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ABSTRACT

Let a be primitively represented by the genus of a ternary quadratic lattice L defined over the ring of
integers of an algebraic number field F. Criteria to determine whether a is primitively represented by every
spinor genus in the genus of L involve certain subgroups §*(L,,a) of the multiplicative groups of the
localizations F, of F with respect to the various nonarchlmedean pnme spots p on F. In this paper these
groups 6*(L,, a) are determined explicitly for nondyadic and 2-adic prime spots. Examples are given which
show how this information can, in some instances, be used in combination with known results, to determine
all integers primitively represented by a particular positive definite ternary quadratic form.

1. Background and statement of results

Throughout this paper, unexplained notation and terminology will follow that of
O’Meara’s book [8]. Let F be an algebraic number field with ring of integers R, and
let S be the set of all nonarchimedean prime spots on F. Suppose that aeF is
represented by the genus of an R-lattice L on a regular quadratic space (V, Q) of
dimension 3 over F. Fix deF such that the discriminant of V is dF?, let
E = F(v/(—ad)) and, for pe S, let N (E) denote the group of local norms from Eq to
F,, where B is an extension of p to E. In the fundamental paper [7], Kneser proved
that a is represented by every spinor genus in the genus of L unless the following
conditions hold:

a#0, —ad¢F, 6(0*(L,) < N,(E) forall peS, (1)

where @ denotes the spinor norm mapping on the orthogonal group O(V,). Moreover,
he showed that when a is not represented by every spinor genus in the genus, it is
represented by exactly half of these spinor genera. If this is the case, we shall say that
a is spinor exceptional for the genus of L.

Schulze-Pillot [9] showed that one additional set of local conditions can be added
to (1) to obtain necessary and sufficient conditions for a to be spinor exceptional for
the genus of L; namely, that 6(L,,a) = N,(E) for all pe S. Here the group 6(L,,, a)
is defined in the following way. Let v be a vector of L, with Q(v) = a. Then (L, a)
is the subgroup of F, generated by {ce F, | there exists ae O*(V,) with cef(s) and
o(v)€ L,}. That this definition is independent of the choice of the vector v follows from
Witt’s Theorem. These groups &(L,,a) were determined by Schulze-Pillot for
nondyadic and 2-adic prime spots p, thus effectively solving the problem of
determining the spinor exceptional integers for a genus of ternary quadratic
Z-lattices. In a forthcoming paper [4] Hsia, Shao and Xu have completed the
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determination of spinor exceptional representations of Z-lattices K by L, where K
may have any codimension in L and the rank of L is arbitrary (but at least 3).

For the remainder of the paper we shall consider the analogous problem for
primitive representations. A vector v in ¥, (¥, respectively) is said to be a primitive
vector of L, (L, respectively) if ve L, and n7'v¢ L, where 7 is a prime element of R,
(v is a primitive vector of L, for all pe S, respectively). The element a€ R is then said
to be primitively represented by the (spinor) genus of L if there is a lattice K in the
(spinor) genus of L and a primitive vector v of K for which Q(v) = a. Thus, a is
primitively represented by the genus of L if and only if for each pe S there exists a
primitive vector v, of L, for which Q(v,) = a. We note in passing that the local
problem of determining primitive representability by L, is quite formidable for
arbitrary lattices and prime spots (for example, see recent work of James [5] and the
references given there).

From now on we shall assume that a is primitively represented by the genus of L.
It is again true that a is primitively represented either by all or by exactly half of the
spinor genera in the genus; in the latter case, we shall say that a is primitively spinor
exceptional for the genus. From [9], necessary and sufficient conditions for a to be
primitively spinor exceptional are that (1) holds and

0*(L,,a) = N,(E) for all peS. o))

