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with the hypothesis of strict competition. Here the \; are not neces.
sarily elements of cost, but the equilibrium conditions (12) are the
same as if they were such elements, appearing as rates of interest,
We should then define the profits by the formulas
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and as a first approximation we might assume the \; all equal, \; =),
The same formal result may be obtained by making extremal (at
any time, {={y) the quantity
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with all the dp; set equal to zero; in fact, there appears in this way
a single N\. Between I and the value Il =) ;.;5m; there holds the
relation 7 =II4+AK.
In terms of the indices of prices and quantities, the equation (9)
becomes '
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so that for the three fundamental categories, with the various V., V.
eliminated, we have the equations
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The second of these equations states that 14\ is equal to the ratio
of the marginal productivity of indirect factors of production (that
is, productive of consumption goods indirectly through the produc-
tion of capital goods) to the marginal productivity of direct factors
of production. The equation is essentially the formula for the rate of
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interest given by Wicksell.* It was obtained for the simplified system
already mentioned, by Lange.t The remarks in this section are in
fact a generalization or justification of this latter theory.

The index relations are particularly interesting in discussing
changes from one system to another consequent on the introduc-
tion or change of interest rate N\. Thus, with the index of primary
factors given, that is, Q, given, the introduction of a small interest
rate A induces no modification of Qs as far as differentials of the first
order. In fact,

and
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Equations such as these are important for economic theory.
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NOTE ON ALMOST-UNIVERSAL FORMS}
P. R. HALMOS

Ramanujan§ and Dickson|| proved that there are 54 universal
forms ax?+by?4-cz2+dt? with positive integral coefficients a, b, ¢, d.
It is the purpose of this note to investigate almost-universal forms,
that is, to exhibit sets of positive integral coefficients a, b, ¢, d such
that ax?4-by?4-cz?+di? represents every positive integer with exactly
one exception.

- Ramanujan§ showed that a necessary and sufficient condition that
a form ax?+by?+cz2+d? be universal is that it represent the first
fifteen positive integers. Consequently the integer which an almost-
Universal form fails to represent cannot be greater than 15. Using
Ramanujan's method of bounding the coefficients we can exhibit,
merely by requiring that a form fail to represent exactly one of the

1’; Wicksell, Lectures on Political Economy, London, 1935 (translation), vol. 1,
P. 156,

t Lange, loc. cit.

{ Presented to the Society, December 28, 1937.

§ Proceedings of the Cambridge Philosophical Society, vol. 19 (1917), pp. 11-21;

Collected Papers, Cambridge, 1927, pp. 169-178.
| This Bulletin, vol. 33 (1927), pp. 63-70.
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first fifteen positive integers, a set of 135 forms which has to contain
all almost-universal forms.. The well known theories of special ternary
quadratic forms,* or even empirical verification, will reduce thig
number to 88. (Empirical verification would sometimes be cumber-
some; for example, the first integer, other than 10, that x2-4-2y2
45524152 fails to represent is 250.)

The following list exhibits the 88 possibilities for almost-universa|
forms (where (a, b, ¢, d) denotes the form ax?+bytt-czt+de?):

Forms that do not represent 1:

(1)-(3) (2,2,3,4),(2,3,4,5),(2,3,4,8).

Forms that do not represent 2:

@)-(5) {1, 3,3,5,(1,3,5,6).

Forms that do not represent 3:

(6)_(7) (17 114-'7 d)!d=5!6)

(8)-(11) (1,1,5,d),d=5,6,10, 11;

(12)-(15) (1,1,6,d),d=17,8, 10, 11.

Forms that do not represent 5:

(16)-(20) (1,2, 6,d), d=6, 10, 11, 12, 13;

1-(25) 1,2,7,4d),d=8, 10, 11, 12, 13.

Forms that do not represent 6:

(26)-(32) (1,1,3,d),d=7, 8,10, 11, 13, 14, 15.

Forms that do not represent 7:

(33)-(37) (1,1,1,d),d=9,10, 12, 14, 15;

(38)-(42) (1, 2,2,d),d=09,10, 12, 14, 15.

Forms that do not represent 10: ,

(43)-(55) (1, 2, 3,4d),d=11, 12, 13, 15, 17, 19, 20, 21, 22, 23,

24, 25, 26;
(56)-(59) (1, 2,5, d),d=11, 12, 13, 14.
Forms that do not represent 14:

60)-(73) (1,1,2,d),d=15, 17, 18, 19, 20, 21, 22, 23, 24, 25,

27, 28, 29, 30;
(14)-(87) (1, 2, 4,d),d=15, 17, 18, 19, 20, 21, 22, 23, 24, 25,
27, 28, 29, 30.
Forms that do not represent 15:
(88) (1,2,5,3).
One general method of proof serves to establish almost-universality
for most of these forms. By way of illustrating this method, we prove
the following typical theorem:

* The properties of every ternary form needed in this note are either discussed
by Dickson, loc. cit., or else they follow from Dickson's discussion by elementary
means.
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THEOREM 1. The form 2x?+4-2y%+4-32+ 442 represents every positive
integer with the exception of unity.

Since (1, 1, 2) represents all odd numbers* (where (a, b, ¢) de-
notes the ternary quadratic form ax?+by*+cz?), (2, 2, 3, 4) repre-
sents all numbers of the form 4242 with z=0. For >0 we have
4k+1=4(k—1)4243, hence (2, 2, 3, 4) represents 4k+1 with z=1,
Since (1, 1, 6, 2) is a universal form,} for every 2=0 we have
2k =x%+y*+ 6224242, whence 4k =2x%+4-2y?43(22)24-442. Finally, it
may be proved, by consideration of elementary divisibility proper-
ties, that two numbers not represented by (1, 1, 2) never differ
by 12. Hence, for £>5 we have either 2k=x2432+2¢2 or else
2k—12=x24y2+242. According as the first or the second relation
holds we have 4k+3=2x242y2+3-124+44 or else 4k+3=2x242y?
1+3-324-442. Since it is readily verified that (2, 2, 3, 4) represents the
n;lmbers 4k+3, k=0, 1, 2, 3, 4, 5, the proof of the theorem is com-
plete.

