144z2 = 3A.
Simply divide through by 3, resulting in x2+48t2+48tz+48z2 = A. This new
form, 1 48 48 48 0 0, discriminant 1728, is regular, so it does represent A if we
know that A is eligible according to congruences. Here’s the magic part: the
number A is in fact eligible to be represented by the new form, which follows
from diagonalizing both forms over the 3-adic numbers. Indeed, the process
of reducing questions to questions about forms with lower discriminant (that
divide the original) is at the center of the effort in [31].

The bad news is that half of the metatheorem does not apply for several
of the ‘candidate forms’; we get no help if the form of lower discriminant
appealed to is not known to be regular. I have a list of co-dependencies: the
odd candidate form of discriminant 240 is regular if and only if the odd 720
form is; each attends to multiples of 3 for the other. Similar for odd 8232 and
24696. Next are even 2112 and 6336. Finally even 2880 and 14400, where
the relevant prime is 5.

Among the odd forms there are also some one-way implications. If the
2160 candidate is regular, so is the 720 (and therefore the 240). The 1620
implies the 405. The 4500 implies one of the 1125 candidates, I forget which.

Not really news is the fact that irregular forms sometimes miss eligible
numbers that are even or have a prime factor in common with the discrim-
inant. The form x2 + 4y2 + 9z2 is close to being regular, but misses the
number 2. The form 31: 1 2 4 1 0 0 misses the number 31; it should only
miss quadratic nonresidues times 31 to an odd power. 29: 1 2 4 1 1 0 misses
87, which is 3 · 29; this form should only miss residues times 29 to an odd
power, but 3 is not a quadratic residue of 29.

17 Audience Request: 2 2 5 2 0 0 is nearly

regular

Recall the funny order used for the six coefficients: we consider

g(x, y, z) = 2x2 + 2y2 + 5z2 + 2yz
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The other class in this genus is diagonal 1 1 18 0 0 0. The eligible numbers
for the genus are those not 9m ± 3, 4k(16u + 14). We will show that 2x2 +
2y2+5z2+2yz misses the number 1 but represents all other eligible numbers.

Our basic tool is the identity

2x2 + 2y2 + 5z2 + 2yz = (y + 2z)2 + (y − z)2 + 2x2.

For any eligible number n > 1 we will show how to write n = r2 + s2 + 2t2

such that r ≡ s mod 3. This will allow us to solve for integer values of x, y, z
in n = (y + 2z)2 + (y − z)2 + 2x2.

CASE I. n is divisible by 9 , n 6= 4k(16u+ 14). It happens that 9 · 14 ≡
14 mod 16. As a result n

9
6= 4j(16v + 14). Without knowing anything else

about the power of 3 that divides n, we still get to write

n

9
= a2 + b2 + 2c2.

Therefore
n = (3a)2 + (3b)2 + 2(3c)2.

Insofar as 3a ≡ 3b ≡ 0 mod 3, we know we can solve the system y + 2z =
3a, y−z = 3b, x = 3c over the integers. Indeed we get x = 3c, y = a+2b, z =
a− b. So

n = (y + 2z)2 + (y − z)2 + 2x2

as required.
From now on we consider n not divisible by 3, as the genus does not

represent any numbers 9m± 3. We begin with some expression

n = r2 + s2 + 2t2.

CASE II. If r, s are both nonzero modulo 3 , a choice of ±s forces
r ≡ s mod 3 and we are done , as we can solve for integer values of x, y, z.
As r2 + s2 is two modulo three, in this subcase n ≡ 2, 1 mod 3 depending on
the value of t modulo 3.

The same happens if r, s are both divisible by 3, as then r ≡ s ≡ 0 mod 3
as required for integer x, y, z. In this subcase, n 6= 0 mod 3 means that t 6=
0 mod 3 and in fact n ≡ 2 mod 3.

Remaining Cases: With n = r2 + s2 + 2t2, if one of r, s is divisible by
3 and the other is not, we permute the letters so that r ≡ ±1 mod 3 but
s ≡ 0 mod 3.
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CASE III. n ≡ 1 mod 3, r ≡ ±1 mod 3 and s ≡ 0 mod 3. Furthermore
s2 +2t2 > 0. Note that we have here t ≡ 0 mod 3 as well because n ≡ 1 mod
3. We quote Lemma 3 from Kap’s “First Nontrivial Genus” [37]: Lemma
Suppose that w is a nonzero integer divisible by 3 and expressible as s2+2t2.
Then w can be so written with s and t both prime to 3.Proof Induction on
the power of 3 that divides w, using the crucial fact that if v ≡ 0 mod 3 and
there is some expression v = s20+2t20, then there is an expression v

3
= s21+2t21.

Since the original s, t are both divisible by 3 and at least one is nonzero, we
can revise them, giving

n = r2 + S2 + 2T 2,

with all three prime to 3. Finally choosing ±S allows us to force r ≡ S mod 3
and we can solve for x, y, z as required.

CASE IV. n ≡ 1 mod 3, r ≡ ±1 mod 3 and s ≡ 0 mod 3. However
s2 + 2t2 = 0, so that both s, t are 0 and n is a square not divisible by 3.
Furthermore n > 1. The point in this case is to rewrite n in a nontrivial way.
It suffices to consider primes! Any square is a prime squared or the product
of a squared prime times some other square. Without loss of generality, we
take n = p2 with p 6= 3 a prime number.

CASE IVa. If p = 2, 4 = 12 + 12 + 2 · 12 while 1 ≡ 1 mod 3.
CASE IVb. If p ≡ 1 mod 4, we know there is an expression

p = X2 + Y 2.

Here we have XY 6= 0 and X2 − Y 2 6= 0. We get

p2 = (X2 − Y 2)2 + (2XY )2.

Since p2 ≡ 1 mod 3,one of the pair 2XY,X2 − Y 2 is divisible by 3 and the
other is not. Thus we are back in case III, with r chosen to be the expression
not divisible by 3, s being the other, and t being 0.

CASE IVc. If p 6= 3 but p ≡ 3 mod 8, we know there is an expression

p = X2 + 2Y 2

with X, Y 6= 0. Next

p2 = (X2 − 2Y 2)2 + 2(2XY )2.

Again , as p2 is one modulo 3, we must have XY ≡ 0 mod 3 while X2−2Y 2 6=
0 mod 3. We are in case III, with r = X2 − 2Y 2, s = 0, t = 2XY.
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CASE IVd. If p ≡ 7 mod 8, we know there is an expression

p = X2 + Y 2 + 2Z2

with X, Y, Z 6= 0. Think about it. Next

p2 = (X2 − Y 2 − 2Z2)2 + (2XY )2 + 2(2XZ)2.

The first of the terms squared is odd and thus nonzero, while the second and
third terms are nonzero because X, Y, Z 6= 0. Since p2 is one modulo 3, either
all three terms are nonzero modulo 3 or we are back in case III.

18 Example: diagonal 1,4,9 is nearly regular

To illustrate, we show that the form x2 + 4y2 + 9z2 is nearly regular. Con-
gruence considerations show that it must fail to represent all integers of the
forms 9n±3, 8n+3, 4k(8n+7). The only other number it misses is 2, so I call
the form ‘nearly regular’; we say that the only sporadic number is 2. This
proof is essentially the same as my treatment of an even form of discriminant
18 in the article [30].

It is easy to show that the form gets all eligible numbers that are divisible
by 4 or 9, as well as eligible numbers that are congruent to 1 mod 4.

The difficult case is n ≡ 2 mod 4, with n 6= 2 and n prime to 3. Here,
n/2 is odd, prime to 3, and larger than 1. We will show that we can find

n

2
= r2 + s2 + 2t2

with
r ≡ s mod 3.

There are two types of trouble, if we do not immediately have the mod3
congruence. First, we could have r ≡ 0, s ≡ ±1 mod 3. But in this case n
itself would be divisible by 3 and therefore by 9. Secondly, we could have
r ≡ 0, s ≡ ±1, t ≡ 0 mod 3. If at least one of r, t 6= 0 then r2+2t2 is a nonzero
number divisible by 3. We may use the Jones lemmas to find revised values
r′, t′ that are prime to 3, finishing this case. If, however, r, t are actually
both 0, then n/2 is a perfect square larger than 1, and we can rewrite it in
a nontrivial way, with at least two of r, s, t not equal to 0, so we are in a
previous case.
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We finally have
n

2
= r2 + s2 + 2t2

with n/2 odd and prime to 3, and

r ≡ s mod 3.

Then
n = (r + s)2 + 4t2 + 9((r − s)/3)2.

19 M. Bhargava and 26: 1 3 9 2 0 0 on arith-

metic progressions

In another section I discuss Hsia’s result that x2 + y2 + 10z2 gets all eligible
3m + 2, including the entire arithmetic progression 6m + 5. One could say
that x2 + y2 + 10z2 is “regular on the arithmetic progression 3m+ 2.”

In September 1999 Manjul Bhargava brought to my attention the form
26: 1 3 9 2 0 0. We will call it g, and display it as

g(X, Y, Z) = X2 + 3Y 2 + 2Y Z + 9Z2.

The form g misses 4k(16m+ 6) generically. It also has numerous sporadics,
the first few (those up to 5000) being 2, 5, 8, 20, 32, 62, 80, 122, 128,
248, 320, 488, 512, 992, 1280, 1952, 2048, 3968. Notice all the sporadics are
congruent to 2 mod 3. In addition, it is possible that g represents all odd
numbers except 5. I can’t prove quite so much, but I will show that g does
represent all eligible numbers congruent to 0, 1 mod 3, including all the odd
numbers 6m+ 1 and 6m+ 3.

The form g is in a genus of three classes, with reduced representatives










1 3 9 2 0 0
1 1 26 0 0 0
2 2 7 0 2 0











.

We have Jones’ result, any target n 6= 4k(16m+6) is represented by at least
one form in the genus. So we have two cases to consider. First we show that
if n is congruent to zero or one mod 3 and is represented by 1 1 26 0 0 0, it
is also represented by g. Second, we must show that if n is congruent to zero
or one mod 3 and is represented by 2 2 7 0 2 0, it is also represented by g.
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I was quite surprised when the proof appeared. I should point out that I
used a computer program that gives me all homotheties between two given
forms, a task which is difficult and annoying by hand. This is a finite search,
as all our forms are positive, the associated matrices are positive definite, and
so on. In the matrix equation P ′AP = C, the columns of P are vectors whose
values by the quadratic form A are the diagonal elements of C. This gives
easy bounds on the elements of P, either through considering eigenvalues
of A or using Lagrange multipliers. If v stands for the column vector with
entries (x, y, z) then the gradient of the function v′Av is just 2Av, or would
be (A+ A′)v if A itself were not symmetric.

In the present proof, I display a number of homotheties of the type
P ′AP = 9B, where A is the matrix for 1 3 9 2 0 0 and B is the matrix
of one of the other two forms in the genus. I write these below as formulas
with substitution, possibly aiding clarity.

CASE I. Take target number n 6= 4k(16m+ 6) and n ≡ 0, 1 mod 3. Let
n = x2 + y2 + 26z2. Note that there are restrictions mod 3 on the triple
(x, y, z). Perhaps (x, y, z) are all 0 mod 3, or all are nonzero mod 3, or one
of (x, y) is 0 mod 3 and the other is not. Accordingly, it is guaranteed that
x ≡ ±z mod 3 or that y ≡ ±z mod 3. We have:

g(X, Y, Z) = X2 + 3Y 2 + 2Y Z + 9Z2,

n ≡ 0, 1 mod 3,

n 6= 4k(16m+ 6),

n = x2 + y2 + 26z2,

n = g
(

y, 3z,
x− z

3

)

,

n = g
(

y,−3z,
x+ z

3

)

,

n = g
(

x, 3z,
y − z

3

)

,

n = g
(

x,−3z,
y + z

3

)

.

Since we know that x ≡ ±z mod 3 or that y ≡ ±z mod 3, at least one of
the above rational representations for n by the form g consists entirely of
integers, thus showing that g also represents n.

27



CASE II. Take target number n 6= 4k(16m + 6) and n ≡ 0, 1 mod 3.
Let n = 2x2 + 2y2 + 7z2 + 2zx. There are only six triples (x, y, z) mod 3 for
which 2x2+2y2+7z2+2zx ≡ 2 mod 3, those being 010,020,100,101,200,202.
Those six are the triples we are avoiding. All the other 21 triples, for which
the value of 2x2 + 2y2 + 7z2 + 2zx ≡ 0, 1 mod 3, have the property that at
least one of the four linear expressions {x+ y, x− y, x+ y + z, x− y + z} is
divisible by 3. We have:

g(X, Y, Z) = X2 + 3Y 2 + 2Y Z + 9Z2,

n ≡ 0, 1 mod 3,

n 6= 4k(16m+ 6),

n = 2x2 + 2y2 + 7z2 + 2zx,

n = g
(

x− 2y − 6z

3
,
−2x+ y − 3z

3
,
x+ y

3

)

,

n = g
(

x+ 2y − 6z

3
,
−2x− y − 3z

3
,
x− y

3

)

,

n = g
(

x− 2y + 7z

3
,
−2x+ y + z

3
,
x+ y + z

3

)

,

n = g
(

x+ 2y + 7z

3
,
−2x− y + z

3
,
x− y + z

3

)

.

We know that at least one of the four linear expressions {x+y, x−y, x+y+
z, x−y+z} is congruent to 0 mod 3. It follows that at least one of the above
rational representations for n by the form g consists entirely of integers, thus
showing that g also represents n.

That’s it. The form g(X, Y, Z) = X2 + 3Y 2 + 2Y Z + 9Z2, also known as
26: 1 3 9 2 0 0, behaves as though regular on the arithmetic progressions 3m
and 3m+ 1. In particular, it represents the progressions 6m+ 3 and 6m+ 1
in their entirety. ©©©©

It’s worth a word on the meaning of this result for the original intended
problem, that of proving that certain even (integer-matrix) forms in four
or more variables represent all odd numbers. This effort eventually became
Bhargava’s 33 Theorem, see page 26 of [11]. At least this is the way the
problem was being discussed at the time. The first case is 1⊕ 3 5 8 4 2 0 of
discriminant 103, that is

h1(W,X, Y, Z) = W 2 + 3X2 + 5Y 2 + 8Z2 + 4Y Z + 2ZX.
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We have the homothety

h1(x,−3w + y, 17w − z, 9w + z) = 2678w2 + x2 + 3y2 + 2yz + 9z2.

This formula shows that h1 dominates the latter form, that is h1 represents
every number represented by 2678w2 + x2 + 3y2 + 2yz + 9z2 and probably
a few others. As 2678 ≡ 2 mod 6, we may take w = 0, 1 and conclude that
h1 represents all odd numbers larger than 2678. It is easy to check that
h1 represents all odd numbers up to 5000. For that matter, 26:1 3 9 2 0 0
represents all odd numbers except 5 up to 5000. Anyway, this proves that
h1 represents all odd numbers. Bhargava commented that this shows that h1

actually represents all numbers other than 2. I’ll think about it.
The second case is 1⊕ 3 5 9 2 2 0 of discriminant 127, that is

h2(W,X, Y, Z) = W 2 + 3X2 + 5Y 2 + 9Z2 + 2Y Z + 2ZX.

We have the homothety

h2(x, w + y, 26w,−3w+ z) = 3302w2 + x2 + 3y2 + 2yz + 9z2.

This formula shows that h2 dominates the latter form, that is h2 represents
every number represented by 3302w2 + x2 + 3y2 + 2yz + 9z2. Again, 3302 ≡
2 mod 6, we may take w = 0, 1 and conclude that h2 represents all odd
numbers larger than 3302. Done.©

Just as the 290 conjecture for representing all natural numbers using odd
forms is not finished, so the problem of representing all odd numbers with odd
forms in not finished. However there is a big obstacle in the latter problem,
as there are three remaining odd ternary forms that appear to represent all
odd natural numbers but for which no proof is available. See Kaplansky [38].
The three ‘candidates’, each preceded by discriminant, are:

38: 1 2 5 0 1 0, or x2+2y2+5z2+ zx; this form seems to miss only 14 ·4k
compared with its genus. The other form in the genus is 38: 1 1 13 1 1 1,
which represents exactly the same numbers as 1 3 13 2 0 0.

62: 1 3 6 2 0 1, or x2+3y2+6z2+2yz+xy; this form seems to miss only
26 · 4k compared with its genus. The other form in the genus is 62: 1 1 21 1
1 1 which represents exactly the same numbers as 1 3 21 2 0 0.

74: 1 3 7 1 1 1, or x2 +3y2 +7z2 + yz+ zx+ xy. this form seems to miss
only 2 · 4k and 50 · 4k compared with its genus. The other forms in the genus
are 74: 1 1 19 1 1 0, not sure about this one, and 74: 1 1 25 1 1 1 which
represents exactly the same numbers as 1 3 25 2 0 0.
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20 A reason to like odd numbers

What follows is a method for showing quickly that a positive quaternary form
represents all natural numbers up to some large finite bound. The work was
prompted by contact with Manjul Bhargava and Jonathan Hanke.

Given a positive ternary T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx + fxy,
suppose that T represents very many odd numbers, because it represents all
of 1, 3, 5, 7 mod 8, and all values modp and modp2 for any odd prime p that
divides the discriminant of T. For that extra feeling of security, suppose that
the spinor genus of T and the genus of T coincide.

What we are hoping for is a form that represents all sufficiently large
odd numbers. I sent e-mail to Rainer Schulze-Pillot asking if I had correctly
described sufficient conditions for this desirable property. He replied the next
day, 17 November 2004, in the affirmative. The reference is [51], with a later
survey article [52].

In short, suppose that there are odd numbers m < m + M such that
T (x, y, z) represents all the odd numbers from m+2 to m+M inclusive, and
where M is much larger than m. I guess this makes M even. Think of m as
“the largest known odd miss.”

Now consider the quaternary form

Q(x, y, z, w) = T (x, y, z) +Rw2,

where we insist that R also be odd! We want M much larger than both R
and m. Indeed we require

M2

16R
> m+M,

so that M > 16R. Sorry to be annoying, but we also require

4M > 9R + 2m+
m2

R
.

In the Theorem that follows, forget about genera or spinor genera. All
that matters is that a particular positive ternary represents a very long set
of consecutive odd numbers.

Theorem: Given a positive ternary T (x, y, z) = ax2 + by2 + cz2 + dyz +
ezx + fxy, and positive integers m,M with m odd and M even. Suppose
that T (x, y, z) represents all the odd numbers from m+2 to m+M inclusive.
Suppose further that there is an odd number R > 0 such thatM2 > 16R(m+
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M) and 4MR > 9R2 + 2Rm +m2. Define Q(x, y, z, w) = T (x, y, z) + Rw2.
Then Q(x, y, z, w) represents all natural numbers from m + R + 2 up to
⌊M2

16R
⌋.
Proof: we will of course solve n = T (x, y, z)+Rw2 by solving n−Rw2 =

T (x, y, z) first.
Case 1: If m+R+ 2 ≤ n ≤ m+M, then either n itself or n−R is odd

( we insisted that R be odd), and both values lie in the interval from m+ 2
to m+M. So either n or n− R is represented by T (x, y, z), which is to say
that n is represented by Q(x, y, z, w) where w is either 0 or 1.

Notation for cases 2 and 3: For n > m +M, but n ≤ M2/(16R), so
that

√
n ≤ M/(4

√
R). Pick W so that RW 2 ≤ n but R(W + 1)2 > n. We

will need

W ≤
√

n

R
≤ M

4R
,

and

RW ≤ M

4
.

Case 2: If n > m + M and n − RW 2 ≥ m + 1, it is still true that
n− R(W + 1)2 < 0, or

n− RW 2 < 2RW +R.

That is n−RW 2 < M
2
+R < 9M

16
< m+M. This is small enough, but what

if n− RW 2 is an even number? Then we need to switch to the (larger) odd
number n− R(W − 1)2 = n− RW 2 + 2RW − R < 4RW < M < m+M.

