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The following two results are proved: (1) For a positive definite qwgaglla;onalymmemt hccre i

S of rank (§) < 7 or when rank (S) = 8, § has an odd entry in m';hRR' - e

integral matrix A satisfying 44! = § if there is a rational matrix R thlt lwa_ - ) vt

an integral matrix A of size rxn s"lcfh'thatB ;A‘ -;I m{; ht::;e velrsnt—-e:rni :]msytsh Lo Lt
tion matrix B of size nX n satisiying oo = a : :

-;:gu;x'p 'll'ehliglihmhold number 7 is the best possible. (Here m, n satisfy the obvious necessary

conditions.)

INTRODUCTION

In recent months the following matrix problems have been brought to my
attention at various times by several colleagues:

Existence question

Given a diagonal matrix D with positive integers as its entries, 'suppoe';e therci
is a rationa] matrix R such that RR! = D, does there then exist an integra
matrix A satisfying A4" = D?

Completion question

Given an integral matrix A of size rxn suc}m th’at AA"= ml,, gan we complete
A to an integral matrix B of size nxn satisfying BB = ml,?

On the basis of quite a few numerical examples for 3 x__3 matrices, the?r arf lfﬁ_
to believe that Question (I) might have an affirmative answer atl‘e::tt*:;:l isis
3x 3 diagonal matrices. We show below (Theorem 1) that not 01_1t131’ -
the case, but also the answer is affirmative for D annxn matrix wi no}._ ité
When n = 8, it is also true provided D has an odd integer as on¢

t Research supported in part by Mational Science Foundation.
257



258 J. 8. HSIA

diagonal entries. Furthermore, all these assertions remain valid when D is

replaced by any integral symmetric (of course, positive definite) matrix S.
In the very special situation when D = ml,, necessary and sufficient condi-~
tions on m and » for an affirmative response to Question (I) can be easily
determined (Corollary 1), and this has also been done by Marshall Hall, Jr.
in his recent paper [H]. In this same paper, Hall also studied the Completion
Question in which he showed that if r=n—1, n—2, or if n < 4 with r
arbitrary, then the completion matrix B can be found. Some of his results
overlap with those in an earlier article by Cordes—Pall [CP]. The latter paper
also showed that if » < 14 and is even and r = n/2, then B can be found
provided 4 satisfies an additional condition. We show below (Theorem 2)
that the completion matrix B can always be found when r = n—k for
1 < k < 7. This theorem, of course, subsumes all the results by Hall as well
as all those by Cordes—Pall on the subject. In addition, it answers affirma-
tively a conjecture raised in [CP, p. 293]. Also, Theorem 2 is in the best
possible form as a counter-example will be given for r = n—8. Our approach
to both the Existence and the Completion Questions is from the standpoint
of representation theory of integral quadratic forms. From this viewpoint,

it is quite clear as to why this mysterious number 7 serves as the threshold in
both questions. The reason is because when the number of variables is less
than eight there is only one genus of positive definite integral quadratic form
with discriminant 1, and this genus

has but one class in it. In eight variables
there are two such genera (one even the other odd) each with class number one.

LATTICE-THEORETIC INTERPRETATION

We translate the two matrix questions into the language of quadratic forms.

Moreover, we view quadratic forms in the modern geometric spirit of either

quadratic spaces or lattices. Any unexplained notations, facts, and terminology
can be found in O’Meara’s fundamental book [O]. Let ¥ be the quadratic
space over the rationals @ corresponding to the form that is a sum of »
squares. If {e;} is an orthonormal basis for ¥, let L denote the standard
Z-lattice L Ze, which we shall write as L = {1,...,1>. For spaces we
shall always use the bracket symbol. Thus, ¥ = [1,..., 1. The corres-
pondence between symmetric matrices and quadratic forms is well-known.