To define the group 6*(L,, a), first let P(L,,a) denote the (non-empty) set consisting
of all primitive vectors v of L, for which Q(v) = a. For a fixedve P(L,, a), let *(L, a)
be the subgroup of F, generated by the set {ce F, | there exists 6 € O*(V,) with ce 6(o)
and o(v)€ P(L,, a)}. As for O(L,, a), this definition is independent of the choice of v.
Note that the space V, splits as F,v L W,, where the subspace W, = (F,v)* has
dimension 2 and discriminant ad. As any element of O*(W,) can be extended to an
element of O*(V,) which fixes v, we have 8(0O*(W,)) < 8*(L,,a). Upon scaling the
space W, so that it represents 1, it is easily seen that §(0*(W,)) = N, (E). Moreover,
it is clear from the definitions that 6*(L,,a) < 6(L,, a). Hence we have the following

basic containments: N(E) < 0%(L,,a) < O(L,,a) < Fp 3

From this it can be seen that (2) holds whenever —ade F;‘;, since then N (E) = 13;,.
Moreover, for (2) to fail it is clearly necessary that N (E) # 6(L,,a). All conditions
under which this strict containment occurs are enumerated in [9, Satz 3 and Satz 4]
for nondyadic and 2-adic prime spots, respectively. We now proceed to state the
corresponding results for strict containment of N (E) in 6*(L,, a).

THEOREM 1. Let p be nondyadic and —ad¢ F"f,.

(@) Suppose that Ey/F, is unramified. Then 0(0*(L,)) = N,(E) if and only if
L, = {b,,n"b,, n*by) with b,eU, for 0 < r < s. In this case 0*(L,,a) # N (E) if and
only if r #5s, —b,b,e F3, and aep**'.

(b) Suppose that Ey/E, is ramified. If (0O*(L,)) = N,(E), then

L, = {b,,n"b,, n°by)

with beU, for 0 <r <s. In this case, 6*(L,,a) # N,(E) if and only if one of the
Sollowing holds :

(i) r is even and aep’,

(i) r is odd and aep’, except when acn’b,U% and |E| <S5, in which case
6*(L,,a) = N,(E).
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THEOREM 2. Let p be 2-adic and —ad¢ Ff,

(a) Suppose that Ey/F, is unramified. Then §(0*(L,)) € N,(E) if and only if L, is
not unimodular and the Jordan components of L, have either all even or all odd orders.
In this case 6*(L,,,a) # N, (E) if and only if one of the following holds :

() L, =<b,,2%b,,2%by) with beU,, for 0 <r < s, and
() 0(—b,b,) = 2R, where 6 denotes the quadratic defect, and
(1) r#s, aep™,
(2) r=s, F, #Q,, aep”,
3) r=s,E, =Q, acp™;
B o(—b,b,) =4R, and
(1) r=0, ae2®%,,
(2) 0 <r+#s, aep®,
(3) 0<r=s, E, #Q,, acp®,
4 0<r=s, F,=Q, aep*™*?;
() —b,b,eF; and
M r=0,5s=1,aed%,
Q) r#0o0rs>1,aep"®**, where t =min(l,s—1);
(1) L, cannot be decomposed into an orthogonal sum of 1-dimensional lattices and
(o) L, = A(0,0) L (2**'b) with beU,, r >0, and
1) r=0,ae2%,
(2) rel, aep”“;
B) L, = AQ2,2p) L2°*'b) with beU,, r > 0, and
(1) r=0, ae2u,
2) r=1, agp*.

(b) Suppose that Eg/F, is ramified and ord ,(—ad) is even. Then 6(0*(L,)) < N,(E)
implies that L, = {b,,2"b,, 2°b,> with b,e U, for 0 < r < s. When §(0*(L,)) = N,(E),
let K= (277%b,,2'b,, 2°byy and K’ = (2'b,,2'b,,2°by). Then 60*(L,,,a) # N, (E) if and
only if one of the following holds :

(i) r is even, 8(O*(K)) & N (E) and
(@) r#s,aep™®,
(B) r=s, F, #Q, acp™,
o r=s E; = Q,, aep’,
(i) r is even, 6(0*(K)) = N,(E), 8(0*(K")) & N(E), and a€p’,
(iii) r is even, 8(0*(K)) = N,(E), 8(0*(K")) € N,(E) and
(@) F,#Q,, aep™,
(B) F,=Q,, aep’;

(iv) r is odd, acp™.