Case 3: If n > m + M and n − RW 2 ≤ m, we consider W − 1 and
W − 2. That is, either n− R(W − 1)2 or n− R(W − 2)2 is an odd number.
It follows from combining R(W + 1)2 > m + M and 4M > 9R + 2m + m2

R

that 2WR − R > m, then adding n − RW 2 ≥ 0 gives n− R(W − 1)2 > m,
so that n− R(W − 2)2 > m as well. How big could they be?

n− R(W − 2)2 = n− RW 2 + 4RW − 4R < m+M − 4R < m+M.

©©©©©
Example: take

T (x, y, z) = 9x2 + 19y2 + 35z2 + 18yz + 8zx+ 8xy,
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with Gram matrix






9 4 4
4 19 9
4 9 35







with m = 124499 ≈ 1.24 · 105, and R = 5. With these figures, our result
above can be applied when M > 775062310 ≈ 7.75 · 108. A long computer
calculation (19 November - 22 November , 2004) confirmed matters for M =
940042422 ≈ 9.40 · 108. That is, it confirmed that T (x, y, z) represents all
odd numbers from m+ 2 = 124501 up to m+M = 940166921.

It follows that the quaternary Q(x, y, z, w) = T (x, y, z) + 5w2 represents
all natural numbers from m+R+2 up to ⌊M2

16R
⌋, or 124506 up to ⌊M2

80
⌋. That

is,
Q(x, y, z, w) = 9x2 + 19y2 + 35z2 + 18yz + 8zx + 8xy + 5w2

represents the numbers from 124506 to 11045996939495326 ≈ 1.104 · 1016.
The payoff is a subset relation: Q(x, y, z, w), with Gram matrix











9 4 4 0
4 19 9 0
4 9 35 0
0 0 0 5











,

represents a subset of the integers represented by

U(x, y, z, w) = x2 + 2y2 + 4z2 + 31w2 + 3zw − wy + yz,

with Gram matrix










1 0 0 0
0 2 1/2 −1/2
0 1/2 4 3/2
0 −1/2 3/2 31











.

This is because of the homothety

Q(r, s, t, u) = U(−r + 3s+ t+ u, 2r + 2s+ t,−s + u,−t),

which is the same as saying that the matrix product











−1 2 0 0
3 2 −1 0
1 1 0 −1
1 0 1 0





















1 0 0 0
0 2 1/2 −1/2
0 1/2 4 3/2
0 −1/2 3/2 31





















−1 3 1 1
2 2 1 0
0 −1 0 1
0 0 −1 0










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is equal to










9 4 4 0
4 19 9 0
4 9 35 0
0 0 0 5











,

which is true.
So, the numbers from 124506 to 11045996939495326 ≈ 1.1046 · 1016 are

represented by U(x, y, z, w). It is expected that analytic methods will finish
a proof that U(x, y, z, w) represents all the natural numbers.

21 When odd numbers are not good enough

After the success with

U(x, y, z, w) = x2 + 2y2 + 4z2 + 31w2 + 3zw − wy + yz,

I asked Hanke for some more examples to try. He ignored me, so I started
on V (x, y, z, w) = x2 + 3y2 + 5z2 + 7w2. I was surprised at being unable to
find any ternary quadratic form “represented by V,” that in turn represented
almost all odd numbers. A synonym for “ternary quadratic form represented
by V ” is “ternary sublattice.”

There was good reason for this, and all the relevant material is in a
wonderful book by Cassels [6]. By certain more or less global relations (page
76, Lemma 1.1), any positive ternary is anisotropic at at least one, and in fact
an odd number of, finite primes, as “positive” means anisotropic at infinity.
In particular, on page 59 we find Lemmas 2.5 and 2.6, and all necessary
material on cp(f) on pages 55-58. Put together with the fact that 105 is a
square in the 2-adic numbers, and any ternary sublattice of V is isotropic at
2 and anisotropic at some odd finite prime.

22 Quaternaries representing binaries

In early 2006 I heard a talk by Jordan Ellenberg on positive quadratic forms
of dimension n representing forms of dimension m. Under fairly mild extra
assumptions, when n ≥ m+7, Q is positive of dimension n and Q′ is positive
of dimension m, and if Q represents Q′ locally and Q′ has a sufficiently large
minimum value, then Q represents Q′ over the integers. The work, with
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Ashkay Venkatesh, has now appeared [23]. They cite Schulze-Pillot [52] as
a valuable survey. Both mention the earlier result [29], in full strength (you
still need sufficiently large minimum for Q′ ), for n ≥ 2m + 3, and Schulze-
Pillot mentions a result [9] requiring extra hypotheses but including the best
possible rank comparison, n ≥ m+ 3.

Schulze-Pillot [53] himself has recently provided his own improvements
that include n ≥ m + 3, with a nice description in matrix form (Theorem
11).

Ellenberg said that things could possibly be improved further to n ≥
m + 3, but under no circumstances would n = m + 2 work. This fits, we
know that positive ternaries (n = 3) have generic obstructions in representing
integers (m = 1); for this topic, one should think of any integer a as either a
one-by-one matrix or the one-variable form f(t) = at2, with ‘minimum’ a.

I got to thinking about n = 4, m = 2, positive quaternaries representing
binaries. I found a nice reference by Earnest [18]. He calls a positive quater-
nary “2-regular” if it represents all binaries it locally represents. He shows
that, just as with regular ternaries, there are a finite number of 2-regular
quaternaries (up to equivalence, or isometry of integer lattices as he calls it).

For positive quaternaries representing binaries, I took quaternaries from
the book of Gordon L. Nipp [43]. The first few examples I tried missed
entire discriminants of binaries. But it turned out to be a simple lemma
based on the fact that I was checking diagonal quaternaries with square
determinant and some additional restrictions, allowing a relationship with
quaternion multiplication. The lemma described below should also be useful
generalized to the p-adic diagonalization of a quaternary.

See Cassels [6, pages 171-178] for a better formalism that reveals general-
izations; we take an aggressively low-budget approach. In short, take positive
integers A,B,C. Consider the positive quaternary form

Q(z0, z1, z2, z3) = z20 +BCz21 + CAz22 + ABz23

For a quaternion

z = z0 + z1i
√
BC + z2j

√
CA + z3k

√
AB,

define
z′ = z0 − z1i

√
BC − z2j

√
CA− z3k

√
AB,

so that
zz′ = z′z = Q(z0, z1, z2, z3),
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the usual squared norm. We will also need the “real part”

ℜz = z0.

The matrix multiplication of our quaternary form representing some bi-
nary is:

(

p q r s
t u v w

)











1 0 0 0
0 BC 0 0
0 0 CA 0
0 0 0 AB





















p t
q u
r v
s w











= M.

We introduce more quaternions,

x = p+ qi
√
BC + rj

√
CA+ sk

√
AB,

and
y = t+ ui

√
BC + vj

√
CA+ wk

√
AB.

We calculate
xx′ = p2 +BCq2 + CAr2 + ABs2,

yy′ = t2 +BCu2 + CAv2 + ABw2,

and a real part

ℜ(xy′) = pt+BCqu+ CArv + ABsw.

Earlier we denoted by M the Gram matrix of a represented binary. With
the new notation we find

M =

(

xx′ ℜ(xy′)
ℜ(xy′) yy′

)

The determinant of M is

detM = xx′yy′ −ℜ2(xy′).

Now, real numbers commute with quaternions, so

(xy′)(xy′)′ = xy′yx′ = x(y′y)x′ = xx′(y′y) = xx′yy′.
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If we now use our variable z in a substitution, taking

z = xy′,

we get xx′yy′ = zz′, so that

detM = zz′ − ℜ2z.

Finally, we have a lemma: we find that the determinant of M is restricted
to the values of a certain diagonal positive ternary:

detM = zz′ − ℜ2z = Q(z0, z1, z2, z3)− ℜ2z = Q(z0, z1, z2, z3)− z20 ,

or
detM = BCz21 + CAz22 + ABz23 .

23 Kaplansky’s proofs: one of his methods

We discuss some two-parameter families of forms. In a 1997 email to Alexan-
der Schiemann, Kap conjectured that these, together with a few pairs of
regular forms, give all possible examples of pairs of positive ternaries that
represent the same numbers (ignoring multiplicities). Schiemann had already
proven that the theta series of a positive ternary (which includes multiplici-
ties) categorizes the form up to equivalence. A 1963 article by Timofeev [54]
displays a subset of Kap’s forms.

EDIT, December 2013: I decided to give Kap’s conjecture a little com-
puter trial and was surprised to find counterexamples plentiful. I did, even-
tually, find two examples of pairs of irregular forms of the same discriminant
(and genus) representing the same numbers, at least up to 106. So I am re-
producing those genera whole. Proof would be difficult or impossible. I also
found, with varying discriminants, two quadruples of forms, and a few pairs,
where the forms in each grouping miss the same numbers. Checked up to
106.

( 4n + 2) , 4^k * (16 n + 6 )

=====Discriminant 232 ==Genus Size== 3
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Discriminant 232

Spinor genus misses no exceptions

232: 1 4 15 2 1 0 misses 3 7 11 31 43

232: 3 3 7 1 2 1 misses 1 single squareclass

232: 3 5 5 3 1 3 misses 1 single squareclass

--------------------------size 3

Last two: also 4^k * {1}

(9 n +- 3), (81 n +- 27), (4 n + 2), 4^k * (16 n + 14)

=====Discriminant 648 ==Genus Size== 6

Discriminant 648

Spinor genus misses no exceptions

648: 1 4 41 2 1 0 misses 7 11 19 23 31

648: 1 5 35 4 1 1 misses 8 13 29 31

648: 1 11 17 9 1 1 misses 5 7 8 65 179

648: 4 5 9 3 0 2 misses 1 8

648: 5 5 8 0 4 3 misses 1 40

648: 5 7 7 6 1 5 misses 1 40

--------------------------size 6

Last two: also 4^k * {1,40}

4^k * (16 n + 2) ; 4^k * {1}

78 : 3 3 3 1 1 3

142 : 3 3 5 2 3 1

158 : 3 3 5 -1 2 1

190 : 3 5 5 5 2 3

4^k * (8 n + 1) ; 4^k * {2}

156 : 3 3 5 2 2 0

284 : 3 5 6 4 2 2

316 : 3 5 6 0 2 2

380 : 3 5 7 2 0 2

9^k * (9 n + 6) ; 9^k * {2,3}

75 : 1 4 5 1 1 0
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111 : 1 4 7 1 0 0

9^k * (9 n + 3) ; 9^k * {1,6}

177 : 2 4 7 4 2 1

213 : 2 4 7 0 1 1

9^k * (3 n + 2) ; 9^k * {1,6}

225 : 3 4 7 4 3 3

333 : 3 4 7 1 0 0

9^k * (3 n + 2) ; 9 n + 3; {1}

324 : 4 4 6 0 3 2

567 : 4 6 7 3 2 3

As long as I am putting in verbatim computer output, after a month
or so I have what I suspect to be a complete list of the irregular and non-
Kaplansky pairs of forms that represent the same numbers. No proofs. Let
me see what I need to do to get this narrow enough that Latex will put it in
the document without wrapping lines:

111 : 1 4 7 1 0 0 75 : 1 4 5 1 1 0

142 : 3 3 5 2 3 1 78 : 3 3 3 1 1 3

158 : 3 3 5 -1 2 1 78 : 3 3 3 1 1 3

158 : 3 3 5 -1 2 1 142 : 3 3 5 2 3 1

190 : 3 5 5 5 2 3 78 : 3 3 3 1 1 3

190 : 3 5 5 5 2 3 142 : 3 3 5 2 3 1

190 : 3 5 5 5 2 3 158 : 3 3 5 -1 2 1

213 : 2 4 7 0 1 1 177 : 2 4 7 4 2 1

216 : 2 4 8 4 1 1 54 : 2 2 4 1 2 0

232 : 3 5 5 3 1 3 232 : 3 3 7 1 2 1

284 : 3 5 6 4 2 2 156 : 3 3 5 2 2 0

316 : 3 5 6 0 2 2 156 : 3 3 5 2 2 0

316 : 3 5 6 0 2 2 284 : 3 5 6 4 2 2

333 : 3 4 7 1 0 0 225 : 3 4 7 4 3 3

380 : 3 5 7 2 0 2 156 : 3 3 5 2 2 0

380 : 3 5 7 2 0 2 284 : 3 5 6 4 2 2
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380 : 3 5 7 2 0 2 316 : 3 5 6 0 2 2

567 : 4 6 7 3 2 3 324 : 4 4 6 0 3 2

639 : 5 5 8 -1 2 4 531 : 5 5 6 0 3 2

648 : 2 6 14 3 1 0 162 : 2 2 14 1 2 2

648 : 5 7 7 6 1 5 648 : 5 5 8 0 4 3

999 : 5 8 8 -5 1 4 675 : 5 5 8 -1 4 2

1944 : 2 6 41 3 1 0 486 : 2 2 41 1 2 2

2592 : 4 7 25 -4 2 2 648 : 4 7 7 5 2 2

These are pairs of positive quadratic forms that represent the

same numbers, and violate a Kaplansky conjecture.

Delta : A B C R S T means

f(x,y,z) = A x^2 + B y^2 + C z^2 + R y z + S z x + T x y,

and Delta = 4ABC + RST - A R^2 - B S^2 - C T^2.

The two pair within a genus each are

232 : 3 5 5 3 1 3 232 : 3 3 7 1 2 1

648 : 5 7 7 6 1 5 648 : 5 5 8 0 4 3

The most productive discriminant ratio is 4,

which includes Kap’s two infinite families, also

24 : 1 2 4 2 1 1 6 : 1 1 2 1 1 0

72 : 2 2 5 1 1 1 18 : 2 2 2 1 2 2

216 : 2 5 6 3 0 1 54 : 2 2 5 1 2 2

648 : 2 6 14 3 1 0 162 : 2 2 14 1 2 2

1944 : 2 6 41 3 1 0 486 : 2 2 41 1 2 2

or

48N-24: 2 6 N 3 1 0 12N-6: 2 2 N 1 2 2

where N = (1+ 3^k)/2, and the pairs for N = 1,2,5 are regular

and have been Schiemann reduced.
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Reminder: Kap’s two infinite familes, are

4D : A 3A C 0 0 0 D : A A C 0 0 A

4D: A 2A-R 2A+R 0 2R 0 D : A A A R R R

It is well known that the positive binary forms f(x, y) = x2+xy+y2 and
g(x, y) = x2 + 3y2 represent the same numbers. Assume 0 < s < t. So, the
“quasi-diagonal” form

{s, s, t, 0, 0, s}
represents exactly the same numbers as

{s, 3s, t, 0, 0, 0}.

Also
{s, t, t, t, 0, 0}

represents the same numbers as

{s, t, 3t, 0, 0, 0}.

Next we get four related families of such pairs. Irving Kaplansky an-
nounced one of these in a letter to John Hsia and Dennis Estes dated 18
May, 1994. In later documents he displayed more variants, especially [41].

Consider the form with Brandt-Intrau coefficient sextuple {t, t, t, s, s, s}.
This form has ∆ = 4t3− 3ts2+ s3 = (2t− s)2(t+ s). Furthermore the binary
section B(x, y) = tx2+sxy+ty2 is positive if 2t > |s|. Therefore {t, t, t, s, s, s}
is positive definite if 2t > s > 0 or if t > −s ≥ 0. It is reduced in the sense
of Schiemann only if t > s ≥ 0.

So, define

g(x, y, z) = tx2 + ty2 + tz2 + syz + szx+ sxy.

Next define

h(x, y, z) = tx2 + (2t− s)y2 + (2t+ s)z2 + 2szx

with Brandt-Intrau sextuple {t, 2t− s, 2t+ s, 0, 2s, 0}.
We prove that g and h represent exactly the same numbers. First, g

dominates h, because

g(X, Y + Z,−Y + Z) = h(X, Y, Z).
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But h also dominates g. Given some target number N, suppose

g(X, Y, Z) = N.

We get three formulas that show 4N represented by g.

h(2X, Y − Z, Y + Z) = 4N.

h(2Y,X − Z,X + Z) = 4N.

h(2Z,−X + Y,X + Y ) = 4N.

As we have three integers to consider, X, Y, Z, it follows by the pigeonhole
principle that two of them share the same parity. That is, at least one of
Y + Z,Z + X,X + Y is even. Then the relevant one of the three formulas
above has even numbers as arguments, and those can be divided by two to
show an integer representation for N by g. We have shown:

Theorem. {t, t, t, s, s, s} and {t, 2t− s, 2t+ s, 0, 2s, 0} represent exactly
the same numbers.

Notice that {t, 2t − s, 2t + s, 0, 2s, 0, } or h(x, y, z) = tx2 + (2t − s)y2 +
(2t+ s)z2 + 2szx decomposes into a binary plus a unary, to be specific

h(x, y, z) =
(

tx2 + 2sxz + (2t+ s)z2
)

+ (2t− s)y2.

So it seems reasonable to refer to {t, t, t, s, s, s} as “quasi-decomposable.”
I have no idea whether it matters, but the mixed coefficient 2s in 2sxz is
even.

There are other fairly common ways for {t, t, t, s, s, s} to be disguised, as
it is not necessarily Schiemann reduced if t is too small.

Theorem. {a, a, b, a, a, a} is equivalent to {b, b, b, 2b− a, 2b− a, 2b− a}.
Note that ∆ = a2(3b− a) and the form is positive when 3b > a > 0.

Proof. Let

g(x, y, z) = ax2 + ay2 + bz2 + ayz + azx + axy.

Let

h(x, y, z) = bx2 + by2 + bz2 + (2b− a)yz + (2b− a)zx + (2b− a)xy.

Then
g(X, Y,−X − Y − Z) = h(X, Y, Z)
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is given by an invertible map, with matrix







1 0 0
0 1 0

−1 −1 −1





 .

Theorem. {t, t, t,−s, s, s} is equivalent to {t, t, t,−s,−s,−s}. Note that
∆ = (2t+ s)2(t− s).







1 0 0
0 −1 0
0 0 −1





 .

Corollary.{t, t, t,−s, s, s} represents the same numbers as
{t, 2t+ s, 2t− s, 0,−2s, 0}

Finally, given {t, t, t,−s, s, s} with t > s > 2 t
3
, Schiemann reduces this to

{3(t− s), t, t,−s, 2(t− s), 2(t− s)}. So we need
Theorem. {3(t − s), t, t,−s, 2(t − s), 2(t − s)} and {t, t, t,−s,−s,−s}.

are equivalent. Note that ∆ = (2t+ s)2(t− s).
Proof. Let

g(x, y, z) = tx2 + ty2 + tz2 − syz + szx+ sxy.

Let

h(x, y, z) = 3(t− s)x2 + ty2 + tz2 − syz + 2(t− s)zx+ 2(t− s)xy.

Then
g(X + Y,−X − Z,−X) = h(X, Y, Z)

gives an invertible map, matrix







1 1 0
−1 0 −1
−1 0 0





 .

To summarize, the forms {t, t, t, s, s, s}, {a, a, b, a, a, a}, {t, t, t,−s, s, s},
{3(t − s), t, t,−s, 2(t − s), 2(t − s)}, are “quasi-decomposable,” each
represents exactly the same numbers as an appropriate form; this form can
be written as a binary plus a unary, where the mixed coefficient of the binary
is even.
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24 Kaplansky’s proofs: a few specifics

On October 4, 1999, Kap wrote down short elementary proofs for three reg-
ular forms where the original proofs used spinor genus methods. These are:
∆ = 108, coefficients {1, 3, 10, 3, 1, 0}, original proof in [28];
∆ = 432, coefficients {1, 3, 37, 3, 1, 0}, original proof in [1];
∆ = 972, coefficients {1, 7, 36, 0, 0, 1}, original proof in [28]. In this section
I give an elementary proof for ∆ = 289, coefficients {3, 5, 6, 1, 2, 3}, original
proof in [50]. My own original proofs for some 27 forms follow this section.
These proofs, together with those indicated in [40] and [41], give elementary
proofs for all regular forms found (and proved) using spinor genus methods,
at least to date, those being in [28, 50, 1]. There are still 22 forms, seeming
to be regular, for which no proof is known.

