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ABSTRACT

The main goals of the paper are to establish a priori bounds for the prime power divisors of the
discriminants of spinor regular positive definite primitive integral ternary quadratic lattices, and
to describe a procedure for determining all such lattices.

1. Introduction

In an unpublished thesis [9], G. L. Watson proved that there are only finitely many
equivalence classes of positive definite primitive integral ternary quadratic forms
that are regular, in the sense that they represent all integers represented by their
genus. The methods of that paper produced specific upper bounds for the prime
power divisors of the discriminants of such regular ternary forms and described
a method that could in principle be used to determine representatives from all
equivalence classes of these forms. Watson subsequently published the proof of a
more general, but not computationally effective, result establishing the asymptotic
growth (with discriminant) of the exceptional set consisting of integers represented
by the genus of a positive definite primitive integral ternary quadratic form but not
by the form itself [10].

More recently, Kaplansky revived interest in the problem of completing the
enumeration of the list of regular positive definite primitive integral ternary
quadratic forms. His investigations in this direction culminated in a joint paper with
Jagy and Schiemann [7], in which the authors use the basic method of Watson’s
thesis, along with extensive machine computation, to produce a list of 913 ternary
forms containing: a representative from every equivalence class of regular positive
definite primitive ‘integral ternary quadratic forms.

In the present paper, we address the analogous problem of determining the
positive definite integral ternary quadratic forms that satisfy the weaker property
of spinor regularity, that is, those forms that represent all integers represented
by their spinor genus. Since the spinor genus is contained in the genus, every
regular form is also spinor regular. On the other hand, the list given in [1]
contains examples of spinor regular ternary quadratic forms that are not regular.
Also in [1], it is proven that there are only finitely many distinct equivalence
classes of spinor regular positive definite primitive integral ternary quadratic forms.
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However, the proof given there relies on the asymptotic methods of [10] and
consequently does not produce a bound for the largest discriminant of such a
form.

Throughout this paper, the geometric language of quadratic spaces and lattices
will be adopted. Unexplained notation and terminology will follow that of O’Meara’s
book [8]. For convenience, the term ‘ternary lattice’ will be used to always refer
to a Z-lattice L on a (not necessarily fixed) positive definite ternary quadratic
space (V,Q) over the field Q of rational numbers. For a ternary lattice L, spnL
and gen L will denote the spinor genus and genus of L, respectively, and Q(L),
Q(spn L), and Q(gen L) will denote the corresponding sets of represented values.
In this notation, L is regular or spinor regular when Q(L) = Q(genL) or Q(L) =
Q(spn L), respectively. Note that the property of spinor regularity for L is unaffected
by scaling the form @ on V. Consequently, to describe all spinor regular ternary
lattices it suffices to consider those with a fixed norm ideal nL. We will refer to the
ternary lattice L as ‘normalized’ if nL = 2Z. The discriminant dL (in the sense of
8, §82B]) of a normalized ternary lattice is an even positive integer; we will denote
the quantity %dL by §L.

To see the connection with the terminology for quadratic forms used in more
classical literature, let f =Y, <ij<e ¥iiTiTs, with a;; € Z, be an integral quadratic
form. Associate to f the matrix My = (8° f/dz;0z;) = (a;;) (that is, a}; = 2a;; and
aj; = aj; = a;; for ¢ < j). Let Vy be the rational vector space spanned by vectors
e1,...,es equipped with the symmetric bilinear form By for which Bj(e;, e5) = ai;,
and the corresponding quadratic map Q(v) = By(v,v). Then Ly = Zey +... +Ze,
is a Z-lattice on V; for which nLy C 27Z. The original form f is primitive in the
sense that the greatest common divisor ged; ;< ;<p{as;} =1 if and only if nLy =27.
Such a primitive form f is classically integral if and only if sLy = 27Z; otherwise,
sL; = 7 and f is non-classically integral (sometimes referred to as integer-valued).
An integer a is represented by the form f if and only if 2a is represented by the
lattice L;. Finally, if f is a ternary form and df is the discriminant of f used in [9],
then dL; = det My = 2df.

The main results obtained in this paper are stated in the following two
theorems.

TuroreM 1.1. Let L be a spinor regular normalized ternary lattice. Then there
exists a sequence of spinor regular normalized ternary lattices Ly, ..., Ly = L such
that 6L, is squarefree and, for i = 1,...,t — 1, there exist primes p; and integers
ki € {1,2,4} such that dL;y, = py*dL;.