So, if § = (s;;) is an integral symmetric matrix we may view S as a free
Z-module with basis {x;} where B(x;, x;) = 5, To say that there is a
rational matrix R satisfying RR® = S is clearly equivalent to saying that the
quadratic space § ® Q on which the lattice S sits is isometric to V. In other
words, there is a rational representation of 5 by L. To require an integral

matrix A4 with 44* = S is then seen to be equivalent to requiring an integral

=
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. tepresentation of S by L. This is the framework with which we shall treat the

‘Existence Question. B _

For the Completion Question, we are implicitly a_ssummg_, of course,
that § = ml, is integrally representable by L. To be given an mtegral_rx n
matrix 4 with A4* = ml, is to be given a sublattice K of L of Fa.n_k r W]_hlch is
isometric to r x {m. To require the completion matrix Bto exist 18 equivalm:;
to requiring a full sublattice G inside the orthogonal complement K- (.)f
in L such that G is isometric to (n—r) x {m). We show b:clow that this G
exists whenever n—r is less than ot equal to seven. Note that if the completion
process were to permit rational entrices in the remaining rows, then the
conclusion follows immediately from the well-known classical theorem of
E. Witt [W]. Since Witt’s theorem (either the canccllat?on or t.b.c. extension
version) is generally false for rings, this is where the difficulties lie. We use
the genus theory to overcome this.

EXISTENCE PROBLEM

As mentioned above the existence of the rational matrix R' with RR* = §is
equivalent to the space S @ Q being isometric to V. S0, without loss of aélry
generality we may assume at the outset that ¥ supports both L a_nd S. We
shall use the letter S to denote indistingUishably. for bf)th 'tha matrix a'nd f;he
lattice corresponding to it. The main result of this section 18 the following:

it ite i ic matrix for which
TueoreM 1 Let S be a positive definite integral symmetric Mmatri=.
there is a rational matrix R satisfying RR* = §.If rank (S) < 7, Ozf rank (Sj
—8 and S has an odd entry in its diagonal, then there is an integral matrix
Wffh AA‘ = S‘ l
CorOLLARY 1 Suppose S = S1® Sz ®..- Ga.Si where eaf:h ;’ | scf;c.g?es
the hypothesis of the theorem, then there is an integral mar{uc : satz' yu;g
AA* = S. In particular, if S = mIy then A exists if and only if S 15 rationally
equivalent to a sum of squares (i.e. m must be a square if nis odd,da4sum of
two squares if n = 2 (mod 4), and any natural number if n.= 0 (mod 4)).

Proof of Theorem 1 (All citations without reference§ ?re from [0].-) _

1) Sﬁpﬁosa we can s}gow that under the given conditions the lattice ti;;
representable by the standard lattice L p-adically at every prime spot P’b 11
it is well-known that there is 2 lattice in the genus _of 7, that will (globa 32
represent S. Since the class number of L is one, this means L represents 5,
which is what we want.

2) Since S and L both sit on the same ambienf"spa.ce V, we neen ;nlzaia
check S, is represented by Lq at every finite prime p- Let us first take care

of the odd primes. S, i8 contained in some Zp-mammal lattice M on Vip)-
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But, L, is also Z -maximal on V{,,, so that L, is isometric to M (Theorem
91:2) and this implies L, represents S,).

3) For the remainder of the proof, we work with the 2-adic localizations:
Lf”’ Stz), and Vi, Let dim (F) = n. We may assume 1 < n < &. It is not
difficult to see that {1, 1) is exactly the set of all vectors from the supporting
space [1, 1] having integral lengths. Hence, from the theory of maximal
lattices (Theorem 91:1) {1, 1) is Z,-maximal. It follows then S, is repre-
sented by (in fact, is contained in) L,;. A similar calculation will show that
{1,1, 1> is Z,-maximal and so contains S;;). Thus, we may further suppose
that we are in the set-up: 4 < n < 8.