Kaplansky made a list of all known proofs of regularity in [40]. Some
of the proofs are contained in three appendices. There are 119 forms that
appear to be regular that are also contained in genera with more than one
equivalence class (so that a proof of regularity for the candidate form is
required). Of course 22 forms have no proofs, and several forms have well-
known proofs (diagonal or quasi-diagonal). On lists of the relevant multi-class
genera, Kap [40] lists 75 forms and the location of the original proof. We
give details of two proofs using the technique of the previous section, but not
indicated in [41].

Our first proof is that of item number 27 in [40]. Kap’s original proof
is in [40, Appendix II]. We have discriminant ∆ = 121, candidate form
{1, 3, 11, 0, 0, 1}, with genus mate {3, 4, 4,−3, 2, 2}. But {3, 4, 4,−3, 2, 2} is
quasi-decomposable: it is equivalent to {4, 4, 4,−3,−3,−3}, and in turn this
represents the same numbers as {4, 11, 5, 0,−6, 0}. Finally, {1, 3, 11, 0, 0, 1}
dominates {4, 11, 5, 0,−6, 0}; given

f(x, y, z) = x2 + 3y2 + 11z2 + xy,

f(2X − 2Z,Z, Y ) = 4X2 + 11Y 2 + 5Z2 − 6ZX.

Our second proof is that of item number 38 in [40]. Schulze-Pillot’s
original proof is in [50]. We have discriminant ∆ = 289, candidate form
{3, 5, 6, 1, 2, 3}, with genus mate {3, 6, 6,−5, 2, 2}. But {3, 6, 6,−5, 2, 2} is
equivalent to {6, 6, 6,−5,−5,−5}, which represents exactly the same num-
bers as {6, 17, 7, 0,−10, 0}. Given

f(x, y, z) = 3x2 + 5y2 + 6z2 + yz + 2zx + 3xy,
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f(Y + Z,−2Y,X − Z) = 6X2 + 17Y 2 + 7Z2 − 10ZX.

Sometimes the genus mate is quasi-decomposable but the candidate for
regularity does not have a homothety to the revised form. This happens,
for instance , for item number 14, ∆ = 50, coefficients {1, 2, 7, 2, 1, 0}, mate
{1, 1, 17, 1, 1, 1}. Kap’s proof is in [40, Appendix I]. The same problem for
item number 45, ∆ = 484, sextuple {1, 3, 44, 0, 0, 1}, mate {5, 5, 5,−1, 1, 1}.
Kap’s proof is in [40, Appendix II].

Another five proofs by this technique, no more difficult, are indicated
in Appendix III and then, with a just a little more detail but different ID
numbers, in [41].

These are: item 34, ∆ = 216, {3, 5, 5, 2, 3, 3}, with mate {3, 3, 8, 0, 0, 3};
of course {3, 3, 8, 0, 0, 3} represents the same numbers as {3, 8, 9, 0, 0, 0}. But
with

f(x, y, z) = 3x2 + 5y2 + 5z2 + 2yz + 3zx+ 3xy,

f(X − Z, Y + Z,−Y + Z) = 3X2 + 8Y 2 + 9Z2.

Next, item 40, ∆ = 392, {3, 3, 12,−2, 2, 1}, with mate {5, 5, 5, 3, 3, 3}; of
course {5, 5, 5, 3, 3, 3} represents the same numbers as {5, 7, 13, 0, 6, 0}. But
with

f(x, y, z) = 3x2 + 3y2 + 12z2 − 2yz + 2zx + xy,

f(X + Y + Z,−X + Y − Z,−Z) = 5X2 + 7Y 2 + 13Z2 + 6ZX.

Next, item 41, ∆ = 400, {3, 3, 12, 2, 2, 1},with genus mate {5, 5, 7, 5, 5, 5};
of course {5, 5, 7, 5, 5, 5} is equivalent to {7, 7, 7, 9, 9, 9} and represents the
same numbers as {7, 5, 23, 0, 18, 0}. But with

f(x, y, z) = 3x2 + 3y2 + 12z2 + 2yz + 2zx+ xy,

f(X + Y + Z,X − Y + Z,Z) = 7X2 + 5Y 2 + 23Z2 + 18ZX.

Next, item 43, ∆ = 432, {3, 5, 9, 3, 0, 3},with genus mate {3, 3, 17, 3, 3, 3};
of course {3, 3, 17, 3, 3, 3} is equivalent to {17, 17, 17, 31, 31, 31} and repre-
sents the same numbers as {17, 3, 65, 0, 62, 0}. But with

f(x, y, z) = 3x2 + 5y2 + 9z2 + 3yz + 3xy,

f(X + Y + 2Z,−2X − 4Z,Z) = 17X2 + 3Y 2 + 65Z2 + 62ZX.
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Finally, item 46, ∆ = 600, {5, 7, 7, 6, 5, 5}, with mate {5, 5, 8, 0, 0, 5}; of
course {5, 5, 8, 0, 0, 5} represents the same numbers as {5, 8, 15, 0, 0, 0}. But
with

f(x, y, z) = 5x2 + 7y2 + 7z2 + 6yz + 5zx+ 5xy,

f(X − Z, Y + Z,−Y + Z) = 5X2 + 8Y 2 + 15Z2.

25 My original proofs: Odd 44 = 4 · 11,∆ = 44

Several of my own proofs (in this and the following sections) can be improved
by the methods of [41] (as described in the previous two sections), or in the
appendices of [40]. What can you do?

This is item number 11 in [40]. Recall that I eventually began using a
uniform value for the discriminant: given

T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx+ fxy,

define
∆ = 4abc+ def − ad2 − be2 − cf 2.

We prove here that h (below) is regular.

h(x, y, z) = 4x2 + y2 + yz + 3z2

is based in an evident way on

r(x, y, z) = x2 + y2 + yz + 3z2.

That is
r(2x, y, z) = h(x, y, z).

The form r was proved regular by Jones and Pall [36].
Now h does not represent any numbers congruent to 2 mod 4. So among

even numbers, suppose n is eligible and divisible by 4. First find n
4

=
r(x, y, z). Then we have n = r(2x, 2y, 2z) = h(x, 2y, 2z), so that n really
is represented by h.

So we need to show that any eligible odd number can be represented by r
with the value of x even. First, note that if n = r(x, y, z) and n ≡ 3 mod 4,
we already have x even. We continue with n ≡ 1 mod 4. We’re assuming x
odd; it follows that y, z are even.
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Case I: If both y, z are divisible by 4, we get a new even value for x by
applying a rational automorph of r,

r
(

2y + z

2
,

2x− z

2
, z

)

= r(x, y, z).

The new value for x is x′ = (2y + z)/2, and this will be even.
Case II: If x odd, y ≡ z ≡ 2 mod 4. After choosing ±x so that 2x+y+6z

is divisible by 8, we get a new even value for x in the identity:

r
(

2x+ y + 6z

4
, −y,

−2x+ y + 2z

4

)

= r(x, y, z).

Case III: If x odd, one of y, z is 2 mod 4, the other 0 mod 4. After choosing
±x so that 2x+ y− 5z is divisible by 8, we get a new even value for x in the
identity:

r
(

2x+ y − 5z

4
, y + z,

2x− y + z

4

)

= r(x, y, z).

This completes the proof. ©

26 Odd 189 =27 ·7,∆ = 189

This is item number 32 in [40].

h = 2x2 + 3y2 + 8z2 + zx.

The only other form in the genus of h is

m = 3x2 + 3y2 + 8z2 + 3yz + 3zx+ 3xy.

We get three similar expressions,

4m(x, y, z) = h(y − 3z, 2x+ y + z,−y − z),

4m(x, y, z) = h(x− 3z, x+ 2y + z,−x − z),

4m(x, y, z) = h(x+ y + 4z, x− y,−x− y).

This gives a proof!!! Let n be represented by the mate m, so that n =
3x2 + 3y2 + 8z2 + 3yz + 3zx + 3xy. There must be an agreement mod2 in
one of the pairs (x, y), (x, z), or (y, z). Therefore one of the three formulas
above has all even entries in the right hand side, we can divide the entries
by 2, thereby dividing the value 4n by 4. The result is a representation of n
itself by the candidate form h.©
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27 Odd 243 = 35,∆ = 243

This is item number 37 in [40].
The form considered is

h(x, y, z) = 2x2 + 3y2 + 11z2 + 3yz + zx.

The form h must miss numbers of the forms 3m+1, 27m+9, 9k(9m+6). As
to multiples of 3, we have the homothety

h(y + 3z, x+ y,−y) = 3(x2 + 4y2 + 6z2 + 3yz + xy).

The latter form is regular of discriminant 81, listed as 81: 1 4 6 3 0 1.
We proceed to show how to represent a number n ≡ 2 mod 3. We use the

identity
4 h = (2x− 4z)2 + (2x+ 5z)2 + 3 (2y + z)2.

We will be able to represent n if we can arrange

4n = u2 + v2 + 3 w2,

u ≡ 0 mod 2, v ≡ w mod 2, u ≡ v mod 9.

Begin with
n = a2 + b2 + 3 c2,

choosing ±b so that a ≡ b mod 3. Then choose values for u, v, w based on
values for a, b, 3c mod 9; see the following table for a ≡ 1 mod 9.

a b 3 c u v w
1 1 0,3,6 2 a 2 b 2 c
1 4 0 2 b -a + 3 c -a - c
1 4 3 2 a -b - 3c -b+c
1 4 6 2 a -b+3c -b-c
1 7 0 2a -b+3c -b-c
1 7 3 2b -a-3c -a +c
1 7 6 2b -a+3c -a-c

If, instead, n ≡ 3 mod 9, note that a, b ≡ 0 mod 3, but c cannot be
divisible by 3, so that 3c ≡ 3, 6 mod 9. That allows us to modify the table
and catch the cases where one of a, b is divisible by 9 but the other is not.©
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28 Odd 648 = 8 · 81 ,∆ = 648

This is item number 47 in [40]. A form h with coefficients (1,7,25,5,1,1), that
is

h(x, y, z) = x2 + 7y2 + 25z2 + 5yz + zx + xy.

The form is eligible to represent all positive integers other than 3n+ 2, 9n±
3, 4n+ 2, 4k(16n+ 14). On even numbers, we need worry only about eligible
multiples of 4, attended to by the homothety

h(2x+ y, y + 2z,−y) = 4(x2 + 7y2 + 7z2 + 5yz + zx+ xy).

The latter form is 162: 1 7 7 5 1 1. As to multiples of three, we need only
consider multiples of 9, and

h(3x+ y, 3z, y) = 9(x2 + 3y2 + 7z2 + 2yz + zx+ xy).

The latter form is 72: 1 3 7 2 1 1 . We will show that h represents all 6n+1. It
will be necessary to use the fact that the diagonal form x2+4y2+9z2 is nearly
regular. x2 + 4y2 + 9z2 is not eligible to represent 8n+ 3, 9n± 3, 4k(8n+ 7).
Among eligible numbers, x2 + 4y2 + 9z2 misses only the number 2.

We get a formula

2h = (x− y − 4z)2 + (x+ 2y + 5z)2 + (3y − 3z)2.

If a, b, c are the three parenthesized quantities, then

12x = 7a+ 5b− c, 12y = −a + b+ 3c, 12z = −a + b− c.

Therefore h represents all n for which we can arrange

2n = a2 + b2 + c2

with c ≡ 0 mod 3 ,a ≡ b mod 3, and a− b+ c ≡ 0 mod 4.
Notice that h represents the number 1. Now let n ≥ 7 and n ≡ 1 mod 6.

Then 2n ≡ 2 mod 4, further 2n ≡ 2 mod 3. As mentioned earlier, we can
write

2n = r2 + 4s2 + 9t2.

Both r and s will of necessity be prime to 3.
From this expression, let a = r, and choose b = ±2s so that we have

a ≡ b mod 3. Now a − b is odd and t is odd, largely because 2n ≡ 2 mod 4.
Therefore, we may choose c = ±3t to fulfill a− b+ c ≡ 0 mod 4. ©
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29 Odd 1080 = 8 · 27 · 5,∆ = 1080

This is item number 51 in [40].

h = 3x2 + 9y2 + 11z2 + 3yz + 3zx.

Candidate should miss 4m+2, 4k(8m+2), 3m+1, 9k(9m+6), 25k(25m±5).
The only other form in the genus of h is

m = 3x2 + 3y2 + 41z2 + 3yz + 3zx+ 3xy.

We get three similar expressions,

4m(x, y, z) = h(x− y + 2z,−x− y,−4z),

4m(x, y, z) = h(x+ 2y − z,−x − z, 4z),

4m(x, y, z) = h(2x+ y − z,−y − z, 4z).

This gives a proof!!! Let n be represented by the mate m, so that n =
3x2 + 3y2 + 41z2 + 3yz + 3zx + 3xy. There must be an agreement mod2 in
one of the pairs (x, y), (x, z), or (y, z). Therefore one of the three formulas
above has all even entries in the right hand side, we can divide the entries
by 2, thereby dividing the value 4n by 4. The result is a representation of n
itself by the candidate form. ©

30 Odd 1323 =27 · 49,∆ = 1323

This is item number 52 in [40].

h = 2x2 + 8y2 + 21z2 + xy.

The only other form in the genus of h is

m = 8x2 + 8y2 + 8z2 − 5yz + 5zx+ 5xy.

We get three similar expressions,

4m(x, y, z) = h(x− y + 4z, x− y,−x− y),

4m(x, y, z) = h(x+ 4y − z, x− z, x+ z),
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4m(x, y, z) = h(4x+ y + z, y + z, y − z).

This gives a proof. Let n be represented by the mate m, so that n =
8x2 + 8y2 + 8z2 − 5yz + 5zx + 5xy. There must be an agreement mod2 in
one of the pairs (x, y), (x, z), or (y, z). Therefore one of the three formulas
above has all even entries in the right hand side, we can divide the entries
by 2, thereby dividing the value 4n by 4. The result is a representation of n
itself by the candidate form h.©

31 Odd 1800 = 8 ·9 · 25 ,∆ = 1800

This is item number 53 in [40].

h = 5x2 + 11y2 + 11z2 + 7yz + 5zx+ 5xy.

The only other form in the genus of h is

m = 5x2 + 5y2 + 24z2 + 5xy.

We get three similar expressions,

4m(x, y, z) = h(x+ 2y − 2z, x+ 2z,−x + 2z),

4m(x, y, z) = h(2x+ y − 2z, y + 2z,−y + 2z),

4m(x, y, z) = h(x− y − 2z,−x− y + 2z, x+ y + 2z).

This gives a proof. Let n be represented by the mate m, so that n =
5x2 + 5y2 + 24z2 + 5xy. At least one of the numbers x, y, x + y is even.
Therefore one of the three formulas above has all even entries in the right
hand side, we can divide the entries by 2, thereby dividing the value 4n by
4. The result is a representation of n itself by the candidate form h.©

32 Odd 5400 = 8 ·27 · 25 ,∆ = 5400

This is item number 54 in [40].

h = 7x2 + 7y2 + 28z2 − 2yz + 2zx+ xy.

The only other form in the genus of h is

m = 13x2 + 13y2 + 13z2 + 11yz + 11zx+ 11xy.
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We get three similar expressions,

4m(x, y, z) = h(−2y − 2z, 2x+ 2z, x+ y),

4m(x, y, z) = h(−2y − 2z, 2x+ 2y, x+ z),

4m(x, y, z) = h(−2x− 2y, 2x+ 2z, y + z).

This gives a proof. Let n be represented by the matem, so that n = 13x2+
13y2+13z2+11yz+11zx+11xy. At least one of the numbers x+y, x+z, y+z
is even. Therefore one of the three formulas above has all even entries in the
right hand side, we can divide the entries by 2, thereby dividing the value 4n
by 4. The result is a representation of n itself by the candidate form h.©

33 Even 64 = 82 = 26 ,∆ = 256

This is item number 56 in [40]. Recall that I eventually began using a uniform
value for the discriminant: given

T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx+ fxy,

define
∆ = 4abc+ def − ad2 − be2 − cf 2.

h = x2 + 5y2 + 13z2 + 2yz.

The only other form in the genus of h is

m = 4x2 + 5y2 + 5z2 + 4yz + 4xy.

Even numbers are taken care of by the homothety

h(2x+ y + z, y, z) = 2(2x2 + 3y2 + 7z2 + 2yz + 2zx+ 2xy).

The latter form is 32: 2 3 7 2 2 2.
We ignore the mate, and concentrate on

h = x2 + (y − 3z)2 + (2y + 2z)2.

For eligible numbers n = a2 + b2 + c2, we need only arrange that

c− 2b ≡ 0 mod 8.
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This will follow if b is odd and c ≡ 2 mod 4. Then, c− 2b ≡ 0 mod 4, and if
it should happen that c − 2b ≡ 4 mod 8, merely negate b, as 4b ≡ 4 mod 8
and c − (−2b) = c + 2b = c − 2b + 4b ≡ 0 mod 8. If n ≡ 6 mod 8, we must
have (up to permutation) that a, b are odd but c ≡ 2 mod 4. Similarly, if
n ≡ 5 mod 8, we must have a ≡ 0 mod 4, with b odd and c ≡ 2 mod 4.
Third, if n is not a square but n ≡ 1 mod 8, Jones and Pall showed that we
may force a, c ≡ 2 mod 4 with b odd. Finally, if n is an odd square, we may
take b, c to be 0. ©

34 Even 108 = 4 · 27 ,∆ = 432

This is item number 57 in [40]. An even form with coefficients (1,4,28,4,0,0),
that is

h = x2 + 4y2 + 4yz + 28z2.

The form h can not represent any of the numbers 4n+2, 4n+3, 9n+3, 9k(9n+
6). Even numbers (therefore multiples of 4) are handled by

h(4y, x+ z,−z) = 4(x2 + 4y2 + 7z2 + zx),

a homothety to 108: 1 4 7 0 1 0. Multiples of 3(therefore of 9) are handled
by

h(3x, 3y + z, z) = 9(x2 + 4y2 + 4z2 + 4yz),

a homothety to 12: 1 4 4 4 0 0. We find a useful formula,

h = x2 + (2y + z)2 + 3(3z)2.

So we need to be able to write

n = a2 + b2 + 3c2

with b ≡ c mod 2 and c ≡ 0 mod 3.
CASE A. If a, b, c are all odd, we already have the mod2 agreement.

Here n ≡ 5 mod 8. At least one of a, b is prime to 3; relabel so that one is
called b. If c is also prime to 3, choose ±c so that b ≡ c mod 3. Then switch
to

n = a2 +

(

b+ 3c

2

)2

+ 3

(

b− c

2

)2

.

Since b+ 3c ≡ b− c mod 4, the fractions displayed agree modulo 2.
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CASE B. If a is odd but the others even, but we continue to consider
n ≡ 5 mod 8 in this paragraph, it follows that one of b, c is 2 mod 4 and the
other is 0 mod 4. Thus when we switch to

n = a2 +

(

b+ 3c

2

)2

+ 3

(

b− c

2

)2

,

everything is now odd. We return to case A to finish, so we are done with
n ≡ 5 mod 8.

CASE C. If n ≡ 1 mod 8, but n ≡ 2 mod 3, both a, b must be prime to 3.
Furthermore c and one of the others ( call it b) are even. If it should happen
that c is prime to 3, choose ±b so that b ≡ c mod 3, then switch to

n = a2 +

(

b+ 3c

2

)2

+ 3

(

b− c

2

)2

.

CASE D. If n ≡ 1 mod 8, but n ≡ 1 mod 3, we have the very popular
n ≡ 1 mod 24. If n is a square, it is obviously represented by h. If n is not a
square, the Jones-Pall Theorem 5 says that we can write

n = a2 + b2 + 3c2

with a ≡ 3 mod 6. Then b, c are even and b is prime to 3. If c is prime to 3,
choose ±b so that b ≡ c mod 3, then switch to

n = a2 +

(

b+ 3c

2

)2

+ 3

(

b− c

2

)2

.

©

35 Even 256 = 162 = 28 ,∆ = 1024

This is item number 58 in [40].

h(x, y, z) = 3x2 + 3y2 + 32z2 + 2xy.