THEOREM 1.2. Let L be a spinor regular normalized ternary lattice. Then the
prime divisors of dL lic in the set S = {2,3,5,7,11,13,17,23} and, for each prime
p € S, there exists an explicitly determined positive integer b(p) such that ord,dL <
b(p)-

Taken together, these results form the basis for a procedure for producing a list
containing all normalized ternary lattices that are potentially spinor regular. The
proof of Theorem 1.1 appears in §3. Explicit bounds for the prime power divisors,
as required for Theorem 1.2, are given in Propositions 5.4 and 5.5.
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2. Reducing prime power divisors of the discriminant

The goals of this section are to define and analyze mappings that can be used to
reduce the prime power divisors occurring in the discriminant of a ternary lattice,
while preserving regularity properties of the lattice. These mappings are analogous
to the transformations used by Watson [9]; see also {4, 11] for related constructions.
The definition will be based on the following construction for sublattices, which is
formulated both for ternary lattices L and their localizations L, with respect to a
prime p.

DEFINITION 2.1. For any ternary lattice L and any m € N, let An(L) =
{x € L:Q(z+ 2) = Q(z) (mod m), forall z € L} and for any prime p, let
Am(Lyp) = {z € Lp:Q(z + 2z) = Q(z) (mod m), for all = € L,}. (Equivalently,
the defining conditions can be expressed as Q(z) + 2B(z, z) € mZ or mZy, for all
z € L or L,, respectively, where B is the bilinear form related to ¢ by the equation

Qz +y) = Q(z) + Qy) +2B(z,9).)

The proofs of the assertions in the following lemma are straightforward
consequences of the definitions.

LEMMA 2.2. Let m be a positive integer and p a prime. Then the following

(a) A, (L) is a sublattice of L and A,,(Ly) is a sublattice of L.
(b) Am(Lp) = (Am(L))p-
(¢) Am(Lp) = L, whenever p does not divide m.

)
g
(d) n(An(L)) € mZ and w(Ap,(Lp)) © mZy.
)
)
)

If nL = 27, it follows from Lemma 2.2(d) and (e) that 2p?Z C n(Ay,(L)) C 2pZ.
Since equality must hold in one of these containments, it follows that the lattice
A, (L) can be scaled by either 1/p or 1/p? so that the norm ideal of the resulting
lattice is 27, thus producing a new normalized ternary lattice. We denote by ),
the mapping that sends each normalized ternary lattice on the space V to the
normalized ternary lattice constructed in this way on the scaled space Vr or
V/P® . That is,

N Aoy (D)MP if n(Agp(L)) = 2pZ
(L) = Agp(L)/P* i n(Agp(L)) = 2p°Z.

For the remainder of this section, L will be a normalized ternary lattice and p
a prime. For a prime q # p, it follows from the definition of ), and Lemma 2.2(c)
that (A\,(L)), is simply the original lattice L, scaled by an element of u,. Moreover,
(Ap(L))q = L, when the scaling factor in the definition of A,(L) is 1/ p2.

In order to determine the structure of (A,(L))p, it is first necessary to characterize
the sublattice Ag,(Ly) of Ly,. For this purpose, it is convenient to fix a splitting of L,
as L, = M 1 N, where M is the leading Jordan component of L, and sN C sM.
If p is odd, then sM =sL,=nL,=2Zy; so M is unimodular. When p=2, either
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sM = 27, or sM = 7. In the first case, M is 2-modular and thus has an orthogonal
basis by [8, 93:15]. In the second case, it follows from [8, 93:15] that M is binary.
Then, by [8, 93:11], M = H := A(0,0) if M is isotropic, and M = A := A(2,2) if
M is anisotropic, where A(a,b) denotes the matrix

a 1
1 b))
LEMMA 2.3. If M is unimodular and nN C 2pZ,, then Agy(Ly) =pM L N.