(c) Suppose that Ey/F, is ramified and ord (—ad) is odd. Then 6(O*(L,)) = N (E)
implies that L, = (b,,2'b,, 2°b,) with b,e U, for 0 < r < s. When 6(0*(L,)) = N,(E),
let K= (277%b,,2'b,,2°b;>. Then 0*(L,,a) # N (E) if and only if one of the following
holds :

() r is even, acp™*,
(i1) r is odd, 0(0"(K)) & N,(E), aep™™,

(ii1) r is odd, 6(O*(K)) = N(E) and

(@) F, #Q,, aep*™,
(B) E, = Q,, aep™™.
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2. Proofs

A complete proof of Theorem 1 will be presented in this section. However, due to
the large number of individual cases that necessarily need to be considered in the
proof of Theorem 2, we shall present here only the proof of one representative case
which illustrates additional features which occur in the 2-adic case. In all the proofs
we assume that the scale of the lattice L, is R,. This may be done without loss of
generality since 6*(L,,a) = 0*(L}, a) holds for any AEF where L? denotes the
lattice scaled by 4. Note that *(L,,a) = 8(L,, a) holds whenever ord,a < 1. Before
proceeding to the proofs, it is convenient to fix some notation for the remainder of
this section. Let {x, y, z} denote a basis for L, with respect to which L, has the splitting
indicated in the particular case under discussion. Then for a typical vector ve P(L,, a)
we always write the coefficients of v with respect to this fixed basis as «, f and y; that
is, v =ax+fy+yz.

LEMMA 1. Let p be nondyadic, —~ad¢F‘;. Let L, = (b, nby,n’b;) for b,e,.
Assume that ac p* and that §(O*(L,)) S N (E). Then 6*(L,,a) = N(E) if and only if
axnby and |F| <5

Proof. Note that the assumptions 8(0*(L,)) € N,(E) # F force b, = b, since
6(0*(L,)) = F otherwise. Now if az nzbs, then P(L,, a) P(L a), where
L=R 7rx-+-Rp y+R,z. As 6(0*(L)) = F we then have

6*(L,,a) = 0*(L,a) = E, # N(E).
So we need only consider further the case where a = n?b, = 7%,.

Suppose first that there exists ve P(L,, a) such that ord ,a = 1. Since §(0*(L,)) has
index 2 in F to show that 6*(L,,a) = F in this case, it suffices to show that
0*(L,,a) # 0(0*(L )). Consider 0 = 7,7, ,€O0*(V,). Then

6(c) = 2F? and o(v) = —ynx+fy+on'ze P(L,,a)
since n'ae%,. If 2¢ then 2e6*(L,,a)\0(0O*(L,)) and it follows that
0*(L,, a) # Np(E) If 2eF2 then consider L=R ,AX+R,y+R,z. Since
6(0*(L)) = E,, there exists ,ueO*(L) such that O(u) ¢ N,(E). If u(v) has z-coefficient in
%,, then ,u(u) € P(L ,a) and it again follows that §*(L,,a) = F Otherwise u(v) has mx-
coefficient in %,. But then ou(v) has z-coefficient in %,; thus, ou(v)e P(L,,a). So
B(op) = B(u)e 6*(L,, a), and we again have 6*(L,,a) = F,

On the other hand, suppose there is no ve P(L,,a) with ord, o = 1 Then
P(L,,a) = P(L',a), where L’ = R,n*x+ R, ny+R,z. Upon scaling by n2, we see
that P(L,a) = P(L n%) with Lz <7r2b1,nb2,b >. Since n?ae%, we have
6*(L, n%a) = O(L, n2a), which equals N L(E) by [9, Satz 3]. Hence, 0*(Lp, a) = N,(E)
in this case.

Thus, 6*(L,,a) # N,(E) if and only if there exists ve P(L,,a) with ord & = 1.
This latter condition is eqmvalent to the existence of 4, B, C in %, with 4* +B2 C?
(mod p), which is in turn equivalent to the solvability of the equatlon X*—Y%=1in
nonzero elements X, Y in F;, Writing Z = X—Y and T = X+ Y, we see that there is
such a solution in F, if and only if there exist Z, Te F, such that ZT = 1 with Z # + T;
that is, if and only if there exists 0 # Ze F, with Z™* # + Z. The existence of such a
Z is equivalent to the existence of Ze F, such that Z* 0, 41, which occurs if and
only if |F| > 5.
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LEMMA 2. Let p be nondyadic, —ad¢ F2. Let L, = (b,, b,,n*b,> with b,e U, and
s> 0. Assume that acp and 6(0*(L,)) = N, (E). Then 6*(L,,a) = N,(E) if and only if
—b,b, ¢F2

Proof. Suppose first that — b, bzeFf,. Then there is a basis {x’, )", z} in which