The only other form in the genus of h is

m = 4x2 + 8y2 + 11z2 + 8yz + 4zx.
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The form h does not represent anything 2 mod 4, so even targets are handled
by

h(x+ y,−x+ y, 2z) = 4(x2 + 2y2 + 32z2).

The latter is one of the famous diagonal regular forms 64: 1 2 32 0 0 0, proved
regular in [36].

We ignore the mate. We simply show how to represent all n ≡ 3 mod 8
by h, which follows readily from

h = (x+ y + 4z)2 + (x+ y − 4z)2 + (x− y)2.

If n ≡ 3 mod 8, we name n = a2+b2+c2. From the expressions z = (a−b)/8,
with y = (a+ b−2c)/4 and x = (a+ b+2c)/4, we know that we need merely
arrange

a ≡ b mod 8, a+ b± 2c ≡ 0 mod 4.

We know that a, b, c are odd. To arrange a ≡ b mod 8, merely permute and
change signs: for example, if the three values are 1, 3, 5 mod 8, ignore the 1
but negate the 3, as −3 ≡ 5 mod 8.

Next, with the values chosen for a, b, we have a + b ≡ 2c ≡ 2 mod 4, so
that a+ b± 2c ≡ 0 mod 4 is immediate. ©

36 Even 324 = 182 = 4 · 81 ,∆ = 1296

This is item number 59 in [40]. An even form with coefficients (3,4,28,4,0,0),
that is

h(x, y, z) = 3x2 + 4y2 + 4yz + 28z2.

or

h = (y − 4z)2 + 3(y + 2z)2 + 3x2.(1)

Equation (1) shows that h can not represent any numbers of the form 9k(3n+
2). Furthermore, h does not represent any numbers congruent to 1 mod 4,
2 mod 4, or 6 mod 9.

For even numbers, multiples of 4 suffice, and we have

h(2y, x, z) = 4(x2 + 3y2 + 7z2 + zx),

being a homothety to 81: 1 3 7 0 1 0. For multiples of 3, we use

h(x, 3y + z, z) = 3(x2 + 12y2 + 12z2 + 12yz),
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to the quasi-diagonal 108: 1 12 12 12 0 0.
We will concentrate on n ≡ 7 mod 12. We need to arrange

n = a2 + 3b2 + 3c2

with
a ≡ b mod 6.

Then we will have

x = c, y =
a+ 2b

3
, and z =

−a + b

6
.

Let
n = r2 + 3s2 + 3t2.

As n ≡ 3 mod 4, possibly all three are odd. Otherwise, r and one of the
others are even. Either way, we can require that r ≡ s mod 2. Furthermore,
r is prime to 3, since n ≡ 1 mod 3. If s is also prime to 3, we choose ±r so
that r ≡ s mod 6. If s is divisible by 3, switch to

n =
(

r − 3s

2

)2

+ 3
(

r + s

2

)2

+ 3t2.

This gives the required congruence modulo 6. ©

37 Even 400 = 202 = 16 · 25 ,∆ = 1600

This is item number 60 in [40]. An even form with coefficients (3,3,51,-2,2,2),
that is

h = 3x2 + 3y2 + 51z2 − 2yz + 2zx+ 2xy.

The form h is not eligible to represent any numbers 4n+1, 4n+2, 4k(8n+
7), 25n±5, 25n±10.The last two may be summarized by saying that h cannot
represent any number that is divisible by 5 but not by 25.

We have a formula

h = (x+ y + 5z)2 + (x+ y − 5z)2 + (x− y + z)2.

It follows that h represents all numbers n for which we can write

n = a2 + b2 + c2
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with a ≡ b ≡ c mod 2, and a ≡ b mod 5. For targets that are even (so divisible
by 4), simply arrange the mod 5 conditions (see below) in representing n

4
as

the sum of three squares, then double everybody to represent n itself. For
multiples of 5 (therefore 25), use

h(5x+ 2z, 5y − 2z, z) = 25(3x2 + 3y2 + 3z2 − 2yz + 2zx+ 2xy),

a map to 16: 3 3 3 -2 2 2.
We concentrate on a number n ≡ 3 mod 8. There is an expression

n = r2 + s2 + t2,

for which we know that all three of r, s, t must be odd. Thus the mod2
equivalence is automatic. Considering r, s, t modulo 5, we can use ± signs to
arrange two of them to agree mod5 unless one of them is 0, another is ±1,
and the last is ±2. However, in that case n itself is divisible by 5 (and thus
by 25). ©

38 Even 448= 64 · 7 ,∆ = 1792

This is item number 61 in [40].

h(x, y, z) = 5x2 + 8y2 + 12z2 + 4zx.

Candidate must miss 4n + 2, 4n + 3, 4k(8n + 1). The only other form in the
genus of h is

m(x, y, z) = 5x2 + 5y2 + 20z2 + 4yz + 4zx+ 2xy.

We get three similar expressions,

h(2y, x− 2z, x+ 2z) = 4m(x, y, z),

h(2x, y − 2z, y + 2z) = 4m(x, y, z),

h(4z, x− y, x+ y) = 4m(x, y, z).

This gives a proof!!! We need merely show that every number represented
by m is also represented by the candidate form h. Let n be represented by
the mate m, so that n = 5x2 + 5y2 + 20z2 + 4yz + 4zx + 2xy. The three
formulas above show us three ways to represent 4n by h. Now, at least one
of the three numbers x, y, x− y is even. Therefore one of the three formulas
above has all even entries in the left hand side. In that formula, we can
divide the entries by 2, thereby dividing the value 4n by 4. The result is a
representation of n itself by the candidate form. ©
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39 Even 1024 = 210 ,∆ = 4096

This is item number 62 in [40].

h = 3x2 + 2xy + 11y2 + 32z2.

The only other form in the genus of h is

m = 11x2 + 11y2 + 12z2 − 4yz + 4zx+ 10xy.

We get three similar expressions,

4m(x, y, z) = h(x+ 4z,−x− 2y,−x),

4m(x, y, z) = h(y − 4z,−2x− y,−y),

4m(x, y, z) = h(x− y + 4z,−x+ y,−x− y).

This gives a proof: let n be represented by the mate m, so that n =
11x2 + 11y2 + 12z2 − 4yz + 4zx + 10xy. At least one of the three numbers
x, y, x+ y, must be even. ©

40 Even 1280 = 28 · 5 ,∆ = 5120

This is item number 63 in [40].

h = 7x2 + 4xy + 12y2 + 16z2.

The only other form in the genus of h is

m = 7x2 + 7y2 + 28z2 − 4yz + 4zx+ 2xy.

We get three similar expressions,

4m(x, y, z) = h(2y, x− 2z,−x − 2z),

4m(x, y, z) = h(2x, y + 2z,−y + 2z),

4m(x, y, z) = h(4z, x− y,−x− y).

This gives a proof: let n be represented by the mate m, so that n =
7x2 + 7y2 + 28z2 − 4yz + 4zx + 2xy. At least one of the three numbers
x, y, x+ y, must be even. Therefore one of the three formulas above has all
even entries in the right hand side, we can divide the entries by 2, thereby
dividing the value 4n by 4. The result is a representation of n itself by the
candidate form. ©
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41 Even 1296 = 362 = 16 · 81 ,∆ = 5184

This is item number 64 in [40].

h = 5x2 + 8y2 + 36z2 + 4xy.

The only other form in the genus of h is

m = 8x2 + 9y2 + 20z2 + 8zx.

We ignore the mate. We simply show how to represent all n ≡ 5 mod 12 by
h, which follows readily from

h = (x− 2y)2 + (2x+ 2y)2 + (6z)2.

If n ≡ 5 mod 12, we name n = a2 + b2 + c2. To find integer values for x, y, z,
we need to arrange that b is even, c is divisible by 6, and a + b ≡ 0 mod 3.
That this is possible follows directly from the regularity of the diagonal form
x2 + 4y2 + 36z2, proved by Jones and Pall. That is, we may take c divisible
by 6 and b even. The last detail comes from the realization that a, b are both
prime to 3, so we choose ±a to arrange a + b ≡ 0 mod 3. ©

42 Even 1728 = 123 = 64 · 27 ,∆ = 6912

This is item number 66 in [40].

h = x2 + 16y2 + 112z2 + 16yz.

This form represents all eligible multiples of three (actually 9) by a reduction
to the quasidiagonal (1,16,16,16,0,0). Even numbers work out by a related
technique. From the expression

h = x2 + (4y + 2z)2 + 3(6z)2,

we see that we need merely arrange

n = a2 + b2 + 3c2, c ≡ 0 mod 6, b ≡ c mod 4.

The easier case is n ≡ 17 mod 24. Let a be odd. Note that both a, b are
prime to 3, and that b, c are even and equivalent mod4. If c is not divisible
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by 3, choose ±b so that b ≡ c mod 3, then create new values b′ = (b+ 3c)/2
and c′ = (b− c)/2.

The harder case is n ≡ 1 mod 24. Choose a to be divisible by 3. Jones and
Pall showed that we may choose whether a is equivalent to 0 or 3 mod6,
that is odd or even. We elect a ≡ 3 mod 6. Then b is prime to 3 but even,
and it follows that c is also even with b ≡ c mod 4. Once again, if c is not
divisible by 3, create new values b′, c′ as before. Note that the new values for
b, c are still even and congruent mod4, as a is unchanged and b2+3c2 is still
divisible by 8. ©

43 Another Even 1728 = 123 = 64·27 ,∆ = 6912

This is item number 67 in [40].

h = 4x2 + 13y2 + 37z2 + 2yz + 4zx+ 4xy.

From the expression

h = (2x+ y + z)2 + 12y2 + 36z2,

we see that we need merely arrange

n = a2 + 12b2 + 36c2, a+ b+ c ≡ 0 mod 2.

The eligible numbers prime to the discriminant are of the form n ≡
13 mod 24. Given n = a2 + 12b2 + 36c2, we need to show that a + b + c is
even. Since n is odd, we know that a is odd. Since n ≡ 5 mod 8, we know
that one of b, c is odd and the other even, so that b + c must be odd. It
follows that a + b+ c is even. ©

44 Even 3136 = 562 = 64 · 49 ,∆ = 12544

This is item number 68 in [40].

h = 3x2 + 19y2 + 56z2 + 2xy.

The only other form in the genus of h is

m = 12x2 + 19y2 + 19z2 − 18yz + 4zx+ 4xy.
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We ignore the mate. We simply show how to represent all n ≡ 3 mod 8 by
h, which follows readily from

h = (x+ y − 6z)2 + (x− 3y + 2z)2 + (x+ 3y + 4z)2.

If n ≡ 3 mod 8, and either n is divisible by 7 or n is a nonresidue mod7, we
name n = a2 + b2 + c2. To find integer values for x, y, z, we need to arrange
that

a + 2b+ 4c ≡ 0 mod 7, a + b+ 2c ≡ 0 mod 4.

There is a form of discriminant 784 which is alone in its genus, therefore
automatically regular. It is

r = 3x2 + 19y2 + 19z2 − 18yz + 2zx+ 2xy,

r = (x− 3y + 3z)2 + (x+ 3y + z)2 + (x+ y − 3z)2.

Given an eligible number n ≡ 3 mod 8, i.e. n is divisible by 7 or n is
a nonresidue mod7, we represent n by r. That is, we fix integer values for
x, y, z with n = 3x2 + 19y2 + 19z2 − 18yz + 2zx + 2xy. Then we construct
the numbers

a = x− 3y + 3z, b = x+ 3y + z, c = x+ y − 3z.

With these values for a, b, c, we have shown how to write

n = a2 + b2 + c2, a + 2b+ 4c ≡ 0 mod 7.

So far we have completely ignored the condition mod4.It is critical that
the equation a + 2b + 4c ≡ 0 mod 7 respects cyclic permutations: multiply
the equation by 2, resulting in c + 2a + 4b; multiply by 2 again, giving
b + 2c + 4a ≡ 0 mod 7. Since n ≡ 3 mod 8, we know that a, b, c are odd
numbers. Odd numbers must be either 1, 3 mod 4, so there must be an
agreement mod4 among the three values a, b, c by the pigeonhole principle.
Rename (from among the three cyclic permutations) the variables a, b, c so
that a + 2b + 4c ≡ 0 mod 7 and a ≡ b mod 4. It follows that a + b ≡ 2c ≡
2 mod 4, therefore a + b+ 2c ≡ 0 mod 4. ©
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45 Even 5184 = 722 = 64 · 81 ,∆ = 20736

This is item number 69 in [40].

h = 3x2 + 16y2 + 112z2 + 16yz.

This form represents all eligible multiples of three by a reduction to the qua-
sidiagonal (1,48,48,48,0,0). Even numbers work out by a related technique.
We concentrate on n ≡ 19 mod 24. From the expression

h = (4y + 2z)2 + 3(6z)2 + 3x2,

we see that we need merely arrange

n = a2 + 3b2 + 3c2, b ≡ 0 mod 6, a ≡ b mod 4.

Notice that we may assume c odd from the beginning. Furthermore, as then
a2 + 3b2 is divisible by 8, we know that a, b are even and congruent mod4.
We just need to force b to be divisible by 3 without disturbing the other
properties. This is easy, as a must be prime to 3. If b is also prime to 3,
choose ±b so that a ≡ b mod 3, then create new values a′ = (a + 3b)/2 and
b′ = (a− b)/2. ©

46 Another Even 5184 = 722 = 64 · 81 ,∆ =

20736

This is item number 70 in [40].

h = 7x2 + 15y2 + 55z2 + 6yz − 2zx+ 6xy.

From the expression

h = (x− 3y − z)2 + 3(x+ y + 3z)2 + 3(x+ y − 3z)2,

we see that we need merely arrange

n = a2 + 3b2 + 3c2, b ≡ c mod 6, a ≡ b mod 4.

for an eligible number n.
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We concentrate on numbers prime to the discriminant, that is on n ≡
7 mod 24. There is a regular form of discriminant 576 that represents all
such n,

r = 7x2 + 7y2 + 15z2 − 6yz + 6zx+ 2xy.

In the expression

r = (x+ y + 3z)2 + 3(x+ y − z)2 + 3(x− y + z)2,

note that the three terms are congruent mod 2. Since n is odd, all three terms
must be odd, so we have n = r2 + 3s2 + 3t2 with r, s, t odd. If both of s, t
are divisible by 3 we can finish by choosing appropriate ± signs. The same
is true if both of s, t are prime to 3. For the final case, assume that s is
divisible by 3 but t is not. Choose ±s so that r+ 3s ≡ 2 mod 4. Create new
values

a = (r + 3s)/2, b = (r − s)/2, c = t.

These values a, b, c are again odd, but both b, c are prime to 3 and we finish
by choosing appropriate ± signs throughout. ©

47 Even 6400 = 256 · 25 ,∆ = 25600

This is item number 71 in [40].

h = 3x2 + 27y2 + 80z2 + 2xy.

The only other form in this genus is

m = 12x2 + 27y2 + 27z2 − 26yz + 4zx+ 4xy.

We get three similar expressions,

4m(x, y, z) = h(4x+ y,−y + 2z, y),

4m(x, y, z) = h(4x+ z, 2y − z, z),

4m(x, y, z) = h(4x+ y + z,−y − z, y − z).

This gives a proof: let n be represented by the mate m. At least one of the
three numbers y, z, y + z must be even. ©
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48 Even 6912 = 256 · 27 ,∆ = 27648

This is item number 72 in [40].

h = 9x2 + 17y2 + 48z2 + 6xy.

The only other form in this genus is

m = 17x2 + 17y2 + 32z2 − 8yz + 8zx+ 14xy.

We get three similar expressions,

4m(x, y, z) = h(x− y − 2z,−x+ y − 2z, x+ y),

4m(x, y, z) = h(x− 3z,−x − 2y + z, x+ z),

4m(x, y, z) = h(y + 3z,−2x− y − z, y − z).

This gives a proof: let n be represented by the mate m. At least one of
the three numbers x+ y, x+ z, y + z must be even. ©

49 Another Even 6912 = 256 · 27 ,∆ = 27648

This is item number 73 in [40].

h = 5x2 + 20y2 + 77z2 + 20yz + 2zx+ 4xy.

From the expression

h = (x− 2y − 7z)2 + (x− 2y + 5z)2 + 3(x+ 2y + z)2,

we see that we need merely arrange

n = a2 + b2 + 3c2, a ≡ b mod 12, b ≡ c mod 4.

for an eligible number n.
We concentrate on numbers prime to the discriminant, that is on n ≡

5 mod 24. There is a regular form of discriminant 768 that represents all
such n,

r = 5x2 + 8y2 + 20z2 + 4zx.
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In the expression

r = (x+ 2y − 2z)2 + (x− 2y − 2z)2 + 3(x+ 2z)2,

note that the three terms are congruent mod 2. Since n is odd, all three terms
must be odd, so we have n = r2+3s2+3t2 with r, s, t odd. Both of r, s must
be prime to 3, so the only problem occurs if r ≡ s mod 4 but r ≡ −s mod 3.
In this case, choose ±t so that r ≡ 3t mod 4. Then construct the numbers
a, b, c given by

a = (r + 3t)/2, b = s, c = (r − t)/2.

Notice that a ≡ r mod 4 but a ≡ −r mod 3. Therefore we have arranged
that a ≡ b mod 12, and a solution is found by choosing ±c. ©

50 Even 8640 = 64 · 27 · 5 ,∆ = 34560

This is item number 74 in [40].

h = 13x2 + 24y2 + 28z2 + 4zx.

The only other form in this genus is

m = 13x2 + 13y2 + 52z2 + 4yz + 4zx + 2xy.

We get three similar expressions,

4m(x, y, z) = h(2y, x− 2z, x+ 2z),

4m(x, y, z) = h(2x, y − 2z, y + 2z),

4m(x, y, z) = h(4z, x− y, x+ y).

This gives a proof: let n be represented by the mate m. At least one of
the three numbers x, y, x+ y must be even. ©
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51 Even 43200 = 64 · 27 · 25 ,∆ = 172800

This is item number 75 in [40].

h = 9x2 + 41y2 + 120z2 + 6xy.

The only other form in this genus is

m = 36x2 + 41y2 + 41z2 − 38yz + 12zx+ 12xy.

We get three similar expressions,

4m(x, y, z) = h(4x+ y,−y + 2z, y),

4m(x, y, z) = h(4x+ z, 2y − z, z),

4m(x, y, z) = h(4x+ y + z,−y − z, y − z).

This gives a proof: let n be represented by the mate m. At least one of
the three numbers y, z, y + z must be even. ©

52 Spinor Genus, Exceptions, Regularity

Spinor regular forms that are not regular were first discovered by Jones and
Pall [36] but the current terminology and conceptual framework began with
Eichler [22]. Jones and Pall [36] proved several ‘diagonal’ forms f(x, y, z) =
ax2+by2+cz2 to be regular, denoting such by the shorthand (a, b, c). Quoting
from page 167:

With the exception of (1, 48, 144) which belongs to a genus
of four classes, all regular forms (a, b, c) belong to genera of one
or two classes. The companion class we find, in many cases, is
regular except that either it fails to represent a finite number of
integers represented by forms of the genus, or it fails to represent
an infinite number specified by a finite number of formulas in-
volving square factors: for example, all odd squares whose every
prime factor is in some cases ≡ 1 (mod 4) and in other cases
≡ 1 (mod 3). These almost regular forms are new and are one
of the most significant products of the method of proof.
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In the first paragraph of section 5, pages 180-181, they sketch a proof for
the first example: (1, 1, 16) is regular, but 2x2 + 2y2 + 5z2 + 2yz + 2zx 6=
m2, where all prime factors of m are ≡ 1 (mod 4). On the other hand,
2x2+2y2+5z2+2yz+2zx does represent everything else that is represented by
x2+y2+16z2. These days we say that the two forms, while in the same genus,
are in different spinor genera. Then we say that as 2x2+2y2+5z2+2yz+2zx
is alone in its spinor genus, it is spinor regular by default.

To expand on the use of language, they prove that (1, 48, 144) is regular,
while 9x2 + 16y2 + 48z2 6= w2, 4w2 where all prime factors of w are ≡ 1
(mod 3). Nowadays, we split the four classes of the genus into two spinor
genera.