Proof. The containment pM L N C Agy(L,) follows from Lemma 2.2(e) and
(f). To prove the reverse containment, let x € Agy(Lyp) and write x = zo + 1,
where o € M and z; € N. If o ¢ pM, then, by (8, 82:17], there exists y € M
such that B(zo,y) = 1. Then Q(z) + 2B(z,y) = Q(z) + 2B(x0,y) = Q(z) + 2.
However Q(x) € 2pZ, since € Agy(Lyp). Thus Q(z) + 2B(x,y) ¢ 2pZy, contrary
to the assumption that € Aa,(L,). Hence z € pM L N as desired. O

LEMMA 2.4. Ifp=2 and M is 2-modular, then [Ly: A4(L2)] = 2.

Proof. 1In this case, Ly = 27, and it follows from Lemma 2.2(g) that Ay(Lo) =
{x € Ly:Q(zx) € 4Zy}. Since sN C sM = 2Z,, it follows that nNV C 4Zy and so
N C A4(Ly). Since sM = 2Zy =nLy = nM, M has an orthogonal basis by [8, 93:15].
We consider the various possible cases for dim M. Suppose first that dim M = 1,
so there exists some u € M such that Q(u) € 2uy and M = Zau. Let x = au+y €
A4(L3), where o € Zy and y € N. Then Q(z) = o’Q(u) + Q(y) € 4Z». This
implies that a € 27, since Q(u) € 2up and Q(y) € 4Zy. Hence Ay(Lo) C2M L N.
Equality then follows from Lemma 2.2(e) and (f), and so [Lg: A4(L2)] = 2 in this
case. Next consider the case dim M = 2. Then M 2 (2a,2b) in some basis {u,v},
with a,b € us. Let M’ denote the-sublattice of M spanned by {2u,u + v}. Then
M’ L N C Ag(Ly), since Q(2u) and Q(u + v) are in 4Zy. Since Ay(Lz) # L2 and
[Ly:M' 1L N] = 2, it follows that M’ L N = A4(L2) and the result is proved
in this case. Finally, consider the case dim M = 3 (that is, Lo is 2-modular). In
this case, there is a basis {u,v,w} for Ly with respect to which Ly = (2a, 2b, 2¢),
where a, b, ¢ € uy. Consider the sublattice M’ of Ly spanned by {2u, v +v,v 4+ w}.
Again we have M’ C A4(L2) # Lo and [L2: M'] = 2, and the result follows. This
completes the proof. L]

It can now be shown that the mapping A, reduces the power of p dividing the
discriminant of I, whenever this discriminant is divisible by 2p.

LEMMA 2.5. If2p®|dL, then d()\,(L)) = (1/p")dL for some t € {1,2,4}.

Proof. Note first that d(Aa,(L)) = p?dL if either M is unimodular of rank 1
(by Lemma, 2.3) or s = 2Z and p = 2 (by Lemma 2.4 and 8, 82:11]). In these
cases, d(A\p(L)) = (1/p)dL or (1/p*)dL, depending upon whether n(As,(L)) = 2pZ
or 2p*Z, respectively. The only remaining case is when M is unimodular of rank 2.
Then nN C 2p?Z,, by the assumption that 2p?|dL; so n(Agp(L)) = 2p?7Z, by Lemma
2.3. Thus d(\,(L)) = (1/p*)%d(Asp L) = (1/9°)(p*dL) = (1/p*)dL. O



SPINOR REGULAR TERNARY QUADRATIC LATTICES 549

The remainder of this section will be devoted to the concrete description of the
action of the mapping A, for various cases of the splitting L,.

LEMMA 2.6. Let L be a normalized ternary lattice such that L, = H L (p”c), for
some integer v > 3 and some c € Zp. Then (Ay(L))p = Agp(D)HP" = H 1 (p7~2¢),
and (A\,(L))q = L4 for all ¢ # p.

Proof. By Lemma 2.3,
~ (0 »
A= (1) L6

Here p'c € 2p?Z, since v > 3, so n(Agp(L)) = 2p°Z. Thus (M(L)), =

(AQI[,(L,,))I/T’2 =~ H L (p""2c), as claimed. For the primes ¢ # p, it suffices to
2 2

note that (Ay(L))g = (Agp(L))V/P = (Lg)V/?P" 22 L, since 1/p? € ul. O

Now let p be an odd prime. In this case, there is a local splitting of the form

L, = {a,pPb, p7c), where 0 < 8 < v are integers and a, b, ¢ € up,. (2.1)
Applying Lemma 2.3 and the definition of A, leads to the following result.