01
L,= (1 0) 1 {n*b,>.
Let v = ax'+(2n) (@ —n*b;) y'+z€ P(L,, a) and define € O*(V,) by a(x') = n7'x/,
o( y) =ny, o(z)=z. Then 6(o)= 7IF2 and o(v)e P(L,,a).  Since

= 6(0*(L,)) € 6*(L,, a), it follows that B*(L a) =

Now suppose that —b, b, ¢F2 Since %, = 0(O+(L )) € N,(E), it follows that
Eg/F, is unramified; in particular, ord, a = 2t for some teN. For any ve P(L,,a),
we claim that a,fep™, where m:= min {s,#}. Suppose on the contrary that
u=min{ord, x,ord,f} <m. Then ord,a=ord,f=u, since otherwise
ord, Q(v) < ord,a. Writing a = n"a, and § = n*f; with «,, 8, €%, we see that

oalb,+ b, = 0(mod p).

Thus, ¢b,,b,) is isotropic over F, and so —b, b, = 1 (mod p). But then it follows from
the Local Square Theorem that —b, b, F2, a contradiction. So we indeed have
o, fep™, as claimed. It then follows that

P(L,,a) < P(L,a),

where L = R,n"x+R,n"y+R,z, and so O*(L,a) < 6*(L,a). Upon scaling,
6*(L,a) = (9*(L’ ‘2"'a) where L' (b, b,,n**b,>. If m=s, then
6*(L',n"*"a) = N,(E) by [9, Satz 5]; if m = ¢, then

6*(L',n*"a) = O(L',n~*"a) = N (E)
by [9, Satz 3]. Hence we have §*(L,,a) S N, (E) as desired.

Proof of Theorem 1. (a) If 6%(L,, a) # N,(E), then by (3) and [9, Satz 3] we must
have aep®*'. So P(L,,a) = P(L,a) for L = R,n"x+ R,y+ R, z. Scaling L by n™*, w
see that P(L,,a) = P(L',n"*a) with L’ = <b1,b2, b, ; so

O*(L,,a)=0*L',n""a).

If r=5, then 0*(L’,n"*a) = N,(E) by [9, Satz 5]. If r+#s, then by Lemma 2,
0*(L’,n"*a) = N,(E) holds if and only if —b, b,¢F2.

(b) IfO*(L,, a) # N,(E), then by (3)and [9, Satz 3] we must have either r even and
aep’,orr odd and aep®. Consider first the case with r even and aep’; say r = 2t.
Since Ey/F, is unramified, %, Ff, & N,(E). So if we show that %Fi < 6*(L,,a), then
it will follow that 6*(L,,a) = F We first claim that there exists a ve P(L,, a) with
ye,. First, if aep™! and —b, b ¢ 2, then arguing as in the proof of Lemma 2 we
see that ye%, for any veP(Lp, a). Next, if —b,b,eF3, then the sublattice

K= R,n'x+R,y is isometric to
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So there exists ue K such that Q(u) = a—n’b;. Then v = u+zeP(L,,a). Finally,
suppose that aen'%,. Let ve P(L,, a). If y¢ %, then v—z has z-coefficient a unit and
Q(v—z) = a. So in every case we have verified that there exists ve P(L,, a) with ye %,
Now consider the sublattice K = R, n’x+ R, y. Then 8(0*(K)) = %, F, so there exists
o€ O*(K) for which 6(a) ¢ 5(O*(L,)). Let & be the extension of o to O*(V,) for which
d(z) = z. Then 6(6) = 0(c) and a(v) € P(L,, a). It follows that 6*(L,,a) = F,.

Now consider the case with r odd and aep’. Let e = [s/2] and ¢ = }(2e—1—r).
Suppose first that s is even; so s = 2e. Then P(L,,a) = P(L, a) for

L=R,nx+ R, 'y + R,z = (n°%b,, n°"'by, n°by ).