=====Discriminant 27648 ==Genus Size== 4

-------------**---------------------- 27648 s. g. size--- 2

1 48 144 0 0 0 {regular!}

4 48 49 48 4 0

-------------**---------------------- 27648 s. g. size--- 2

9 16 48 0 0 0 {spinor regular!}

16 25 25 14 16 16

---------**--------------- 27648 s. genus count 2

The first spinor genus, taken together, represents everything represented by
any form in the genus, and since x2+48y2+144z2 does the same all by itself
we call it regular. Either form in the second spinor genus fails to represent the
‘spinor exceptional integers’ denoted earlier by w2, 4w2. However, as 9x2 +
16y2+48z2 represents everything else represented by the genus, and, in short,
dominates 16x2+25y2+25z2+14yz+16zx+16xy, we say that 9x2+16y2+48z2

is spinor regular.
A lesser-known phenomenon, anticipated by Kap in a 1995 letter to

Schulze-Pillot and Hsia, is Theorem 4.3 on page 312 of [52], with example
4x2+48y2+49z2+48yz+4zx 6= q2 for prime q ≡ 5 mod 6. Kap’s examples of
1995 begin with 2x2+2y2+17z2+2yz+2zx 6= s2, prime s ≡ 3 mod 4. In this
case I had little trouble proving that 2x2+2y2+17z2+2yz+2zx represents
all other squares larger than 1, however it misses several nonsquares that are
represented by its genus. Quoting the last sentence in Theorem 4.3 on page
312 of [52]:

In particular, if there is a spinor exceptional integer a′ for
the genus of L that is represented by spn(L) but not by L (so
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a′ is below the bound for being sufficiently large), then there are
infinitely many integers a′p2 with p prime that are not represented
by L.

Anyway, the ‘almost regular’ forms that involve square factors eventually
became known as ‘spinor regular,’ and the sets of numbers missed by ‘spinor
genera,’ such as m2 became known as ‘spinor exceptional integers.’

53 Kaplansky’s Jones-Pall forms

In what follows we are trying to mimic the notation about numbers not
represented (“missed”) used in [36]. An error about the missed numbers on
page 191 of [36] was corrected by Schulze-Pillot in [49], as item number 6 in
Tabelle 1 on page 537 and Lemma 5 on page 538 “in Fall 6.” Instructions
for carrying out the computer search are taken from [8] and [20].

William C. Jagy; Kaplansky’s‘‘Jones-Pall Forms’’

Integer coefficient positive ternary quadratic forms that are

spinor regular but are NOT regular. In each case the

coefficients of the form are Schiemann-reduced. As to the

order, the integer sextuple

{a b c d e f} refers to the quadratic form T defined by

T(x, y, z) = a x^2 + b y^2 + c z^2 + d y z + e z x + f x y.

Below is the symmetric (Gram) Matrix for 2T:

2 a f e

f 2 b d

e d 2 c

The discriminant "Disc" is the absolute value of that favored

by Watson and Brandt and Intrau, half the determinant of 2T:

Disc = 4 a b c + d e f - a d^2 - b e^2 - c f^2.

Fact: 2 a b c <= Disc <= 4 a b c; see Watson’s book, p. 29.
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Some multiplicative semigroups; all primes are positive!

M : generated by 1 and all primes congruent to 1 modulo 4.

W : generated by 1 and all primes (not 3) 1 modulo 3.

E : generated by 1 and all primes 1 or 3 modulo 8.

S : generated by 1 and all primes (including 2 but not 7)

congruent to 1 or 2 or 4 modulo 7.

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

Disc 64 Coef {2 2 5 2 2 0}, misses M^2.

Disc 108 Coef {3 3 4 0 0 3}, misses W^2.

Disc 108 Coef {3 4 4 4 3 3}, misses W^2.

Disc 128 Coef {1 4 9 4 0 0}, misses 2 M^2.

Disc 256 Coef {2 5 8 4 0 2}, misses M^2, 4 M^2.

Disc 256 Coef {4 4 5 0 4 0}, misses M^2.

Disc 324 Coef {1 7 12 0 0 1}, misses 3 W^2.

Disc 343 Coef {2 7 8 7 1 0}, misses S^2.

Disc 432 Coef {3 7 7 5 3 3}, misses W^2, 4 W^2.

Disc 432 Coef {4 4 9 0 0 4}, misses W^2.

Disc 432 Coef {3 4 9 0 0 0}, misses W^2.

Disc 1024 Coef {4 9 9 2 4 4}, misses M^2.

Disc 1024 Coef {4 5 13 2 0 0}, misses M^2.

Disc 1024 Coef {5 8 8 0 4 4}, misses M^2, 4 M^2.

Disc 1372 Coef {7 8 9 6 7 0}, misses S^2.

Disc 1728 Coef {4 9 12 0 0 0}, misses W^2.

Disc 2048 Coef {4 8 17 0 4 0}, misses E^2.

Disc 3888 Coef {4 9 28 0 4 0}, misses W^2.

Disc 4096 Coef {9 9 16 8 8 2}, misses M^2, 4M^2.

Disc 4096 Coef {4 9 32 0 0 4}, misses M^2.

Disc 4096 Coef {5 13 16 0 0 2}, misses 4 M^2.

Disc 5488 Coef {8 9 25 2 4 8}, misses S^2.

Disc 6912 Coef {9 16 16 16 0 0}, misses W^2, 4 W^2.

Disc 6912 Coef {13 13 16 -8 8 10}, misses W^2.

Disc 16384 Coef {9 17 32 -8 8 6}, misses M^2, 4 M^2, 16 M^2.

Disc 16384 Coef {9 16 36 16 4 8}, misses M^2, 4 M^2.

Disc 27648 Coef {9 16 48 0 0 0}, misses W^2, 4 W^2.

Disc 62208 Coef {9 16 112 16 0 0}, misses W^2, 4 W^2.

Disc 87808 Coef {29 32 36 32 12 24}, misses 4 S^2.
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-------------------------------------------------------------

CONJECTURED complete. Checked to Disc 1,400,000 by April 2007

That’s it, I’ve been able to find only 29 of these. So it is difficult for a
positive ternary quadratic form to be spinor regular unless it is also regular.
See [8], [20], some history in [36], [49].

54 Recognizing Irregular Forms, Part 2

A surprising example showed up while I was searching for spinor regular
forms: genera with a very large (minimal) spinor exception. Let

N = u2 + v2,

but require also thatN be squarefree, so thatN is not divisible by 3,7,11,19,
or any prime of shape 4n+ 3. Let

T (x, y, z) = x2 + y2 + 16Nz2.

Then, as has been proved for me by John S. Hsia, the genus of T splits into
exactly two spinor genera, and N itself is a spinor exception. He mentioned
once that the methods used are in Earnest, Hsia, and Hung [21].

In sum, using discriminant,

∆ = 4abc + def − ad2 − be2 − cf 2

for any
T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx+ fxy,

we find
∆ = 64N.

That is, it may be necessary to check as high as

∆

64

to detect a spinor exception in the spinor genus of a form of interest, which
is one way a form may fail to be regular.

69



55 The Standard Descent

Suppose the positive binary forms x2 + ky2 and ax2 + 2βxy + cy2 have the
same discriminant, so that

k = ac− β2.

Suppose further that
n = au2 + 2βuv + cv2.

Then we are going to “descend” from the ternary ( W is also positive)

ax2 + 2βxy + cy2 + nWz2

to n times
x2 + ky2 +Wz2.

That is, letting B be the symmetric (Gram) matrix for ax2 + 2βxy + cy2 +
nWz2 and letting A be the symmetric (Gram) matrix for x2 + ky2 + Wz2,
we are going to display a matrix product

P ′BP = nA.

with

detP = n =
detB

detA
.

Here P ′ denotes the transpose of P. By abusing notation, we may regard B
and A as lattices, and say (in the terminology of Wai Kiu Chan) that B and
A are Z−lattices such that d(B) = nd(A), where n is a positive integer, and
B represents A(n).







u v 0
−βu− cv au+ βv 0

0 0 1













a β 0
β c 0
0 0 nW













u −βu− cv 0
v au+ βv 0
0 0 1







becomes






n 0 0
0 kn 0
0 0 nW





 = n







1 0 0
0 k 0
0 0 W





 .

To calculate this next bit, I used the method of Arndt, as reported on
pages 62-63 of Buell [5]. Suppose instead that positive forms x2 + xy + ky2

and ax2 + (2β − 1)xy + cy2 have the same discriminant, so that

k = ac+ β − β2.
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Suppose further that

n = au2 + (2β − 1)uv + cv2.

Then we are going to descend from the ternary

ax2 + (2β − 1)xy + cy2 + nWz2

to n times
x2 + xy + ky2 +Wz2.







u v 0
(1− β)u− cv au+ βv 0

0 0 1













a β − 1
2

0
β − 1

2
c 0

0 0 nW













u (1− β)u− cv 0
v au+ βv 0
0 0 1







becomes






n n
2

0
n
2

kn 0
0 0 nW





 = n







1 1
2

0
1
2

k 0
0 0 W





 .

56 Recognizing Irregular Forms, Part 3: Bi-

naries in Ternaries

Here is a curiosity, proved by combining results of Hsia and Billy Chan [7]:
given N = u2 + v2, N squarefree, every form in the spinor genus containing
x2 + y2 + 16Nz2 represents N itself (primitively, by construction), mean-
while there are exactly two spinor genera and N itself is the smallest spinor
exception.

A reason this is interesting is a result of Schulze-Pillot: quoting the last
sentence in Theorem 4.3 on page 312 of [52]: “In particular, if there is a
spinor exceptional integer a′ for the genus of L that is represented by spn(L)
but not by L (so a′ is below the bound for being sufficiently large), then
there are infinitely many integers a′p2 with p prime that are not represented
by L.” My (1, 1, 16N) example gives an infinite family of genera where the
quoted clause of Schulze-Pillot’s Theorem does not apply, as all forms in
the “regular” spinor genus represent all spinor exceptional integers. If the
families below work as conjectured, the cases of N squarefree would provide
more families where the quoted clause of Schulze-Pillot’s Theorem does not
apply.
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I have a list of similar items: below, I will display a binary form in
variables u, v in the expression N = g(u, v). Then I will display a ternary
form h(x, y, z). As I now see the matter, the important conjecture is that
every form in the regular spinor genus of the higher discriminant descends
to one or more forms in the regular spinor genus downstairs, and irregular
only to irregular. That is, in these examples spinor genera are preserved by
descent! For these examples anyway. I have many, many other examples
where that fails.

For all these Gauss composition of binary forms is used. The first version
is this: suppose n = α2 + kβ2. Then

(

α β
−kβ α

)(

1 0
0 k

)(

α −kβ
β α

)

=

(

n 0
0 nk

)

.

The second version is: suppose n = α2 + αβ + kβ2. Then

(

α β
−kβ α + β

)(

1 1
2

1
2

k

)(

α −kβ
β α + β

)

=

(

n n
2

n
2

nk

)

.

N = u2 + v2, h(x, y, z) = x2+y2+16Nz2. Conjectures: gen h has exactly
two spinor genera, every form in spn h has a homothety toNx2+Ny2+16Nz2,
also N is a spinor exception, while every form in spn h represents N. If we
can take gcd(u, v) = 1, then every form in spn h represents N primitively. If
N is squarefree, N is also the smallest spinor exception for gen h, and all the
spinor exceptions are NM2, where all prime factors of M are congruent to 1
modulo 4. Note: proved for squarefree N !

N = u2 + 2v2, h(x, y, z) = x2 + 2y2 + 64Nz2. Conjectures: gen h has
exactly two spinor genera, every form in spn h has a homothety to either
Nx2 + 2Ny2 + 64Nz2 or Nx2 + 8Ny2 + 8Nyz + 18Nz2, also N is a spinor
exception, while every form in spn h represents N. If we can take gcd(u, v) =
1, then every form in spn h represents N primitively. If N is squarefree, N
is also the smallest spinor exception for gen h, and all the spinor exceptions
are NE2, where all prime factors of E are congruent to 1 or 3 modulo 8.

N = u2 + uv + v2, h(x, y, z) = x2+xy+ y2+36Nz2. Conjectures: genh
has exactly two spinor genera, every form in spn h has a homothety to Nx2+
Nxy+Ny2 +36Nz2, also N is a spinor exception, while every form in spn h
represents N. If we can take gcd(u, v) = 1, then every form in spn h represents
N primitively. If N is squarefree, N is also the smallest spinor exception for
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gen h, and all the spinor exceptions are NW 2, where all prime factors of W
are congruent to 1 modulo 3.

N = u2 + uv + v2, h(x, y, z) = x2 + 3y2 + (9N + 1)z2 + 3yz + zx. Con-
jectures: gen h has exactly two spinor genera, every form in spn h has a ho-
mothety to either Nx2 + 3Ny2 + 10Nz2 + 3Nyz +Nzx or (when N is even)
Nx2+Nxy+Ny2+36Nz2. When N is even x2+3y2+(9N+1)z2+3yz+zx
and x2+xy+y2+36Nz2 are in the same genus! Also N is a spinor exception,
while every form in spn h represents N. If we can take gcd(u, v) = 1, then
every form in spn h represents N primitively. If N is squarefree, N is also the
smallest spinor exception for gen h, and all the spinor exceptions are NW 2,
where all prime factors of W are congruent to 1 modulo 3.

Apparently for N ≡ 0 mod 4 these two give the same genus, e.g. N = 4

=====Discriminant 432 ==Genus Size== 4

-------------**---------------------- 432 s. g. size--- 2

1 1 144 0 0 1

1 3 37 3 1 0 (regular)

-------------**---------------------- 432 s. g. size--- 2

3 7 7 5 3 3 (spinor regular)

3 3 16 0 0 3

---------**--------------- 432 s. genus count 2

while the spinor exceptions with N = 4 are the union of the W 2 and 4W 2.
I was a little worried about descent from {1, 3, 9N+1, 3, 1, 0}. If N is odd

and N = α2 + 3β2, then α + β ≡ 1 mod 2 and






α β 0
−3β α 0

α−3β−1
2

α+β−1
2

1













1 0 1
2

0 3 3
2

1
2

3
2

9N + 1













α −3β α−3β−1
2

β α α+β−1
2

0 0 1







becomes






N 0 N
2

0 3N 3N
2

N
2

3N
2

10N





 = N







1 0 1
2

0 3 3
2

1
2

3
2

10





 ,

so {1, 3, 9N + 1, 3, 1, 0} descends by a factor of N to {1, 3, 10, 3, 1, 0}.
If N is even and N = α2 + 3β2, then N is divisible by 4, so let N = 4M.

First we descend by 4 to {1, 1, 9N, 0, 0, 1} = {1, 1, 36M, 0, 0, 1} :






2 0 0
1 1 0
−1 −1 2













1 0 1
2

0 3 3
2

1
2

3
2

9N + 1













2 1 −1
0 1 −1
0 0 2






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becomes






4 2 0
2 4 0
0 0 36N





 = 4







1 1
2

0
1
2

1 0
0 0 36M





 .

Next there is the additional descent by a factor ofM to {1, 1, 36, 0, 0, 1}.With
4M = N, we have shown descent by a factor of N from {1, 3, 9N + 1, 3, 1, 0}
to {1, 1, 36, 0, 0, 1}©©.

N = u2 + uv + 2v2, h(x, y, z) = x2 + xy + 2y2 + 49Nz2. Conjectures:
gen h has exactly two spinor genera, every form in spn h has a homothety to
Nx2 +Nxy + 2Ny2 + 49Nz2, also N is a spinor exception, while every form
in spn h represents N. If we can take gcd(u, v) = 1, then every form in spn h
represents N primitively. If N is squarefree, N is also the smallest spinor
exception for gen h, and all the spinor exceptions are NS2, where all prime
factors of S are congruent to 1 or 2 or 4 modulo 7.

Next we have two pair, where the primitive binary forms that drive the
construction come two per discriminant:

N = u2 + 8v2, h(x, y, z) = x2 + 8y2 + 64Nz2. Conjectures: gen h has
exactly two spinor genera, every form in spn h has a homothety to Nx2 +
8Ny2 + 64Nz2, also N is a spinor exception, while every form in spn h rep-
resents N. If we can take gcd(u, v) = 1, then every form in spn h represents
N primitively. If N is squarefree, N is also the smallest spinor exception for
gen h, and all the spinor exceptions are NE2, where all prime factors of E
are congruent to 1 or 3 modulo 8.

Next we need this: suppose N = 3α2 + 2αβ + 3β2. Then

(

α β
−α− 3β 3α + β

)(

3 1
1 3

)(

α −α− 3β
β 3α + β

)

=

(

N 0
0 8N

)

.

N = 3u2 + 2uv + 3v2, h(x, y, z) = 3x2+2xy+3y2+64Nz2. Conjectures:
gen h has exactly two spinor genera, every form in spn h has a homothety
to Nx2 + 8Ny2 + 64Nz2, also N is a spinor exception, while every form in
spn h represents N. If we can take gcd(u, v) = 1, then every form in spn h
represents N primitively. If N is squarefree, N is also the smallest spinor
exception for gen h, and all the spinor exceptions are NE2, where all prime
factors of E are congruent to 1 or 3 modulo 8.

N = u2 + uv + 4v2, h(x, y, z) = x2 + xy + 4y2 + 225Nz2. Conjectures:
gen h has exactly two spinor genera, every form in spn h has a homothety to
either Nx2+Nxy+4Ny2+225Nz2 or Nx2 +15Ny2+15Nyz+60Nz2, also
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N is a spinor exception, while every form in spn h represents N. If we can
take gcd(u, v) = 1, then every form in spn h represents N primitively. If N
is squarefree, N is also the smallest spinor exception for gen h, and all the
spinor exceptions are NT 2, where all prime factors of T are congruent to 1
or 2 or 4 or 8 modulo 15.

I worked out the next one with help about “united forms” from page 57
of Buell [5]: if X = x1x2 − Cy1y2 and Y = a1x1y2 + a2x2y1 +By1y2, then

(

a1x
2
1 + Bx1y1 + a2Cy21

) (

a2x
2
2 +Bx2y2 + a1Cy22

)

is equal to
(

a1a2X
2 +BXY + CY 2

)

.

See also [13, pages 37,49].
Suppose N = 2α2 + αβ + 2β2. Then

(

α β
−2β 2α + β

)(

2 1
2

1
2

2

)(

α −2β
β 2α+ β

)

=

(

N N
2

N
2

4N

)

.

N = 2u2 + uv + 2v2, h(x, y, z) = 2x2 + xy+2y2+225Nz2. Conjectures:
gen h has exactly two spinor genera, every form in spn h has a homothety to
either Nx2+Nxy+4Ny2+225Nz2 or Nx2 +15Ny2+15Nyz+60Nz2, also
N is a spinor exception, while every form in spn h represents N. If we can
take gcd(u, v) = 1, then every form in spn h represents N primitively. If N
is squarefree, N is also the smallest spinor exception for gen h, and all the
spinor exceptions are NT 2, where all prime factors of T are congruent to 1
or 2 or 4 or 8 modulo 15.

Alright, I checked all of the listed families for spinor genus preservation
during descent and N ≤ 200, including N that cannot be primitively rep-
resented by the appropriate binary form. For any of the families mentioned
and N−values N1|N2, there is often a descent by a factor of N2

N1

from the
genus with parameter N = N2 down to the genus with parameter N = N1,
not just for N1 = 1. In every case, forms in the regular spinor genus with
N = N2 descended only to forms in the regular spinor genus with N = N1,
and forms in the irregular spinor genus with N = N2 descended only to forms
in the irregular spinor genus with N = N1.
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57 Once More, with Four Spinor Genera

Prof. Hsia asked me if I could produce any similar example with four spinor
genera, so I continued experimenting with this material. As near as I can
make out, it is difficult to have a genus with four spinor genera, two inde-
pendent spinor exceptions, and even one form that represents the minimal
number in the two squareclasses of spinor exceptions. Still, I suspect I found
a two parameter family that does just that.