04) {,et $ denote a hyperbolic lattice (i.e. some copies of the binary lattice
(1 0)). From local 2-adic unimodular theory, it is clear that L,y looks like:
<1! I-:' ]-: 1)! 5 L <_l: _I) _1>) 5 i <_]) _I>’ 5 L <_I>’ 5 "L (I’

~1) for n from 4 to 8 respectively. When 4 < n < 7, L(, contains a
27,-maximal lattice, so that if the norm n(Si,) is contained in 2Z,, we
shall again have Si;) represented by L(,). Thus, we may suppose that the
norm of S(;) is Z,. The hypothesis on n = 8 also gives this condition on the
norm of Si;). Therefore, in all cases we may decompose S = X; L ¥
where X is unimodular and the scale 3(Y) of Y lies in 2Z,. Moreover,
n(X,) = Z,. If 1 € O(S;)), we would be done since we shall have relegated

(l?y coqsidering the orthogonal complement of (1)) the problem to a lower
dimensional set-up.

5) Ifrank (XQ = 4, then O(X;) = Z, and 50, S(;y represents 1. If rank (X;)
=31 € O(X) if and only if 1 is not represented by the space W, supporting
X;. This means W, 1 [~1] is anisotropic, and so isometric to [—1, —1,
-1, =1} By Witt cancellation, W, = [~ 1, —1, —1]. By unimodular theory,
Xy = {—1, —1, —1). Rewrite L, in the dimensions 4 to 8 respectively as:
Xy Lol —=10, 85 LS X L H LA X, L S 1415, X 1 9.L¢1, 1,15
In each of _t]:lesc cases, the orthogonal complement of X, in L,y contains a
a Zizz-maxunal lattice and so will represent ¥. Thus, L;,) represents .S¢s).
So, in the remainder of our proof we may further suppose that rank (X, ) < 2.

.6) Let X, = {a, b), a, b 2-adic units. First consider when a/b is a square
Since <5,5) = (I, 1), s0 a=5h # 1,5. As (3,3> = (—1, —1>, we may
take a =5 = —1. Rewrite L, in increasing dimensions as: X, L X,
X1_J- HL-1D, X, 1L %, X; L LI, X; L %L1, 1) Once again,
Y is represented by the orthogonal complement of X, in L), and be done.
Thus the only possibilities for X, are: ¢3,5), ¢(3,7), and (5, 7>. But,
g’ g; ; él_,;;)} and {5, 7> = (1, 3). So, we need only to treat X, =

When n = 4, write Ly = {—1) L{~1, =1, —1), S = <—1> L T.

par— Y
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e

TWO THEOREMS ON INTEGRAL MATRICES 261

Now, T is contained in an Z,-maximal lattice on [—1, —1, —1] and so is
representable by (—1, =1, —1). For n =5, put L = Ky L L L3
As Y is contained in an 2Z,-maximal lattice, we are dome. For n = 6,
Ly 2 X, L H L (1, 3). Here, <1, 3) although not Z,-maximal, contains a
2Z,-maximal lattice. For n = 7, set Ly & X; L H L <5). For n = 8§,
Ly = X, L H 1 <1,5) Here (1,5) in fact is even Z,-maximal. Therefore,
we are finished with the case where rank (X;) = 2.

7) Finally, let X, = {a). Rewrite L, in increasing dimensions as:
X, L<aaa), X, LHL{-1,3), X; L $L¢3,33, X, LLL-]
5%, X; 1L $ L {—a). In each instance the orthogonal complement of X in
L,y contains a 2Z,-maximal lattice. This finishes the proof of the theorem.

COMPLETION PROBLEM

To recall, the setting here is: S = ml, is rationally supported by the space
V = 1,...,1]. A sublattice X of the standard lattice L having rank r is given
and K = rx {m).Thetaskis to find a full sublattice of the orthogonal comple-
ment K+ of X inside L that is isometric to (n—r)x (). The main result is
the following theorem:

THEOREM 2 The completion problem is always solvable provided n—r is less
or equal to 1. This threshold number 7T is the best possible.

Proof By Corollary 1, the lattice S is representable by L so that we may
view S as a sublattice of L. Clearly, S represents K and so we can view K
as a sublattice of S. Let J, K* denote respectively the orthogonal complement
of K inside S and L. So, J = Kt n §. We use the notations: V°, L% c a
non-zero scalar, for the scaled space and lattice; similarly, for local spaces
and lattices. By abuse of notation, we shall denote by <e, ..., ¢) where ¢
is a rational (non-zero) number to be either a global lattice or a localized
lattice, and similarly for spaces. There should not be any confusion as the
context will make them clear.