Let L’ denote L scaled by n7“2; so L’ = (b,, nb,, n%b,. Then 6*(L,,a) = 0%(L,a)
for a=n"%. Now unless a =nr%, we have P(L,a)=P(L,a’) for
L = (n,,nb,, n%b,); so E, =60*(L)) < 6*(L',a’). So only the case a’ = n%h,
remains. The assumption that §(0*(L,)) € N,(E) in this case forces b, = b,. So we
have a =n%, and we are in the situation of Lemma 1. Thus,
6*(L,,a) = 6*(L',a’) = N,(E) holds if and only if |F,| < 5. This completes the case
when s is even. Finally, suppose that s is odd; so s = 2e+ 1. In this case, consider

L=R,nx+R,n'y+ R,z = (n* by, n* b, n°by»

and let L’ denote L scaled by n7¢2; so L’ = {nb,, b,,n?b,». For acp’, we have
P(L,,a)= P(L,a) and 0*(L,,a) = 6%(L',a’) for a’ = n~*"®a. Unless a’ = n*b,, we
have that 8*(L’, a’) follows as in the previous case. When a’ = #%b, = n%b,, by Lemma
1, 6*(L,,a) = 6*(L’,a’) = N,(E) holds if and only if |F| < 5.

We now describe the verification of a single 2-adic case (falling under Theorem
2(c)(iii)) which, in particular, illustrates the key role played by the size of the residue
class field.

LemMMA 3. Let p be 2-adic, —ad¢ F?. Let L, = {1,2b,,2%,> with b,e U,. Assume
that 6(0*(L,)) < N,(E). Then 0*(L,,a) # N,(E) if and only if either

() F,=Q,, aep’,
or

(i) £, # @, aep®.

Proof. Let M = <1,2_b2>. By [3, Proposition 1.4], 6(0*(M)) = Q(F, M). Since
0(0*(M)) < 6(0*(L,)) # E,, it follows that b,e Q(F, M). As b,e%,, it follows that
(by) splits M; so L, = (b, 2b,b;,2°b;). Hence we may assume without loss of
generality that L, = (1,2b,2°). Then

8(0*(L,)) = {€e k| (¢, —2b), = 1},

by [3, Theorem 2.7], and N (E) = {ryelﬁa | (1, —2ab), = 1}. From the assumption that
0(0*(L,)).€ N,(E), it follows that ae F?. So ord (—ad) is odd and we are in case
[9, Satz 4(c)]; thus, 6(L,,a) = 0*(L,,a) = N,(E) holds unless aep®. Moreover, if
aep®, then P(L,,a) = P(L,a) for L = R,4x+R,4y+R,z. Since 6(0*(L)) = E,, it
follows that 6*(L,,a) = F,. So it only remains to further consider the case a = 4.
We consider this case first when F, = Q,. Letu,ve P(L,,4) withu = a'x+fy+y'z.
Note thata,a’€ 2%, B, '€ 2R ,and y,y’ € %,. Since F, = Q,, it follows that x + o’ € 4R,
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and y+y'€2R,. As Q(u—v)+Q(u+v) = 16, not both Q(u—v) and Q(u+v) can lie in
p°. By changing the sign of v if necessary, we may assume that Q(u+v) ¢ p®. We then
claim that the symmetry t,,, lies in O(L,). To verify this, it suffices to show that

u+v
2Bu+v,w) Q(u+v) (u+v)
lies in L, for w = x, y and z. For w = x, we have
2B(u+v,x) Qu+v)" = 2(a+a) Qu+v) " e3R,,

since a+a’€4R,. So 2B(u+v,x) Q(u+v)(u+v) lies in L, since all of a+a’, f+
and y+y’liein 2R, The verifications for y and z are similar. Soo = (—1)7,,,€O*(L,)
and o(u) = v. That 6*(L,,a) = N,(E) now follows as in the proof of [9, Lemma 2].

Finally, we consider the case F, # Q,. Let A = 1+4p, with pe%,, be a unit of
quadratic defect 4R,. By perfectness of the residue class field, we may assume that
p = n* for some ne#,. Let w = 4x+nz. Then Q(w) = 2°A. Since F, # Q,, there exists
A€, such that A—nA~"'e%,. By the Local Square Theorem, there exists £ e %, such
that 1+2°+2%1* = % Then

v=_,T2x+ 2%y +Az)e P(L,,4).

Now a direct calculation shows that the z-coefficient of 7,,(v) is £ 1A —nA™1 —23A"1p)),
which lies in %, since A—nA~'e%,. So 7,(v)€ P(L,,4). Then z,7,(v)€e P(L,,4) and
(Q(x) O(w), —2b), = — 1. Hence, §*(L,,4) = E,.