First, I have computed some extra with the smallest of the following exam-
ples, w = 17, so 16w2 = 4624. The genus of the ternary x2+17y2+4624z2 has
four spinor genera and a full plate of spinor exceptions: one family is U2 where
U is an arbitrary product of {1, 3, 7, 11, 13, 23, 31, 53, 71, 79, 89, 101, 107, . . .}.
These appear to be 1 and all the primes r with Legendre symbol (−17|r) = 1.
Then 17V 2, V factors {1, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, . . .}.
These are apparently just 1 and all the primes p ≡ 1 mod 4, so Jones and
Pall [36] would have called the second family 17m2.

The second smallest of the following examples, w = 41, so 16w2 = 26896.
The genus of the ternary x2 + 41y2 + 26896z2 has four spinor genera and
a full plate of spinor exceptions: one family is U2, U is an arbitrary prod-
uct of {1, 3, 5, 7, 11, 19, 37, 47, 61, 67, 71, 73, 79, 113, . . .}. These appear to be
1 and all the primes r with Legendre symbol (−41|r) = 1. Then 41V 2, V
factors {1, 5, 13, 17, 29, 37, 41, 53, 61, . . .}. Jones and Pall would have called
the second family 41m2.

The third smallest of the following examples, w = 65, so 16w2 = 67600.
The genus of the ternary x2 + 65y2 + 67600z2 has four spinor genera and a
full plate of spinor exceptions: one family is U2, U is an arbitrary product
of {1, 3, 11, 19, 23, 29, 31, 37, 43, 59, 61, 71, 73, 97, 101, . . .}. These appear to be
1 and all the primes r with Legendre symbol (−65|r) = 1. Then 65V 2, V
factors {1, 5, 13, 17, 29, 37, 41, 53, 61, . . .}. Jones and Pall would have called
the second family 65m2.

I did a little run with all w ≤ 100 such that the binary form class group
containing x2+wy2 has half as many fourth powers as there are squares. For
each of these 33 values of w I checked the spinor exceptions in the genus of
the ternary x2+wy2+16w2z2. Sometimes the only squareclass of exceptions
is 1, often there are two independent squareclasses of exceptions, but only
a few times are both 1 and w distinct squareclasses of exceptions. Anyway,
here is the list of w with the minimal exceptions: 14:1,2. 17:1,17. 20:1,5.
32:1. 34:1,17. 36:1. 39:1,13. 41:1,41. 46:1,2. 49:1. 52:1,13. 55:1,5. 56:1,8.
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62:1,2. 63:1. 64:1. 65:1,65. 66:1. 68:1,17. 69:1. 73:1,73. 77:1. 80:1,20.
82:1,41. 84:1. 89:1,89. 90:1. 94:1,2. 95:1,5. 96:1. 97:1,97. 98:1. 100:1.

Wai Kiu Chan provided this example about binaries added to unaries:
x2 + 12y2 and 3x2 + 4y2 are binaries of the same discriminant but different
genera, while x2 + 12y2 + 2z2 and 3x2 + 4y2 + 2z2 are ternaries in the same
genus. Ben Kane found a simple counterexample to the analogous statement
for spinor genera. His example happens quite often, as a genus of positive
ternaries cannot have more than one spinor genus unless the discriminant
∆ is divisible by 64 or by p3 for some odd prime p. There is a different
type of counterexample which does not depend on the factorization of N
in g(x, y) + Nz2: if g(x, y) and g′(x, y) = g(x,−y) are opposite forms in a
genus without any ambiguous forms, then they are in distinct spinor genera.
However, no matter what we choose for N, it follows that g(x, y) + Nz2

and g′(x, y) +Nz2 are actually equivalent with a determinant of +1. So the
examples in this section denote one of the few possibilities where binaries in
the same genus but distinct spinor genera map to ternaries in distinct spinor
genera.

If h1(x, y) is a fourth power in the binary form class group containing
x2+wy2, and h2(x, y) is a square but not a fourth power, then the computer
thinks that h1(x, y) + 16w2z2 lies in the same spinor genus as x2 + wy2 +
16w2z2, while h2(x, y) + 16w2z2 lies in a different spinor genus. That is
really important, spinor genus respecting direct sum here. Direct sum is
not something to be taken for granted either. x2 + 17y2 is the fourth power
and 2x2 + 2xy + 9y2 is the square that is not a fourth power. So Estes
and Pall [24] say they are in the same (binary) genus but different spinor
genera. Both forms represent 21 and 33. With 21 and discriminant 6603072,
x2 + 17y2 + 97104z2 and 2x2 + 2xy + 9y2 + 97104z2 are in the same genus
and spinor genus. With 33 and discriminant 10376256 , x2+17y2+152592z2

and 2x2+2xy+9y2+152592z2 are in the same genus and spinor genus. It is
worth noting that in both these cases the ternary genus does not have four
spinor genera, only two.

Let w ∈ {17, 41, 65, 73, 89, 97, 113, 137, 145, 185, 193, 233, 241, . . .}. That
is, w is squarefree, w ≡ 1 mod 8, w is not divisible by any prime q ≡ 3 mod 4,
and the positive binary quadratic form g(x, y) = x2 +wy2 is in a (principal)
genus with exactly two ambiguous classes, so that there are half as many
fourth powers as squares in the class group, and two spinor genera per genus
of that binary form discriminant (I’ll look for the reference, for binaries the
spinor kernel is the fourth powers in the class group [24] or [12, page 366]).
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I want w squarefree because I want minimal spinor exceptions to be 1 and w
itself, rather than some divisor of w. And I do know that things never worked
properly with even w or w divisible by some prime q ≡ 3 mod 4, and things
went wrong when I tried w values 205, 221, 1513. When w = 205, which
is 5 mod 8, the independent spinor exception squareclasses have minima 1
and 41. So the factor of 5 just disappears. That happens to prime factors
that are 3 mod 4, or to 2 if all other prime factors are 1 mod 4. When
w = 221, which is 5 mod 8, the independent spinor exception squareclasses
have minima 1 and 17. So the factor of 13 just disappears. The last one,
1513 = 17 · 89, is the smallest number that fits all the other conditions for w
but has four ambiguous classes in the (principal) genus containing x2+1513y2,
those being (1,0,1513),(2,2,757),(17,0,89),(34,34,53). The resulting ternaries
had eight spinor genera, confirmed by Andrew Earnest.

As mentioned, I asked the computer to check w = 1513. The binary form
x2 +1513y2 is in a principal genus of four forms, all of which are ambiguous,
the list being (1,0,1513), (2,2,757), (17,0,89), (34,34,53). That is, the square
of each is the identity. The only fourth power in the class group is the identity.
The class number is sixteen. I wanted to know if this example works properly,
I thought the principal genus stuffed with ambiguous forms might force extra
spinor genera in the genus of T (x, y, z) = x2+1513y2+36626704z2. And that
did happen, there were eight spinor genera, this being confirmed by Earnest.

The squares in the class group of x2 + wy2 make up a subgroup called
the principal genus. By hypothesis there are half as many fourth powers
as squares. The fourth powers also make a subgroup of the subgroup of
squares. So we have two cosets: the fourth powers and the squares that are
not fourth powers. Now, let us define a sequence of numbers s, where each
s is represented by a form in the principal genus but not by forms in both
cosets.

For example, with w = 17, the numbers represented by (1,0,17) are 1, 4,
9, 16, 17, 18, 21, 25, 26, 33, 36, 42, 49, 53, 64, up to 65. The square that
is not a fourth power is (2,2,9), which represents 2, 8, 9, 13, 18, 21, 32, 33,
34, 36, 42, 49, 50, 52. Striking out the numbers common to the two lists,
we are taking s ∈ {1, 2, 4, 8, 13, 16, 17, 25, 26, 32, 34, 50, 52, 53, 64, . . .}. I just
finished a run, and a desired detail works, one that explains everything else:
x2 +17y2+4624sz2 and 2x2 +2xy+9y2+4624sz2 lie in the same genus but
different spinor genera, just as the binary forms x2+17y2 and 2x2+2xy+9y2

lie in the same genus but different spinor genera.
With w = 41, the fourth powers in the class group are (1, 0, 41) and
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(2, 2, 21) , while the squares that are not fourth powers are (5,±4, 9) . The
list of possible s values for (1, 0, 41) is 1 , 4, 9, 16, 25, 36, 41, 42, 45, 49,
50 up to 50. The list for (2, 2, 21) is 2, 8, 18, 21, 25, 32, 33, 45, 50. So the
combined list for the fourth powers starts 1, 2, 4, 8, 9, 16, 18, 21, 25, 32,
33, 36, 41, 42, 45, 49, 50. The list for (5,±4, 9) , the squares that are not
fourth powers, is 5, 9, 10, 18, 20, 21, 33, 36, 37, 40, 42, 45, 49. Crossing out
common terms we get s ∈ {1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 37, 40, 41, 50 . . .}.

Recall g(x, y) = x2 + wy2. For a pair (w, s), define a positive ternary
quadratic form,

T (x, y, z) = x2 + wy2 + 16sw2z2 = g(x, y) + 16sw2z2.

For any other form h(x, y) = ax2 + bxy + cy2 in the principal genus, define

Uh(x, y, z) = ax2 + bxy + cy2 + 16sw2z2 = h(x, y) + 16sw2z2.

Then what the computer output says is this: T (x, y, z) and Uh(x, y, z) are in
the same genus of positive ternary quadratic forms but if h is not a fourth
power in the class group T and Uh lie in different spinor genera. The ternary
genus has four spinor genera. There are two squareclasses of spinor excep-
tions, with representatives s and ws. Either T (x, y, z) represents both s and
ws, (as g ◦ g = g), or some Uh(x, y, z) represents s and therefore sw, as
g ◦ h = h. Thus there is at least one form in the genus that represents both
these spinor exceptions. If s is not squarefree or if gcd(w, s) 6= 1, perhaps
there are smaller exceptions in either squareclass. There may be more than
one equivalence class of forms that represent both s and sw, but the number
of such classes is not large compared with the number of classes in the spinor
genus. Finally, for fixed w and s1|s2, there is a descent from the genus with
s = s2 to one with s = s1, and spinor genera are preserved by the

descent! That is, if a form upstairs descends to two or more forms down-
stairs, those downstairs forms are in the same spinor genus. If two forms
upstairs are in the same spinor genus and descend to some forms downstairs,
those forms downstairs are all in the same spinor genus. If two forms f2, g2
upstairs are in different spinor genera, f2 descends to f1 and g2 descends to
g1, the results f1, g1 of descent lie in two different spinor genera downstairs.
If some forms downstairs are in the same spinor genus and are descended to
by a bunch of forms upstairs, those upstairs forms are all in the same spinor
genus. And so on.
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Suppose s = αu2 + 2βuv + γv2 with αγ − β2 = w.

(

u v
−βu− γv αu+ βv

)(

α β
β γ

)(

u −βu− γv
v αu+ βv

)

=

(

s 0
0 sw

)

.

So we see how the ternary form αx2 + 2βxy + γy2 + 16sw2z2 descends by a
factor of s to x2 + wy2 + 16w2z2.

But
(

αu+ βv −v
βu+ γ u

)(

1 0
0 w

)(

αu+ βv βu+ γv
−v u

)

=

(

αs βs
βs γs

)

.

So x2 +wy2 + 16sw2z2 also descends by a factor of s to αx2 + 2βxy + γy2 +
16w2z2.

This, finally, explains the strange restriction on s. If binaries h1 and
h2 have the same discriminant as x2 + wy2, and both are squares in the
class group while one is a fourth power and the other not, there would be a
problem if both represented s. x2 + wy2 + 16sw2z2 would descend to both
h1(x, y) + 16w2z2 and h2(x, y) + 16w2z2 downstairs, and we believe these
lie in distinct spinor genera. We also believe that h1(x, y) + 16w2sz2 and
h2(x, y) + 16w2sz2 lie in different spinor genera. Both these ternaries would
descend by a factor of s to x2 + wy2 + 16w2z2. So, among the many things
that can go wrong: a wrong choice of w could see h1(x, y) + 16w2z2 and
h2(x, y) + 16w2z2 in the same spinor genus, horrible. A wrong choice of s
could see h1(x, y)+16w2sz2 and h2(x, y)+16w2sz2 in the same spinor genus,
very bad. Finally, even if all the spinor genera are as we like, we would still
violate spinor genus preservation in descent if s were represented by a fourth
power and a square that is not a fourth power.

The conditions on s prevent s from being divisible by some primes q ≡
3 mod 4. Not always, with w = 65 it is legal to have s = 49. If s is divisible
by q ≡ 3 mod 4 but not by q2, the notation for this being q‖s, the genus
of x2 + wy2 + 16sw2z2 collapses to just two spinor genera. It does turn out
that you get four spinor genera with fairly pleasant independent exceptions
for s = 9, 18, 49, · · · , that is with q ≡ 3 mod 4 and q2‖s. The part I don’t
like is that the preservation of spinor genera is disrupted, at least when
(−w|q) = 1. With w = 17 and s = 49, the form x2 + 17y2 + 226576z2

descends by 49 to both x2 + 17y2 + 4624z2 and 2x2 + 2xy + 9y2 + 4624z2,
which are in different spinor genera. From a different spinor genus upstairs,
the form 2x2+2xy+9y2+226576z2 descends by 49 to both x2+17y2+4624z2
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and 2x2+2xy+9y2+4624z2. The smallest discriminant 64w3q2 available with
prime q ≡ 3 mod 4 and Legendre symbol (−w|q) = −1 is with w = 17 and
q = 19. So I’m trying to compute w = 17 and s = 361 now. With w = 41 and
s = 9, the form x2+41y2+242064z2 descends by 9 to both x2+41y2+26896z2

and 5x2 + 4xy + 9y2 + 26896z2, which are in different spinor genera. From a
different spinor genus upstairs, the form 5x2+4xy+9y2+242064z2 descends
by 9 to both x2+41y2+26896z2 and 5x2+4xy+9y2+26896z2. With w = 65
and s = 9, the form x2 +65y2 +608400z2 descends by 9 to both x2 +65y2 +
67600z2 and 9x2 +8xy+9y2+67600z2, which are in different spinor genera.
From a different spinor genus upstairs, the form 9x2 + 8xy + 9y2 + 608400z2

descends by 9 to both x2 + 65y2 + 67600z2 and 9x2 + 8xy + 9y2 + 67600z2.
In case anyone ever looks at the computer outputs, the four spinor genera

have labels 4,3,2,1 depending on whether the spinor genus represents s and
ws. Label 4 means both are represented, label 1 means neither is represented,
label 3 means ws is represented but not s, and label 2 means s is represented
but not ws. So when s = 1, the spinor genus labelled 2 has at least one form
that represents 1 but w is missed. Some edited C++ code follows, the STL
set called temp is numbers represented by the full genus but NOT by the
spinor genus under consideration. Confusing, of course.

if ( temp.count(s) && temp.count( w * s) )

{

S.SetRegularFlag(1);

}

else if ( temp.count(s) && !(temp.count( w * s)) )

{

S.SetRegularFlag(3);

}

else if ( !(temp.count(s)) && temp.count( w * s) )

{

S.SetRegularFlag(2);

}

else S.SetRegularFlag(4);

Anyway, for the moment, let all the fourth powers in the class group of
x2+wy2 be called gi(x, y), and all the squares that are not fourth powers the
hj(x, y). If one of the gi represents s, then every gi(x, y) + 16sw2z2 is in the
spinor genus labelled 4, and every hj(x, y) + 16sw2z2 is in the spinor genus
labelled 2 ( no ws). If one of the hj represents s, then every hj(x, y)+16sw2z2
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is in the spinor genus labelled 4, and every gi(x, y)+16sw2z2 is in the spinor
genus labelled 2 ( no ws). Labels 1 and 3 don’t get any binaries from the
principal genus added to 16sw2z2. For this output, the computer puts the
discriminant in front of each form, then a colon, then six coefficients (Brandt-
Intrau order), then a semicolon, then the spinor genus flag from 1,2,3,4.
So the 6-tuple a b c d e f between the colon and the semicolon refers to
T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx+ fxy, with discriminant before the
colon given by ∆ = 4abc + def − ad2 − be2 − cf 2.

Here is a sample, w = 17, s = 1, the list of forms in each spinor genus
preceded by a list of the first twenty-six numbers missed below 10,000.

=====Discriminant 314432 ==Genus Size== 36

Spinor genus misses no exceptions

314432: 1 17 4624 0 0 0 ;4

314432: 1 272 289 0 0 0 ;4

314432: 2 145 272 0 0 2 ;4

314432: 9 93 100 -36 8 4 ;4

314432: 13 13 514 -2 2 8 ;4

314432: 16 17 289 0 0 0 ;4

314432: 17 32 145 8 0 0 ;4

314432: 34 53 66 50 0 34 ;4

314432: 42 49 50 22 40 2 ;4

--------------------------size 9

Spinor genus misses 1 9 49 81 121 169

441 529 729 961 1089 1521 2401 2809 3969 4761

5041 5929 6241 6561 7921 8281 8649 9801

314432: 2 34 1165 34 2 0 ;3

314432: 4 137 154 70 4 4 ;3

314432: 13 21 297 -20 12 2 ;3

314432: 13 25 272 0 0 12 ;3

314432: 16 34 157 34 16 0 ;3

314432: 17 25 185 2 0 0 ;3

314432: 17 52 89 4 0 0 ;3

314432: 18 25 186 6 8 10 ;3

314432: 25 25 149 -12 22 16 ;3

--------------------------size 9

Spinor genus misses 17 425 2873 4913

314432: 1 153 544 136 0 0 ;2
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314432: 2 9 4624 0 0 2 ;2

314432: 9 32 289 0 0 8 ;2

314432: 13 68 106 68 2 0 ;2

314432: 16 34 153 34 0 0 ;2

314432: 18 49 98 10 16 14 ;2

314432: 26 50 81 -38 14 24 ;2

314432: 34 49 66 38 0 34 ;2

314432: 42 42 53 26 26 16 ;2

--------------------------size 9

Spinor genus misses 1 9 17 49 81 121

169 425 441 529 729 961 1089 1521 2401 2809

2873 3969 4761 4913 5041 5929 6241 6561 7921 8281

314432: 2 213 213 154 2 2 ;1

314432: 4 18 1157 2 4 4 ;1

314432: 4 69 290 2 4 4 ;1

314432: 13 33 189 -20 6 4 ;1

314432: 16 21 293 8 16 16 ;1

314432: 18 34 137 34 2 0 ;1

314432: 25 25 144 16 16 16 ;1

314432: 25 25 149 -12 12 18 ;1

314432: 25 36 98 28 22 8 ;1

--------------------------size 9

This shows how I was able to check spinor genus preservation during descent.
For a fixed w but several values of s I sent all the lines with a semicolon to a
separate file. The computer just checked pairs of forms: if the discriminant
of one divided the discriminant of the other, we had a situation with s2 > s1
and s1|s2. If there was a homothety from the s2 form to s2

s1
times the s1 form,

we call that a descent and printed both forms on the same line to an output
file, with the ratio s2

s1
in the middle. Finally, each of the forms also had a flag

from 1,2,3,4 at the end. The program printed out “DISAGREE” to screen
and to output text file and raised all kinds of hell if that happened. But with
the restrictions on w and s I described that never happened. Flag 4 always
matched with flag 4, 3 with 3, 2 with 2, 1 with 1. For the previous section,
with just two spinor genera per genus, the same type of check was done with
flags 0,1, standing for irregular spinor genus and for regular.
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58 Conjectures about homotheties

Billy Wai Kiu Chan [7] of Wesleyan has proved Conjectures 1 and 2, March
2008!

After a week of writing software I have finally managed to confirm the
Conjectures of this section for all pairs of genera with discriminants ∆, n∆ ≤
1000. That is, the Conjectures are true for the entirety of the 1958 ta-
bles by Heinrich Brandt and Oskar Intrau [4], see Mathematical Reviews
MR0106204 (21 #4938). The tables amount to 36433 positive ternary forms
gathered into 4534 genera. Forms with ∆ = 1000 include {1, 1, 250, 0, 0, 0}
and {3, 7, 13,−3, 1, 2}, the latter being regular (its genus has only the one
equivalence class). Indeed, I have confirmed my Conjecture 3 much higher,
all pairs of genera with both discriminants ∆ ≤ 11664.