LEMMA 2.7. Let L be a normalized ternary lattice, let p be an odd prime such
that p?|dL, and let (2.1) be a splitting of L,. Then

(a,b,p7"%¢) when 8 =0 and y > 2
(Ap(L))p = < (b,pa,p? " c) when 8 =1
(a,p°~2b,p"" %)  when 8 > 2.

For a positive integer k, let /\]’f denote the k-fold application of the mapping A,.
Repeated application of Lemma 2.7 then gives the following.

COROLLARY 2.8. Assume notation as in Lemma 2.7. If 3 =1, then

| (b,c,pa) when v is odd
(@), {

a (a, ¢, pb) when -y is even.

If2 < B < and By denotes the greatest integer in [3/2, then

()\go (L)) o~ ) (a, b, pw_?@ . when (3 1:S even
? 1{a,pb,p"P*lc)  when B is odd.

REMARK 2.9. More cases for the possible local structure of the lattice Ly need
to be distinguished in order to obtain the complete description of the action of the
mapping Ag.

3. Preserving regularity

Throughout this section, L will denote a normalized ternary lattice. In order to
analyze the relationship between regularity properties of L and \,(L), it is helpful
to consider two cases separately, depending upon whether or not the localization
L, is split by a hyperbolic plane.
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LEMMA 3.1. Assume that 2p%|dL and that L, is not split by H. If z € L,, and
Q(x) € 2pZy, then x € Agyp(Ly).

Proof. It will be convenient to maintain the notation L, = M 1 N as intro-
duced in the previous section for the p-adic splitting of L. Write x = x¢ + z1, with
To € M and 21 € N. Then Q(x) = Q(zo) + Q(z1)- Since Q(z) € 2pZ, and Q(z1) €
nN CsN C 2pZ,, it follows that Q(zq) € 2pZ,.

Consider first the case p odd. Then M is unimodular, and by Lemma 2.3, it
suffices to show that zo € pM. Otherwise, zo is a maximal vector of M and, by
[8, 82:17], there exists y € M such that B(zo,y) = 1. Then K = Zyxo + Zpy is
a binary unimodular lattice of discriminant dK = (-—1)1112). Thus K is a hyperbolic
plane, and K splits L, by [8, 82:15], contrary to assumption.

Now consider the case p = 2. Suppose first that sM =2Z,. For z € Lo, write
z = 20+ 21, with zg € M and z; € N. Then Q(x) + 2B(z, z) = Q(z) +2B(x0, 20) +
2B(z1,21)- Since sN C sM = 2Z,, we have 2B(xo, 20) + 2B(z1, z1) € 4Z4. Hence
Q(x) + 2B(z, 2) € 4Z, for all z € Ly. That is, x € Ag(L2). Otherwise, sM = Z,.
Since nM = 27, M must be binary by [8, 93:15], and so either M = H or M = A,
by [8, 93:11]. Since Lo is not split by a hyperbolic plane, the only possibility is
M 22 A. Thus M primitively represents only elements of 2uy. However Q(zo) € 4Zo,
so it must be that zo € 2M, and x € A4(L2) follows from Lemma 2.3. O

PROPOSITION 3.2. If L is spinor regular, 2p*|dL and L, is not split by H, then
Ap(L) is spinor regular.

Proof. For the sake of argument, consider the case in which A, (L) =(Agp(L))V/P.
Let a € Q(G), where G is a lattice in the spinor genus of A,(L). Then pa € Q(GP),
so pa is represented by the spinor genus of Ay, (L), and hence by the spinor genus
of L. By the spinor regularity of L, it then follows that there exists x € L such that
Q(z) = pa € 2pZ,. Then x € Ay,(L), by Lemma 3.1. Hence a € Q(Agp(L)l/p) =
QM (L)) The case in which A\, (L) = Agy (L)Y #” is analogous. O

PROPOSITION 3.3. If L is regular, 2p*|dL and L, is split by H, then \,(L) is
regular.