Consider the localizations at a prime spot p of the following scaled objects

m=1 m—i i) o m- L -1
S =L,...,1), Ly = m L. 1% Ll own 1D and KE';,)
= rx ¢1). Denote for the remainder of the proof G for the localized lattice
JiSY, and W the supporting space for K*, so that IfI/'(",',)-l = G ® Q. Since
K{";T splits S?;',T, comparing the discriminants will give det (G) = 1. Witt’s
theorem gives IfVE’,‘,;1 = (n—r)x[1]. At every odd prime it is clear that
G = (n—r)x {1). Thus, we concentrate at p = 2 only.

When r = n—1, clearly G = (1) and so G™ = Ji;, = {m). The genus of
a diagonal lattice ¢ x {m) has but one class when ¢ < 7, so that if we show
Jop =2 tx (m) then J= ¢x{m) and we would be finished. Now, for
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r = n—2, the binary space [I, 1] cannot support an improper unimodular
(2-adic) lattice, and so & must be isometric to (I, 1. For r = n—3, n—35,
and n—7, clearly G & Q,, cannot support improper unimodular lattices
either, and since two unimodular (2-adic) lattices on isometric spaces are
isometric if and only if their norms are equal, G must be of the type (1, .. ., 1 >-
For r = n—4, the space [1, 1, 1, 1] is anisotropic so that it cannot support an
improper unimodular lattice. For the last case r = n—6, a discriminant
argument quickly shows G = 6x {1). This completes the proof of the
theorem except to furnish a counter-example for r = n—8.

Iet m=n=9 and r=1. Set the first row of a 9x9 matrix as
(111111111) = A. We claim this submatrix can not be completed to an
integral B satisfying BB' = 9I,. There are several ways to prove this claim.
We do it in the continuing spirit of quadratic forms. If {e,} is the standard
orthonormal basis for the lattice L, then the given first row corresponds to
the vector u = e;+e,+ ... +e&,. The orthogonal complement K+ of
K = Zu is generated by the set {e;—es, e,—ey, . .., 2g—eo} and this gives
rise to the matrix M which has 2 in every entry along the diagonal and 1
clsewhere. The determinant det (M) = 9 and so is a 2-adic unit. This
implies then the 2-adic localization of KXK' is an even (i.e. improper)
unimodular lattice resting on the space (Qu)* which is a sum of 8 squares.
So, clearly X! cannot represent 8 x {9 since 2-adically this is not possible.

CONCLUDING REMARKS

With essentially the same sort of proof as that given in the proof of Theorem

1, it is possible to generalize Theorem 1 to the following (removing the rank
condition on S):

THEOREM 1" § is represented by the genus of L (ie. Ly, represents Sy, at
every p) but for the single exception when: rank (S) = 0 (mod 8) and 2-
adically S,y contains an even unimodular component of corank < 2.

For the Completion Problem the technique employed here can be used to
treat more general matrices for S instead of the restricted cases where
§ = ml,. Also, the point of view gained from quadratic forms clearly shows
how to generalize both matrix questions to integral matrices where the
integers come from an algebraic number field, indeed, a global field—
although in the latter case the quadratic forms theory to be applied is
generally then the indefinite theory, which from the present standpoint is
more powerful in that more complete results are possible.

A e——
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Note added in proof

There seem to have been several related activities on the qucsttlﬁn.f. m‘tﬁ
here at about the same general time period. Let me re'cord herch_ ein il
tions which for the most part have come to my attention aftc;r t tmi) fgﬁght =
been accepted. Concerning the Existence Question, I was '151976 i
its attention—at least for 3x3 matrices—at around: Apri il
colleague, Dan Shapiro, who in turn was asked about 1t b);h"g o:ti?'mc a1
Theorem 1 was discovered soon afterward. Also around this ti

colleague, Rick Wilson, mentioned to me about Hall’s Completion Question.