So: it appears (much computer experimenting) that one of Kaplansky’s
ideas is true far more generally than the setting in which he wrote it, [40,
Appendices I, II] or [39]. Kap mentions in [40, Appendix II] that the facts
he is discussing are in [55] but are not quite explicit. Note that what we
describe here is not possible for binary forms. Also, no checking has been
done for indefinite ternaries.

In [40, Appendices I, II] there are references to these three pairs of forms:
If f(x, y, z) = x2+2y2+7z2+2yz+zx and g(x, y, z) = x2+2y2+13z2+2yz,

then f(2Y,X − Z, 2Z) = 2g(X, Y, Z) and g(2Y + Z,X, Z) = 2f(X, Y, Z).
If f(x, y, z) = x2 + y2 + 3z2 + zx and g(x, y, z) = x2 + 3y2 + 11z2 + xy,

then f(X+6Y, 11Z,−2X−Y ) = 11g(X, Y, Z) and g(X+6Z,−2X−Z, Y ) =
11f(X, Y, Z).

If f(x, y, z) = x2 + 3y2 + 4z2 + xy and g(x, y, z) = x2 + 3y2 + 44z2 + xy,
then f(X+6Y,−2X−Y, 11Z) = 11g(X, Y, Z) and g(X+6Y,−2X−Y, Z) =
11f(X, Y, Z).

Suppose we are given two positive ternary quadratic forms, f and g,
such that the discriminant of one divides the discriminant of the other. So
we have 3 by 3 Gram matrices A and B, symmetric positive definite, with
integer entries on the diagonal and integer or half-integers off diagonal.

Let detA = D, and let the ratio of determinants be an integer n, so
detB = nD.

Suppose there is a “homothety” from B (which has larger determinant)
to nA. That is an integer matrix P , also 3 by 3, with transpose P ′, such that

P ′BP = nA.
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By relating determinants we find

nD(detP )2 = n3D, (detP )2 = n2, detP = ±n,

and by choosing ±P we may insist detP = n.
Let Q be the adjoint of P , so PQ = QP = nI and detQ = n2. Now

nQ′AQ = Q′P ′BPQ = nIBnI = n2B,

so
Q′AQ = nB.

In all my experiments, if I have found just one such {A,B, n, P,Q}, then
EVERY other form in the genus of B (the larger discriminant) corresponds
in the same way (integer homotheties in both directions) with at least one
form in the genus of A. Furthermore each form in the smaller genus is covered
by something as well. My Conjectures 1 and 2 below describe this and were
proved by Chan in a letter to me, March 2008. He does a great job of
translating my language into the terminology of today’s experts in quadratic
forms, lattices and the like.

I will adopt the language of (quadratic) lattices and spaces.
If L is a Z−lattice, then L(n) denotes the Z−lattice whose un-
derlying set is L but with the quadratic form scaled by the factor
n. We say that a Z−lattice M represents another Z−lattice L if
M has a sublattice M ′ which is isometric to L, or, equivalently,
there exists an isometry sending L into M. Our basic assumption
is:

L and M are Z−lattices such that d(M) = nd(L), where n is
a positive integer, and M represents L(n).

(This is the same as the hypothesis in your Conjecture stated
in terms of polynomials and “homotheties.”)

Notice that by the assumption we may assume that L(n) and
M are Z−lattices on the same space, say V. There are a couple of
immediate consequences. First, if M ′ is a sublattice of M which
is isometric to L(n), then [M : M ′] = n. Second, we have the
“dual” statement which says that L also represents M (n). As you

85



already indicated in your notes, the fact that n is an integer is
crucial here.

Now, let K be a Z−lattice in gen(M). We claim that K repre-
sents H(n) for some H ∈ gen(L). Let τ be an isometry of V which
sends L(n) into M, and let M ′ = τ(L(n)). Since K ∈ gen(M), for
each prime p there exists an isometry σp of Vp which sends Mp to
Kp. For almost all p (in fact, for those p that do not divide n),
M ′

p = Mp, and so there is a sublattice K ′ of K with K ′

p = σp(M
′

p)

for all p. Moreover, L(n)
p is isometric to K ′

p at each p; σpτ is an

isometry between them. Therefore, K ′ ∈ gen(L(n)) and so K ′ is
isometric to H(n) for some H ∈ gen(L).

Now we can “reverse” the steps to show that for every H ∈
gen(L) there will be a K ∈ gen(M) which represents H(n). Since
H(n) is in gen(L(n)), there will be an isometry σp of Vp such that
σp(H

(n)
p ) = L(n)

p at each prime p. Then τσp(H
(n)
p ) = M ′

p for all p.

Now, for p 6 | n we have Mp = M ′

p and so (τσp)
−1(Mp) = H(n)

p .
Therefore there will be a Z−lattice K on V such that Kp =
(τσp)

−1(Mp). Obviously, K ∈ gen(M) and K represents H(n), in
fact K contains H(n)!

Conjecture 1, proved by Chan [7]: given positive ternary quadratic
forms f and g with integer coefficients, integer n, such that discriminant g =
n · discriminant f, and homotheties from g to nf and from f to ng, ANY
other form g1 in the genus of g has such a correspondence with at least one
form f1 in the genus of f.

Conjecture 2, proved by Chan [7]: The correspondence of Conjecture
1, while usually many-to-many, is surjective in both directions.

Caution: if you start with just the upwards homothety, discriminant
∆ to discriminant n∆, sometimes there is no homothety in the downwards
direction. The simplest example is surely this:

(x− z)2 + (x+ y + 2z)2 + (−y + z)2 = 2(x2 + y2 + 3z2 + yz + zx + xy),

but there is no homothety down to 2(x2 + y2 + z2) because x2 + y2 + 3z2 +
yz + zx+ xy does not represent 2.

Caution: Chan’s Theorem requires that we allow common factors of
the nine entries in a homothety matrix, I suspect usually in the upwards
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direction. This can only happen if the discriminant ratio has square factors,
of course. An example: the genus ∆ = 135, two classes {1, 3, 12, 3, 0, 0}
and {1, 1, 45, 0, 0, 1}, with the genus ∆ = 15, two classes {1, 2, 2, 1, 0, 0} and
{1, 1, 5, 0, 0, 1}. Now {1, 1, 5, 0, 0, 1} actually represents (has a homothety to)
{1, 1, 45, 0, 0, 1} itself, so at least some of the homotheties from {1, 1, 5, 0, 0, 1}
to {9, 9, 405, 0, 0, 9} are 3 times the previous homothety matrices, and it
turns out those are the only ones. Plus there is no homothety at all from
{1, 1, 45, 0, 0, 1} down to 9·{1, 2, 2, 1, 0, 0}.Meanwhile, {1, 3, 12, 3, 0, 0} corre-
sponds only with {1, 2, 2, 1, 0, 0}, and the adjoint of any downwards homoth-
ety matrix has common matrix entry factor 3, but there are other homotheties
from {1, 2, 2, 1, 0, 0}, to {9, 27, 108, 27, 0, 0} with gcd 1.

Conjecture 3: given positive ternary quadratic forms f and g with
integer coefficients, squarefree integer n, such that discriminant g = n ·
discriminant f, and homotheties from g to nf and from f to ng, such that
both the genus of g and the genus of f have exactly two spinor genera and
both genera have spinor exceptions, then forms in the regular spinor genus
of gen g correspond only with forms in the regular spinor genus of gen f, and
forms in the irregular spinor genus of gen g correspond only with forms in
the irregular spinor genus of gen f.

I have checked Conjecture 3 pretty high, all pairs of genera with both dis-
criminants ∆ ≤ 11664. If proved, it explains everything about my (1, 1, 16N)
example for squarefree N other than Hsia’s calculation of the spinor genera
and spinor exceptional integers. So, taken together, Conjecture 4’ and Con-
jecture 3’ explain almost everything about (1, 1, 16N), the related families,
and my examples with four spinor genera.

Conjecture 4: given positive ternary quadratic forms f and g with inte-
ger coefficients, integer n, such that discriminant g = n · discriminant f, and
homotheties from g to nf and from f to ng, such that gen f has two spinor
genera and spinor exceptions, but we are not sure about g. If gen g has two
spinor genera then it does have spinor exceptions.

Conjecture 4’: Given gen(M) and gen(L) with d(M) =
nd(L) for squarefree n, and both gen(M) and gen(L) with the
same number 2r of spinor genera. Suppose gen(L) has a “com-
plete system of spinor exceptional integers,” indeed r of these,
in the phrasing of Benham and Hsia (1982) [2]. We also require
that the r independent spinor exceptional integers for gen(L) be
relatively prime to n and themselves be squarefree (I can’t tell
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whether Benham and Hsia demand them squarefree). Finally,
suppose M represents L(n). Then gen(M) also has a complete
system of spinor exceptional integers. Furthermore, I would ex-
pect to simply multiply by n to find a complete system of spinor
exceptional integers for gen(M).

Conjecture 3’: Given gen(M) and gen(L) with d(M) =
nd(L) for squarefree n, and both gen(M) and gen(L) with the
same number 2r of spinor genera and both with a complete sys-
tem of spinor exceptional integers, indeed r of these. We also
require that the r independent spinor exceptional integers for
gen(L) be relatively prime to n and themselves be squarefree.
Given M1,M2 ∈ gen(M) and L1, L2 ∈ gen(L), while M1 repre-

sents L
(n)
1 and M2 represents L

(n)
2 . Then spn(M1) = spn(M2) if

and only if spn(L1) = spn(L2).

Conjecture 5 below is just my way of conjecturing, for all my other exam-
ples analogous to (1, 1, 16N), that the genera produced with the parameter N
do have exactly two spinor genera, one regular and one not, and the smallest
spinor exceptional integer is exactly as hoped.

Conjecture 5: what I am really looking for is this: given a primitive
positive binary Ax2 + Bxy + Cy2 with negative “discriminant” B2 − 4AC,
and given a fixed coefficient M which is a multiple of (B2−4AC)2 or at least
of (B2 − 4AC)2/4, such that the genus of the ternary Ax2 + Bxy + Cy2 +
Mz2 has exactly two spinor genera and has spinor exceptional integers, the
smallest of which is σ, which we take to be squarefree. Furthermore let
σ = Ar2 + Brs + Cs2, so that Ax2 + Bxy + Cy2 + Mz2 is in the regular
spinor genus, and every form in the regular spinor genus represents all spinor
exceptional integers of the genus, because each form is required to represent
σ. Note that the discriminant of Ax2 + Bxy + Cy2 + Mz2 is divisible by
(4AC−B2)3 or (4AC−B2)3/4. Now, given a positive binary A1x

2+B1xy+
C1y

2 with B2
1 − 4A1C1 = B2 − 4AC, and given some squarefree integer N

with gcd(N, σ) = 1 and N is represented by the ratio of the two binary
forms in the class group, so that Nσ is still squarefree and Nσ = A1u

2 +
B1uv +C1v

2. Consider A1x
2 +B1xy +C1y

2 +MNz2. We require that there
be homotheties in both directions, with multiplier N, between A1x

2+B1xy+
C1y

2+MNz2 and Ax2+Bxy+Cy2+Mz2. The conjecture is that the genus
of A1x

2 +B1xy + C1y
2 +MNz2 is forced to have exactly two spinor genera
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and to have spinor exceptions, while Nσ is forced to be a spinor exceptional
integer, therefore the smallest such as we have insisted Nσ be squarefree.
Therefore A1x

2+B1xy+C1y
2+MNz2 is in the regular spinor genus and, by

Conjecture 3, every form in the regular spinor genus represents the smallest
spinor exceptional integer Nσ.

Chan’s Theorem gives a proof of the curiosity in Section 56, that for
N = u2 + v2, N squarefree, every form in the spinor genus containing
x2 + y2 + 16Nz2 represents N itself. This is an application of the Corol-
lary to Theorem 3 on page 56 of [17].
Proof Chan’s Theorem implies (1, 1, 16N) curiosity : The base genus,
with ∆ = 64, consists of two forms, the regular {1, 1, 16, 0, 0, 0} and the
“spinor regular” form {2, 2, 5, 2, 2, 0}. Now, see [36] or [15], {1, 1, 16, 0, 0, 0}
represents all numbers except 4n + 3, 8n + 6, 32n + 12, 4k(8n + 7). The no-
tation on the other is {2, 2, 5, 2, 2, 0} 6= m2 : the numbers represented by
{1, 1, 16, 0, 0, 0} but not by {2, 2, 5, 2, 2, 0} are 1, 25, 169, 289, 625, 841,
1369, 1681, 2809, 3721, 4225, 5329, 7225, 7921, 9409, 10201, 11881, 12769,
15625 ... , squares whose prime factors are all congruent to 1 modulo 4.
{2, 2, 5, 2, 2, 0} is also item (3.1) of Theorem 1 in [1].

First we show the proof for N odd, later a small revision allows for twice
odd.

Let N = u2+v2 be odd and squarefree, so it is represented primitively, i.e.
gcd(u, v) = 1. The genus with larger disciminant is that of {1, 1, 16N, 0, 0, 0}
or

f(x, y, z) = x2 + y2 + 16Nz2.

There is a homothety from f to N{1, 1, 16, 0, 0, 0} given by







u v 0
−v u 0
0 0 1





 ,

as in






u −v 0
v u 0
0 0 1













1 0 0
0 1 0
0 0 16N













u v 0
−v u 0
0 0 1





 =







N 0 0
0 N 0
0 0 16N





 .

There is also a homothety from {1, 1, 16, 0, 0, 0} to Nf given by the ad-
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joint






u −v 0
v u 0
0 0 N





 ,

as in






u v 0
−v u 0
0 0 N













1 0 0
0 1 0
0 0 16













u −v 0
v u 0
0 0 N





 =







N 0 0
0 N 0
0 0 16N2





 .

J. S. Hsia proved that the genus of f splits into exactly two spinor genera,
and N itself is a spinor exception. He mentioned once that the methods used
are in Earnest, Hsia, and Hung [21].

Let h(x, y, z) be in the same genus and spinor genus as f. Chan’s Theo-
rems state that there is a pairing of h with at least one of {1, 1, 16, 0, 0, 0} or
{2, 2, 5, 2, 2, 0}. We will show that it must be the first choice by considering
the spinor exceptions.

Lemma: if a number is the product of primes all of which are 1 mod 4,
then it has a primitive representation as a2 + b2, that is gcd(a, b) = 1.

There are many proofs of this, but you can prove it yourself based on the
fact that any prime p ≡ 1 mod 4 is so represented and then working with
gcd in the induction step

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2.

Notice there is no need to prohibit square factors, think of Pythagorean
triples.

On page 56 of Duke and Schulze-Pillot [17] we have the corollary to
Theorem 3:

Corollary. Let q(x1, x2, x3) be a positive integral ternary
quadratic form. Then every large integer n represented prim-
itively by a form in the spinor genus of q is represented by q
itself and the representing vectors are asymptotically uniformly
distributed on the ellipsoid q(x) = n.

As f, h are in the same spinor genus, this says that there is some large
M such that any number primitively represented by f and larger than M
is also represented by h. So, take a prime p ≡ 1 mod 4 that is so large that
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Np2 > M. Since Np2 is a product of primes all of which are 1 mod 4, it is
primitively represented by x2 + y2 by the Lemma above. But that means
Np2 is primitively represented by f(x, y, z) = x2 + y2 + 16Nz2 with z = 0.
From Np2 > M it follows [17] that h(x, y, z) also represents Np2.

If there were a correspondence between h and {2, 2, 5, 2, 2, 0}, one of the
homotheties would be from {2, 2, 5, 2, 2, 0} to Nh. This would provide a rep-
resentation of N ·Np2 = N2p2 by {2, 2, 5, 2, 2, 0}. But this is prohibited, N2p2

is a square and all prime factors of N2p2 are congruent to 1 modulo 4.
Therefore, Chan’s Theorem says that h corresponds with {1, 1, 16, 0, 0, 0}.

That is, there is a homothety from h to

N · {1, 1, 16, 0, 0, 0} = {N,N, 16N, 0, 0, 0}.

In particular, h represents N.
The same method gives a proof for the genus of f(x, y, z) = x2 + y2 +

32Nz2, with ∆ = 128N, so that the discriminant ratio with {1, 1, 16, 0, 0, 0}
is twice odd, as ∆ = 64 for the latter.
Lemma: if an odd number K = a2 + b2 with gcd(a, b) = 1, then 2K =
(a− b)2 + (a+ b)2 is also a primitive representation.

There is a genus of three classes with ∆ = 128, that splits into two
spinor genera. The first spinor genus is {1, 1, 32, 0, 0, 0} and {2, 2, 9, 2, 2, 0}.
Note that both represent 2. The other spinor genus has the single form
{1, 4, 9, 4, 0, 0} which is spinor regular, it is item (3.4) of Theorem 1 in [1],
the numbers represented by the full genus but not by {1, 4, 9, 4, 0, 0} are
precisely those of shape 2m2, that is 2, 50, 338, 578, 1250, 1682, 2738, 3362,
5618, 7442, 8450,...

The same homotheties as before work for x2+y2+32Nz2 and x2+y2+32z2,







u −v 0
v u 0
0 0 1













1 0 0
0 1 0
0 0 32N













u v 0
−v u 0
0 0 1





 =







N 0 0
0 N 0
0 0 32N





 ,







u v 0
−v u 0
0 0 N













1 0 0
0 1 0
0 0 32













u −v 0
v u 0
0 0 N





 =







N 0 0
0 N 0
0 0 32N2





 .

Let h(x, y, z) be in the same spinor genus as f(x, y, z) = x2+y2+32Nz2.
There is some large M2 such that any number primitively represented by f
and larger than M2 is also represented by h. So, take a prime p ≡ 1 mod 4
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that is so large that 2Np2 > M2. Since Np2 is a product of primes all of which
are 1 mod 4, it is primitively represented by x2 + y2 by the first Lemma
above. The second Lemma says that 2Np2 is also primitively represented
by x2 + y2. But that means 2Np2 is primitively represented by f(x, y, z) =
x2 + y2 + 16Nz2 with z = 0. From 2Np2 > M2 it follows [17] that h(x, y, z)
also represents 2Np2.

If there were a correspondence between h and {1, 4, 9, 4, 0, 0}, one of the
homotheties would be from {1, 4, 9, 4, 0, 0} to Nh. This would provide a rep-
resentation of N · 2Np2 = 2N2p2 by {1, 4, 9, 4, 0, 0}. But this is prohibited,
2N2p2 is twice a square and all odd prime factors of 2N2p2 are congruent to
1 modulo 4.

Therefore, Chan’s Theorem says that h corresponds with {1, 1, 32, 0, 0, 0}
or {2, 2, 9, 2, 2, 0}.That is, there is a homothety from h to {N,N, 16N, 0, 0, 0}
or {2N, 2N, 9N, 2N, 2N, 0}. In particular, h represents 2N.

Combining the two proofs, N and 2N, we get the desired implication: if
W = s2 + t2 is squarefree, Chan’s Theorem [7] says that every form in the
spinor genus of x2 + y2 + 16Wz2 represents W.

Conjecture 3: given positive ternary quadratic forms f and g with
integer coefficients, squarefree integer n, such that discriminant g = n ·
discriminant f, and homotheties from g to nf and from f to ng, such that
both the genus of g and the genus of f have exactly two spinor genera and
both genera have spinor exceptions, then forms in the regular spinor genus
of gen g correspond only with forms in the regular spinor genus of gen f, and
forms in the irregular spinor genus of gen g correspond only with forms in
the irregular spinor genus of gen f.

Of course, many interesting examples occur when spinor genera are re-
spected but the ratio of discriminants n has square factors. When n is
squarefree, the set of spinor exceptions for gen f, are just multiplied by n
to get the spinor exceptions for gen g. But when n is square or has square
factors, say n = mq2, it is common for the spinor exceptions for gen g to
be the union of m times the spinor exceptions for gen f with mq2 times the
spinor exceptions for gen f. For example, with ∆ = 108, the spinor regular
{3, 3, 4, 0, 0, 3} 6= w2, while a corresponding spinor regular with n = 4 and
∆ = 432 is {3, 7, 7, 5, 3, 3} 6= w2, 4w2.