Proof. Let a € Q(gen A\p(L)); that is, a € Q((M\p(L))q) for all q. By Lemma 2.6,
(Mp(L)), = L, for ¢ # pso a € Q(Lg) for all g # p. Moreover, a € n((Ay(L))p) =
27.,. However 27, = Q(L,), since L, is split by H, so a € Q(L,) for all g; thus
a € Q(gen L). 1t follows that a € Q(L), by regularity of L. Then p®a € Q(A2,(L)),
by Lemma 2.2(e). Therefore, ac Q(Agp(L)l/pg) =Q(M(L)). Hence X(L) is
regular. ]

REMARK 3.4. Note that the argument in the preceding proof is no longer valid
when regularity is replaced with the weaker condition of spinor regularity (the local
conditions that ensure a € Q(gen L) do not suffice to imply that a € Q(spn L)).
Consequently, some care must be taken when applying a sequence of A, mappings
to ensure that the resulting lattice always remains spinor regular.
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For the purpose of this paper, we will say that ‘L behaves well at p’ if either 2p?
does not divide dL or L, is split by H.

LEMMA 3.5. If L behaves well at p, then Q(L,) 2 2u, and (01 (Ly)) 2 up(@f),
where 6 denotes the spinor norm mapping.

Proof. If L, is split by H, then the results follow since Q(H)=2Z, and
6(0O*(H)) = up(@%, by [8, 92:5] and [5, Lemma 1]. If p is odd and p® does not
divide dL, then L, has a unimodular Jordan component of rank at least 2, and
the results follow from [8, 92:1b and 92:5]. Finally, if p = 2 and dL is not divisible
by 8, then L, has a binary even unimodular Jordan component; otherwise, we
would have sLo = 275 and it would follow that vLs C (sL2)® C 8Z», contrary to
assumption. Thus Lo is split by either H or A. In the latter case, Q(A) = 2uxZ3
and 8(O*(A)) = uQ3 by [5, Lemma 1]. 0

COROLLARY 3.6. If L behaves well at all primes, then spn L = gen L.
Proof. The proof follows from [8, 102:9]. O

Proof of Theorem 1.1. By Lemma 2.5, it suffices to show that for any spinor
regular ternary lattice L for which §L is not squarefree, there exists some prime p
for which 2p?|dL and A,(L) is spinor regular. If there exists a prime p such that
2p%|dL and L, is not split by H, then \,(L) is spinor regular by Proposition 3.2. If
there is no such prime, then L behaves well at ¢ for all primes ¢g. Then spn L = gen L
by Corollary 3.6. Thus L is regular, and, by Proposition 3.3, A,(L) is regular (hence
spinor regular) for any prime p such that 2p?|dL. |

REMARK 3.7. It may be of interest to observe that the statements and proofs of
Proposition 3.2 and Theorem 1.1 carry over verbatim with the condition of spinor
regularity replaced by that of regularity. It seems that this result has not appeared
explicitly in the literature, although it is proven in Watson’s thesis [9] and is used
for the search conducted to produce the list appearing in [7].

4. A method of descent

The remainder of the paper will be devoted to proving Theorem 1.2. The
argument will first be reduced to the case of normalized ternary lattices for which
all localizations, except possibly for one, have a particularly simple structure.

For a normalized ternary lattice L and a prime p, we will say that ‘L behaves
well away from p’ if L behaves well at ¢ for all primes q # p.

LEMMA 4.1. Let L be a spinor regular normalized ternary lattice. For any prime
p there exists a spinor regular normalized ternary lattice L' such that L' behaves
well away from p and ord,dL = ordpdL’.

Proof. Let q#p be a prime such that 2¢?|dL. If H splits Lg, then L behaves
well at ¢. Otherwise, )\,(L) is spinor regular by Proposition 3.2. Moreover,
ord,d(\y(L)) = ordgdL — 2 and (Ag(L))r = Ly for all primes r # ¢ by Lemma 2.6.
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Thus applying A, to L a finite number of times leads to a spinor regular normalized
ternary lattice that behaves well at . Repeating this procedure for all primes g # p
such that 2¢2|dL leads to a lattice L’ with the desired properties. O

Let L be a normalized ternary lattice that behaves well away from some prime p.
Repeatedly apply A, to L until a lattice is obtained for which the p-adic localization
is split by H or for Wthh the discriminant is not divisible by 2p?, whichever occurs
first. Denote this lattice by L. Next, for each prime g such that 2q° |dL (including the
possibility that q = p), repeatedly apply A, to L until a lattice is obtained for which
the discriminant is no longer divisible by 2¢?. When this has been completed for
all primes g, denote the resulting lattice by L. Note that this construction ensures
that §L is squarefree.