The above treatment is not applicable to the form (2): (2, 3, 4, 5).
We prove the following theorem:

) THEOR'EM 2. The form 2x2+43y24-422+ 542 represents every positive
integer with the excepiion of unity.

Let 4, B, C be three numbers of the form 4;'(16k+10), where o

‘::md k are non-negative integers. Concerning these we have the follow-
ing lemma:

LEM'MA. It is impossible that the two equations A —B =40, A — C =120
hold simultaneously; also, the equation A —B =20 is impossible.

The proof of the lemma is elementary and is omitted.
Empirical verification. yields the result that the form (2, 3, 4, 5)
represents all integers # where 2 <% <200.

) Co'nsider now the ternary form (1, 2, 6). It represents every posi-
tive integer not of the form 4%(8%+5). But if # =x2+6y2+ 222, then
2n=2x?43(2y)?+4s2, whence the form 2x?+3y244z2+5£ repre-
SEHts. all even numbers not of the form 4¢(16k+410), with t=0.
Butif 4 issuch a number, then, by the lemma, 4 —20 is not; whence
4 —20=2x2+43y2+42% and A =2x2+3y2+422+5-22. Hence the form
@3, 4, 5) represents all even numbers. It also represents all odd
Numbers, excepting unity and those of the form A +5, with ¢=1,

Bythe&:ﬂone of the even numbers 4 —40 or 4 —120 is repre-

* This Bulletin, vol. 33 (1927), pp. 63-70.
Ramanujan, loc. cit.
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sented by (2, 3, 4); whence 4 +35 is represented by (2, 3, 4, 5) with
t=23 or t=35 respectively. This completes the proof of the theorem,

One of the ternary forms, namely (2, 2, 4), involved in (2, 2, 3,4)
is regular; that is, the total set of numbers which it fails to repre.
sent coincides with the total set of numbers in a certain collection of
arithmetic progressions. It is this property that makes the difference
between (2, 2, 3, 4) and (2, 3, 4, 5). Every ternary form involved i
(2, 3, 4, 5) is irregular.* (A form f is said to be irregular if there
exists a positive integer 2 not represented by f, but having the
property that every arithmetic progression containing % containg
also numbers represented by f.) We were able to prove Theorem 1,
however, because two of the coefficients of the form (2, 3, 4) are not
relatively prime. If the form represents a multiple of the common
divisor, it becomes a multiple of the regular form (1, 2, 6).

Either the method of Theorem 1 or else that of Theorem 2 proves
the almost-universality of 86 of the 88 forms. The author has not
hitherto found out whether or not the two forms (23): (1, 2, 7, 11)
and (25):°(1, 2, 7, 13) are almost-universal in the sense of this note.
Every ternary form involved in either of the two quarternary forms
is irregular, and no reduction of the sort described above is possible.
Each of these forms fails to represent only one positive integer
7 = 300.

Professor Carmichael has recently communicated to me the follow-
ing result (for the proof of which he had to employ the Dirichlet
method of dealing with ternary forms): The form (1, 2, 11) represents
every even number not of the form 4(16n—10). With the aid of this
result, one may prove by the methods exhibited above that the form
(1, 2, 7, 11) is almost-universal.}

UNIVERSITY OF ILLINOIS

* L. E. Dickson, Annals of Mathematics, (2), vol. 28 (1927), pp. 333-341. The re-
sults of this paper are not applicable to any of the ternary forms involved in (2, 3,
4, 5), but the methods are sufficiently general to prove the assertion above.

t The last paragraph was added in proof, January 17, 1938.
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METRIC SPACES WITH GEODESIC RICCI CURVES. 1
JACK LEVINE

1. Introduction. The problem of determining all Riemannian
spaces of three dimensions admitting geodesic Ricci curves has been
solved by G. Ricci* and P. Walberert using, however, dlfferenF r.neth-
ods. Although they obtained all such V3, the complete explicit de-
termination of all such V, for #>3 does not seem possiible beca.luse
of the increased number and complexity of the differential equations
which arise. . :

In this paper the following two problems related to the above prob-

_ lem will be considered.

In the first problem we'suppose given a set of linearly independent
vectors} A3y and wish to determine necessary and sufficient condi-
tions on the A% in order that a set of scalars f.(#0) exist which will
define a metric space V, with a metric determined by

(1) g =3 eaihal,
. h

where

) Nai = OaNal,

and e, (= +1) are arbitrary; and such that the congruences of curves
defined by the M.| will be geodesics in the V. thus determined. (The
vectors M define the same congruences as do the A;j, and these con-
gruences form an orthogonal ennuple in the V,.) '

In the second problem we assume that these conditions on the X;
have been determined and that the » congruences defined by a set
of \}| are geodesics in the V, determined by

. i i
g7 = 2 ea\niMa;
h

we then find necessary and sufficient conditions that, with respect
to the metric (1), the congruences be geodesic Ricci curves.
—_——

* G. Ricci, Sulle varieta a tre dimensioni dotate die terne principali di congruenze
§€0detiche, Rendiconti della Reale Accademia dei Lincei, (5), vol. 27 (1918), pp. 21-28,
5-87.
1 P. Walberer, Riemannsche Raume mit geoddtischen Riccikurven, Hamburger
Abhandlungen, vol. 10 (1934), pp. 152-168.
} All indices take the values 1, 2, - - -, # unless otherwise noted.