3. Examples

In this section we shall illustrate the use of the preceding results by analysing the
primitive representation properties of seven specific genera of positive definite ternary
quadratic forms. The integers represented by these particular forms were first
determined by Jones and Pall [6], who showed that in each case the genus contains
one form which is regular in the sense of Dickson [1] (that is, which represents all
integers represented by the genus) and a second form which is regular except for
failing to represent an infinite family of integers from a particular square class. From
a modern perspective, the explanation for these interesting representation properties
can be seen to lie in the theory of spinor genus representations [9]. In all cases, the
genus splits into two spinor genera, with the regular form lying in a spinor genus
containing at most two classes, and with the integers not represented by the second
form being precisely the spinor exceptional integers for the genus.

With regard to primitive representations, it will be shown here that all the forms
in these genera fail to primitively represent infinite families of integers from one or
more square classes which are primitively represented by their genus, but are
otherwise primitively regular. Lattices corresponding to the forms in the seven genera
are listed in [9; Tabelle I]. We shall keep the same labelling as used there and refer to
the genera as Examples 1 to 7 according to their numbering in that table. Note that
the relevant spinor norm groups 6(O*(L,)) are also tabulated in [9; Tabelle II].

LEMMA 4.  Let all notation be as in the previous sections, with R the ring of rational
integers. Then 6(0*(L,)) € N,(E) and 0*(L,,a) = N,(E) hold for all primes p not
dividing 2d if and only if a = a,m® where all prime factors of a, divide 2d and
ged (m,2d) = 1.
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Proof. For p ¥ 2d we have (O*(L,)) = %, Qf, So 8(0*(L,)) = N,(E) forces p to
be unramified in E. Hence ord (—ad) is even and it follows that a must have the
stated form. The reverse implication follows from [9, Satz 5].

With the aid of this lemma, the following result can be established using Theorems
1 and 2.

PROPOSITION 1. Let L be as in one of Examples 1 to 1, let m denote an arbitrary
odd integer, and | an arbitrary odd integer not divisible by 3. Then a is primitively spinor
exceptional for the genus of L if and only if a has one of the following forms:

(i) m® or 4m®, in Examples 1, 4 and 6,

(ii) m?, in Example 2,

(iii) I3, 913, 41% or 491, where t > 1, in Example 3;

(iv) I3, 412, 912, or 36l%, in Example 5;

) I3 412, 912, 1612, 36/% or 1441%, in Example 7.

The question of which of the two spinor genera primitively represents each of
these primitive spinor exceptional integers can further be settled with the use of [2,
Theorem 1]. For instance, since L can be seen to represent 1 in every case, the spinor
genus of L must primitively represent precisely those integers of the form m?(/%,

respectively) for which the Jacobi symbol(%d) equals +1 ((TJ) =+1, respectively) .

The primitive spinor exceptional integers occurring in other square classes can be
analysed similarly. Moreover, in Examples 1 to 6 each spinor genus consists of only
a single class; hence, the given lattices must in fact primitively represent all the
integers primitively represented by their spinor genus. The results are tabulated in the
following proposition. For convenience, in the statement we let A, k, s, ¢, u and v
denote arbitrary integers which are congruent to 1 (mod 4), 3 (mod 4), 1 or 3 (mod 8),
5 or 7 (mod8), 1 (mod 6), and 5 (mod 6), respectively.

PROPOSITION 2. Let L and K be as in one of Examples 1 to 6. If a is primitively
represented by the genus of L, then
(a) a is primitively represented by L, except for those a of the following forms:
(i) k% or 4k, in Examples 1 and 4;
(i) k2, in Example 2,
i) v%, 9u?, 4%°, 4%, 4°9v%, 4"9u®, where A is even, u odd, in Example 3;
i) 0%, 9u?, 4*u?, %, 4*90v%, 49u®, where A i dd, in E. le 3
(iv) o2, 4u®, 9u® or 36v%, in Example 5;
(v) ¢ or 4s%, in Example 6;
(b) a is primitively represented by K, except for those a of the following forms:
(i) A% or 4k?, in Examples 1 and 4;
(ii) H®, in Example 2;
(i) u?, 9v%, 4% 4%®, 4°9u®, 4'9v®, where A is even, u odd, in Example 3;
@iv) u?, 40, 9 or 36u?, in Example 5,
(v) s or 4¢%, in Example 6.
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