Then at the Quadratic Forms Conference in Kingston in Auglu:tsiniza?;:
that Gordon Pall has independently from me and at abot;t (ke dlassical
obtained a proof for Theorem 1. His proof was, however, :d c:::igbi]jty et
styles of quadratic forms and based on the notion of LT - Pr;)blem"—'
conference Pall referred to this existence question as tlie Gera;n'l;i . Quesﬁon
Shortly after the conference I found 2 proofl t_:f Hall’s Courrllp ; 0 et tin
as well (Theorem 2 here). In the course of writing bot}:_L res t;hOI l:m 1 e
1 discovered a strengthened version of Theorem 1 which is ‘colr il ace
The latter’s proof is along the same l_inc except the tec;lm?aussky—T odd
considerably more complicated. Early in January 1977 O gav fisidan, s
wrote and informed me that a student of Marshall Hall, ? é‘i mbfna;orfal
also solved Hall’s problem. His proof will appear in .Io:{ma 10)(; s s
Theory (Ser. A) in a paper entitled: Integral and Rationa t0 Il)etter ot
Combinatorial Matrices. In mid-February 1977, responding to & o
Geramita earlier that month, I informec} him that my Theor;znn e
applied to strengthen Theorem 1, removing the assumption 0 o ees, For
in the 8 x 8 case, and also with some perse:verauce to blggef_ 2-ad.ica11y
the 8 x 8 case the essential point is that, keeping _ﬂle same ‘10"9‘,“01::& (i) below
S|y must have one of the following two exceptional shapes @ a

in order for Sz to be not represented by Lz):

: 0 1y, /0 1\, (2 N\, x
S Sa=(s D€ D1 |

. 01,2 O

ii) Smsfix(l {})'L(O _)

where X is not 2-adically unimodular. From this it follows th;it ::;t;zsgn ;Z
even diagonal Sy will avoid thes;lexi:?lﬁ:):i cases. Hence,

i ¢ class number of fg S0 o :
suglnagf 211?1‘:; t:lzknlamd, a letter from Jennifer Seb.El‘l'Y In.jato M,afrc\]?e;fif (::i?);i
me that the Existence Question had also entered in Peter Egd;s 11;nLal iesigns
with problems in orthogonal designs. In hil mRp r;gorgj& Eades was
constructed from circulants, which is to appear 10 Unmmf 04; 4 diagonal
led to conjecture that our Theorem 1 may hold at least for
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matrices. Bades and Pall are writing a joint article on Integral Quadratic
Forms and Orthogonal Designs, incorporating—among other things—a
proof of Theorem 1 along the concept of c-irreducibility cited above.
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A Note on Matrix Equivalence
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Let R be a principal ideal ring, R, the ring of n X n matrices over R. It is shown that if A, B,
X, Y are elements of R, such that 4 = XB, B = YA, then 4 and B are left eguivalent.
Some consequences are given.

The purpose of this note is to fill a small gap in the literature on integral
matrices. Let R be a principal ideal ring, R, the ring of n x n matrices over R,
and R}, the multiplicative subgroup of R, consisting of the unit matrices of R,
It is known that any left ideal 2 of R, is principal (see [I, pp. 35-36] or
[2, pp. 21-22] for a proof). If 4 and B are generators of 2, and if one of them
is nonsingular, then it is readily shown that 4 and B are left equivalent;
that is, B = UA for some element U of Rj. However, this question has
apparently not been treated when the nonsingularity condition is removed.
Nevertheless the result remains true and we shall prove the following:

THEOREM | Let U be a left ideal of R,, and suppose that A, B are generators
of W. Then A and B are left equivalent.

To prove this theorem, it is sufficient to prove

THEOREM 2 Let A, B be elements of R,. Suppose that elements X, Y of R,
exist such that

A= XB,
Then A and B are left equivalent.

Proof We may assume that neither 4 nor Bis 0. Since A is a multiple of
B and B is a multiple of 4, 4 and B have the same determinantal divisors
(see [2, pp. 25-26]). Hence A and B are equivalent, so that matrices U, ¥ of
R exist such that

B = YA 1

B = UAY.
Let S(4) be the Smith Normal Form of 4, so that
A = PS(4A)Q, P, Qe R,
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