Meanwhile, for any n, even allowing square factors, it appears the genus
of the form with higher discriminant can either have just one spinor genus or
can have two spinor genera with spinor exceptions. It can’t be one of those
with two spinor genera that represent all the same numbers.
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Conjecture 4: given positive ternary quadratic forms f and g with inte-
ger coefficients, integer n, such that discriminant g = n · discriminant f, and
homotheties from g to nf and from f to ng, such that gen f has two spinor
genera and spinor exceptions, but we are not sure about g. If gen g has two
spinor genera then it does have spinor exceptions.

59 Hanke and Schulze-Pillot

It turns out that Jonathan Hanke [26, 25] proved similar results on infinite
sets of numbers not represented by forms in the regular spinor genus as
Schulze-Pillot. Quoting the last sentence in Theorem 4.3 on page 312 of [52]:
“In particular, if there is a spinor exceptional integer a′ for the genus of L
that is represented by spn(L) but not by L (so a′ is below the bound for being
sufficiently large), then there are infinitely many integers a′p2 with p prime
that are not represented by L.” Hanke [26] summarizes this as “even a refined
local-global principle based on the spinor genus fails infinitely often” and
seems to be wondering how frequently genera give examples of the described
behavior.

I have just come across a very satisfying example of this, related to things
I knew already. Given an odd prime p it is not difficult to show that the
positive ternary form 〈1, p, p, 0, 0, 0〉 is the only form in its genus allowed to
represent the number 1. The same proof generalizes to odd squarefree S, that
is 〈1, S, S, 0, 0, 0〉 is the only form in its genus allowed to represent the number
1. Some extra detail shows that for 0 ≤ k ≤ 4, the form 〈1, 2kS, 2kS, 0, 0, 0〉
does the same. The observation about 1 being represented by only one form
is by Alexander Berkovich.

Now, let N be odd and squarefree but require that N = u2+v2 in integers,
so that N is a prime congruent to 1 modulo 4 or the product of distinct such
primes. My computer is convinced that the genus of 〈1, 16N, 16N, 0, 0, 0〉
splits into exactly two spinor genera. I can actually prove this with the
Watson transformations! In his original article [57], Watson gave a mapping
that we will call λ that takes a positive integer m and a quadratic form and
produces a new quadratic form. Taking m = 64N the transformation is

λ 64N 〈1, 1, 16N, 0, 0, 0〉 = 〈1, 16N, 16N, 0, 0, 0〉

and
λ 64N〈1, 16N, 16N, 0, 0, 0〉 = 〈1, 1, 16N, 0, 0, 0〉.
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As the transformation λ 64N does not increase the number of spinor genera,
while Hsia proved that the genus of 〈1, 1, 16N, 0, 0, 0〉 splits into exactly two
spinor genera, it follows that the genus of 〈1, 16N, 16N, 0, 0, 0〉 also splits
into exactly two spinor genera. My computer thinks that the spinor excep-
tions are the Jones-Pall m2. Anyway, no form in the spinor genus that lacks
〈1, 16N, 16N, 0, 0, 0〉 itself represents the number 1, so 1 is a spinor excep-
tional integer! Here is the punchline: all the other forms in the regular spinor
genus, the good spinor genus containing 〈1, 16N, 16N, 0, 0, 0〉, fail to repre-
sent 1 (as we knew), which is the smallest spinor exceptional integer. As a
result, all but one of the forms in the good spinor genus fail to represent an
infinite set of squares, and my computer thinks these numbers can be taken
to be any q2 where q ≡ 3 mod 4 is a prime. This is the Schulze-Pillot or
Hanke result above in a fairly extreme setting. Before I forget, my computer
also thinks that every form in the good spinor genus represents N2.

In comparison, switch one coefficient to get 〈1, 1, 16N, 0, 0, 0〉. In this case
all has been proved, by Hsia, Chan, and me. There are exactly two spinor
genera, N itself is the smallest spinor exceptional integer, and every form
in the good spinor genus represents N and therefore all spinor exceptional
integers, this when N is odd and squarefree and N = u2 + v2 in integers. So
in this case no forms at all fall prey to the Schulze-Pillot or Hanke result.

And I believe I invented another infinite set of genera that display this
behavior, although it is for others to check the exact relationship to the
published Theorems. Let P ≡ 7 mod 8 be prime, let P ≥ 23, and let P =
8T − 1, so that T ≥ 3. It is known that 2 is a quadratic residue modP. It
is also known that the positive binary form x2 + xy + 2Ty2 is in the same
genus as 2x2+xy+Ty2, as there is only one genus which has an odd number
of classes. Thus the fourth-power map is one to one and surjective, which
is to say (see Estes and Pall [24]) that x2 + xy + 2Ty2 and 2x2 + xy + Ty2

are also in the same spinor genus. So I think x2 + xy + 2Ty2 + P 2z2 and
2x2+xy+Ty2+P 2z2 are in the same genus and same spinor genus of positive
ternaries.

Wai Kiu Chan provided this example about binaries added to unaries:
x2 + 12y2 and 3x2 + 4y2 are binaries of the same discriminant but different
genera, while x2 + 12y2 + 2z2 and 3x2 + 4y2 + 2z2 are ternaries in the same
genus. Ben Kane found a simple counterexample to the analogous statement
for spinor genera. His example happens quite often, as a genus of positive
ternaries cannot have more than one spinor genus unless the discriminant
∆ is divisible by 64 or by p3 for some odd prime p. There is a different
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type of counterexample which does not depend on the factorization of N
in g(x, y) + Nz2: if g(x, y) and g′(x, y) = g(x,−y) are opposite forms in a
genus without any ambiguous forms, then they are in distinct spinor genera.
However, no matter what we choose for N, it follows that g(x, y) +Nz2 and
g′(x, y) +Nz2 are actually equivalent with a determinant of +1.

Following Kaplansky’s 1995 letter to Hsia and Schulze-Pillot, we have
little trouble proving that

2x2 + xy + Ty2 + P 2z2 6= s2

for prime s with Legendre symbol (s|P ) = (−P |s) = −1. Note that we have
guaranteed s 6= 2, and primes are always positive for us.

Assume that
2x2 + xy + Ty2 + P 2z2 = s2.

First, if z = 0, we know that s|x and s|y, giving

2
(

x

s

)2

+
(

x

s

)(

y

s

)

+ T
(

y

s

)2

= 1,

which is false as the nonzero “minimum” of the binary is 2.
Second, if z 6= 0, choose z > 0. Then

2x2 + xy + Ty2 = s2 − P 2z2 = (s+ Pz)(s− Pz).

Since s is a nonresidue modP, both s + Pz and s − Pz are nonresidues
modP. Thus there is some (odd) prime q with (q|P ) = (−P |q) = −1 that
divides s + Pz to an odd power, or q2m+1||(s + Pz). But the fact that q
must divide 2x2 + xy + Ty2 to an even power shows that q|(s− Pz), indeed
q2n+1||(s − Pz). So q divides 2s and q divides 2Pz. But q|2s implies that
q = s. Next s|2Pz implies that s|z, where we have chosen z > 0 so z ≥ s.
As a result, Pz ≥ Ps ≥ 23s. So s + Pz > 0 but s − Pz < 0, therefore
s2 − P 2z2 < 0, which contradicts 2x2 + xy + Ty2 ≥ 0 in the assumption

2x2 + xy + Ty2 = s2 − P 2z2 = (s+ Pz)(s− Pz).

60 Some Involutions

It is fairly common, once a genus has exactly two spinor genera, for these
to have the same number of classes. From my original examples I thought
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this meant something extremely special as far as forms representing square
multiples of forms in the other spinor genus, so let me start out with a
pessimistic example.

===Discriminant 1331 ==Genus Size== 6

1331 = 11^3

Spinor genus misses no exceptions

A : 1 11 33 11 0 0 auto 8

B : 3 4 31 1 3 2 auto 4

C : 4 4 25 -2 2 3 auto 4

--------------------------size 3

Spinor genus misses no exceptions

D : 1 3 121 0 0 1 auto 8

E : 1 14 25 6 1 1 auto 4

F : 5 9 9 7 2 2 auto 4

--------------------------size 3

Disc 1331

In the genus above, I have deliberately renamed the formsA,B,C,D,E, F.
Note that A and D have 8 integer automorphs (I allow both determinants
1 and −1 here) while the others have 4. Despite everything favorable, there
is no preferred bijection: A represents D(4), E(4), C(121), D(121), F (121). Then
B represents D(4), F (4), E(121). C represents E(4), F (4), A(121), D(121), F (121). D
represents A(4), B(4), A(121), C(121), F (121). E represents A(4), C(4), B(121). Fi-
nally F represents B(4), C(4), A(121), C(121), F (121).

In comparison, let N be odd and squarefree and N = u2 + v2 in integers.
For all such N ≤ 157, the genus of 〈1, 1, 16N, 0, 0, 0〉 has exactly two spinor
genera which are of equal size (number of classes). For any A in this genus,
there is exactly one B 6= A such that A represents B(4) and B represents A(4),
and A and B always lie in distinct spinor genera! I think this is wonderful.
There is a built-in involution within the genus that exchanges the spinor
genera. The same thing happens for the genus of 〈1, 16N, 16N, 0, 0, 0〉. Note
that here it is not really all that important for N to be squarefree, but as
soon as N is allowed to be even the two spinor genera have different sizes.

A similar family of examples comes from combining either

N = u2 + uv + 4v2, h(x, y, z) = x2 + xy + 4y2 + 225Nz2

or
N = 2u2 + uv + 2v2, h(x, y, z) = 2x2 + xy + 2y2 + 225Nz2.
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Let us stick with squarefree N for now. With N ≤ 141, we get two spinor
genera. IfN is divisible by 15 the spinor genera are of different size. However,
ifN is not divisible by 3, they are the same size and there is an involution that
interchanges the spinor genera given as before by B 6= A while A represents
B(9) and B represents A(9). If N is not divisible by 5, they are the same size
and there is an involution that interchanges the spinor genera given by B 6= A
while A represents B(25) and B represents A(25). So, when gcd(N, 15) = 1,
there are two distinct involutions.

It is also fairly common for a genus with four spinor genera to have, at
least, those of equal size. Benham and Hsia [2] show that this happens in the
genus of 〈1, 20, 400, 0, 0, 0〉. In an earlier section I display this in the genus
of 〈1, 17, 4624, 0, 0, 0〉. The same happens for 〈1, 17, 4624s, 0, 0, 0〉 for s < 140
and s odd, while s is represented by either u2+17v2 or 2u2+2uv+9v2 but not
both; that is s ∈ {1, 13, 17, 25, 53, 89, 101, 137}. A simple way to satisfy the
peculiar looking conditions for larger s is to take s prime, while s ≡ 1 mod 4
and (s|17) = 1.

61 Benham and Hsia example

From the 1982 Nagoya Math. Journal article [2] by J. W. Benham and J. S.
Hsia, “On Spinor Exceptional Representations.” On page 252 they give the
genus

A1 = 〈4, 5, 400, 0, 0, 0〉 , A2 = 〈1, 80, 100, 0, 0, 0〉 , A3 = 〈16, 20, 29, 0, 16, 0〉 ,

B1 = 〈1, 20, 400, 0, 0, 0〉 , B2 = 〈9, 9, 100, 0, 0, 2〉 , B3 = 〈4, 45, 45, 10, 0, 0〉 ,
C1 = 〈4, 25, 80, 0, 0, 0〉 , C2 = 〈5, 16, 100, 0, 0, 0〉 , C3 = 〈4, 20, 101, 0, 4, 0〉 ,

D1 = 〈16, 20, 25, 0, 0, 0〉 , D2 = 〈4, 20, 105, 20, 0, 0〉 , D3 = 〈4, 21, 100, 0, 0, 4〉 .
For me

〈a, b, c, d, e, f〉
refers to the quadratic form

T (x, y, z) = ax2 + by2 + cz2 + dyz + ezx + fxy

Note that the two independent sets of spinor exceptional integers are
5m2, where all prime factors p of m satisfy p ≡ 1 (mod 4), and ϕ2, where
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all prime factors q of ϕ satisfy (−5|q) = 1. About the spinor genera, A is
regular, B 6= 5m2, C 6= ϕ2, D 6= ϕ2, 5m2.

Next, we take a number N which is squarefree and whose prime factors
η all satisfy η ≡ 1, 9 (mod 20). Or, to put it another way, N is squarefree,
prime to 2 and 5, and N is integrally represented by either the binary form
x2 + 20y2 or by 4x2 + 5y2 but not by both. This relates to a paper of Estes
and Pall on spinor genera for binary forms.

So now we consider the genus containing both

〈1, 20, 400N, 0, 0, 0〉 and 〈4, 5, 400N, 0, 0, 0〉 .

Or, put another way, the genus containing the four forms

〈1, 80, 100N, 0, 0, 0〉 and 〈4, 21, 100N, 0, 0, 4〉 ,

〈5, 16, 100N, 0, 0, 0〉 and 〈9, 9, 100N, 0, 0, 2〉 ,
where I believe these four forms lie in four distinct spinor genera.

The first conjectures are that this genus has exactly four spinor genera,
while the independent sets of spinor exceptions are 5Nm2 and Nϕ2. Once
again we label the spinor genera so that AN is regular, BN 6= 5Nm2, CN 6=
Nϕ2, DN 6= Nϕ2, 5Nm2.

Chan proved something for me about positive ternary forms in 2008, here
it is.

Theorem (Chan) Suppose thatM and L lie in genera with discriminant
ratio n, where n is required to be an integer but has no other restrictions.
Suppose further that M represents L(n) and L represents M (n). Then, given
any M1 in the genus of M, there is at least one L1 in the genus of L such that
M1 represents L

(n)
1 and L1 represents M

(n)
1 . Also, given any L2 in the genus

of L, there is at least one M2 in the genus of M such that L2 represents M
(n)
2

and M2 represents L
(n)
2 .

Now, let M mean either 〈1, 20, 400N, 0, 0, 0〉 or 〈4, 5, 400N, 0, 0, 0〉 , and
take the letter L to mean L = B1 = 〈1, 20, 400, 0, 0, 0〉 , then for one (and
only one) of the choices for M we have M represents L(N) and L represents
M (N).

From Chan’s result and the fact that for any of the spinor exceptions,
multiplying by N2 gives us a spinor exception for the same forms, it follows
that all forms in AN correspond only with forms in spinor genus A of the
original genus, BN only with B, then CN only with C, and DN only with D.
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The correspondence is generally many-to-many but here respects spinor
genus. Most of my conjectures in this area are about situations where there
is no such immediate trick to show that the correspondence respects spinor
genus. Other conjectures are about how matching numbers of spinor genera
and such a correspondence force the presence of spinor exceptional integers
in the genus with larger discriminant. The natural setting for my work is
genera with “complete systems of spinor exceptional integers.”

The next conjecture is that for each such N, the four spinor genera have
exactly the same number of classes. We have

(N = 1, 3), (N = 29, 21), (N = 41, 27), (N = 61, 36).

Finally, there are what I call the “involutions” in my manuscript, which
match forms in the same genus but different spinor genera. For all the N I
have checked, for each form M in AN , there is exactly one form L in CN such
that the M represents L(25) and L represents M (25). Similar for BN forms
and DN forms.

Then, for each form M in AN , there are two forms L1, L2 ∈ BN , two
more forms L3, L4 ∈ CN , and a single form L5 in DN such that M represents
L
(4)
1 , L

(4)
2 , L

(4)
3 , L

(4)
4 , L

(4)
5 and L1, L2, L3, L4, L5 all represent M (4).

For each form M in BN , there are two forms L1, L2 ∈ AN , two more forms
L3, L4 ∈ DN , and a single form L5 in CN such that M represents
L
(4)
1 , L

(4)
2 , L

(4)
3 , L

(4)
4 , L

(4)
5 and L1, L2, L3, L4, L5 all represent M (4).

For each form M in CN , there are two forms L1, L2 ∈ AN , two more forms
L3, L4 ∈ DN , and a single form L5 in BN such that M represents
L
(4)
1 , L

(4)
2 , L

(4)
3 , L

(4)
4 , L

(4)
5 and L1, L2, L3, L4, L5 all represent M (4).

For each form M in DN , there are two forms L1, L2 ∈ BN , two more
forms L3, L4 ∈ CN , and a single form L5 in AN such that M represents
L
(4)
1 , L

(4)
2 , L

(4)
3 , L

(4)
4 , L

(4)
5 and L1, L2, L3, L4, L5 all represent M (4).

Multiplication by 25 pairs AN with CN and then BN with DN . Then
multiplication by 4 gives bijections between AN and DN , then BN and CN .
Note that for both 4 and 25, forms never match any form in their own spinor
genus except themselves. So, this gives a reason for finding all four spinor
genera possessing the same number of classes.
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Mathématiques, 2004. Series: CRM Proceedings & Lecture Notes, vol-
ume 36.

[27] J. S. Hsia. Two theorems on integral matrices. Linear and Multilinear
Algebra, 5:257–264, 1978.

[28] J. S. Hsia. Regular positive ternary quadratic forms. Mathematika,
28:231–238, 1981.

[29] J. S. Hsia, Y. Kitaoka, and M. Kneser. Representations of positive defi-
nite quadratic forms. Journal für die reine und angewandte Mathematik,
301:132–141, 1978.

[30] W. C. Jagy. Five regular or nearly-regular ternary quadratic forms. Acta
Arithmetica, 77:361–367, 1996.

[31] W. C. Jagy, I. Kaplansky, and A. Schiemann. There are 913 regular
ternary quadratic forms. Mathematika, 44:332–341, 1997.

[32] B. W. Jones. Representation by positive ternary quadratic forms. PhD
thesis, University of Chicago, 1928.

[33] B. W. Jones. A new definition of genus for ternary quadratic forms.
Transactions of the American Mathematical Society, 33:92–110, 1931.

[34] B. W. Jones. The regularity of a genus of positive ternary quadratic
forms. Transactions of the American Mathematical Society, 33:111–124,
1931.

102



[35] B. W. Jones. The Arithmetic Theory of Quadratic Forms. Number 10 in
Carus Mathematical Monographs. Mathematical Association of Amer-
ica, 1950.

[36] B. W. Jones and G. Pall. Regular and semi-regular positive ternary
quadratic forms. Acta Mathematica, 70:165–191, 1939.

[37] I. Kaplansky. The first nontrivial genus of positive definite ternary forms.
Mathematics of Computation, 64:341–345, 1995.

[38] I. Kaplansky. Ternary positive quadratic forms that represent all odd
positive integers. Acta Arithmetica, 70:209–214, 1995.

[39] I. Kaplansky. Notes on the classification of regular ternary forms. Un-
published, 1996.

[40] I. Kaplansky. Proofs of regularity. Unpublished, 1997.

[41] I. Kaplansky. A unified proof of regularity for 36 forms. Unpublished,
2002.

[42] W. J. LeVeque. Topics in Number Theory, volume 2. Addison-Wesley,
1956.

[43] G. L. Nipp. Quaternary Quadratic Forms: Computer Generated Tables.
Springer-Verlag, 1991.

[44] B.-K. Oh. Regular positive ternary quadratic forms. Acta Arithmetica,
147:233–243, 2011.

[45] K. Ono and K. Soundararajan. Ramanujan’s ternary quadratic form.
Inventiones Mathematicae, 130:415–454, 1997.

[46] S. Ramanujan. On the expression of a number in the form ax2 + by2 +
cz2+du2. Proceedings of the Cambridge Philosophical Society, 19:11–21,
1916.

[47] H. E. Rose. A Course in Number Theory. Oxford University Press, 1988.

[48] A. Schiemann. Ternary positive definite quadratic forms are determined
by their theta series. Mathematische Annalen, 308:507–517, 1997.

103



[49] R. Schulze-Pillot. Darstellung durch Spinorgeschlechter ternäre
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