LEMMA 4.2. Let L be a spinor regular . normalized ternary lattice that behaves
well away from the prime p and let L and L be as in the construction above. Then,
the following hold.

(a) L and L are regular.

(b) ordg dL = ordgdL (mod 2) holds for all q # p.

(¢) Q(L,) = 2Z, for any prime q # p which does not divide SL.

(d) 2¢ € Q(genL) for any prime q # p such that q does not divide 6L and
2q € Q(Ly).

Proof. (a) For each application of )\, in the construction of L, spinor regularity is
preserved, by Proposition 3.2. Thus, Lis spinor regular. Moreover, the construction
ensures that L behaves well at all primes. Hence san = genL by Corollary 3.6,
and so L is regular. For each prlme g such that 2¢® ]dL, L, is split by H, so by
Proposition 3.3, it follows that L is regular.

(b) The mapping A, is applied in the construction of L only when L, is split by
H, in which case the dlscrlrmnant is reduced by a factor of ¢, by Lemma 2.6.

(c) Since ordqéf/ =0, ord, 0L must be even. If ord,6L > 2, then L, is split by H,
since L behaves well at ¢, and the result follows. Thus only ord,0L = 0 remains.
If ¢ is odd, then L, is unimodular and the result follows from [8, 92:1b]. If ¢ = 2,
then Lo has a splitting of the form H L (2¢), for some ¢ € uy, and the argument is
complete.

(d) The local representability of 2g follows from (c) for the prime ¢, and from
Lemma 3.5 for the primes distinct from p and g. O

PROPOSITION 4.3. Let p be a prime that divides the discriminant of some spinor
regular normalized ternary lattice. Then p divides the discriminant of some regular
normalized ternary lattice.

Proof. For such a prime p, there exists a spinor regular normalized ternary
lattice L for which p|dL and L behaves well away from p, by Lemma 4.1. It suffices
to consider the case when p is odd. Thus L, has a splitting of the type (2.1). If
either 8 = 0 or # = 7 in such a splitting, then 9(O+( p)) = upr by [8, 92:5]. Thus,
spnL = gen L by 8, 102:9], and L is itself regular. If § = 1, then L= A (L); so
p|dL, by Corollary 2.8, and the result follows since L is regular by Lemma 4.2(a). It
remains to consider the case 2 < 8 < . In that case, M = )\ﬂo (L) is spinor regular,
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where 8 denotes the greatest integer in (3/2, by the proof of Lemma 4.2(a). If 8
is even, it can be seen from Corollary 2.8 that M is regular (here spn M = gen M
because M, is split by a binary unimodular sublattice) and p|dM (since 3 # 7). If
8 is odd, then M is regular and p|dM. O

Via the correspondence described in § 1, the prime divisors of the discriminants
of regular normalized ternary lattices correspond to the prime divisors of the
discriminants of regular primitive integral ternary quadratic forms. These prime
divisors are determined in [9, Theorems 2, 3 and 4] to be 2, 3, 5, 7, 11, 13, 17 and
23. (This result can also be verified by an examination of the factorizations of the
discriminants of the forms listed in [7].)

COROLLARY 4.4. Let p be a prime that divides the discriminant of some spinor
regular normalized ternary lattice. Then p € S = {2,3,5,7,11,13,17,23}.

The regular normalized ternary lattices L for which JL is squarefree correspond
to the regular primitive integral ternary quadratic forms of squarefree discriminant.
The complete list of such forms is given in [12]. For convenience of reference, the
list of the corresponding lattices, along with their discriminants and the structures
of their localizations at all prime divisors of the discriminant, is given in Appendix
A. Note that for any spinor regular normalized ternary lattice L the corresponding
lattice L is among the lattices in this list.

5. Bounds for prime power divisors

For the purpose of bounding the powers of primes dividing the discriminants of
spinor regular normalized ternary lattices, it suffices to establish bounds for the
successive minima u;(L) for such lattices, in light of the fundamental inequality
dL < pi(L)p2(L)ps(L) (see [2]). As a first step in the direction of establishing such
bounds, Lemma 4.2 can be used to identify integers represented by the genus of
L. In order to conclude that such an integer n is represented by L itself when L
is spinor regular, it must be established that n is represented by the spinor genus
of L. This is ensured when it can be shown that n is not a spinor exception for
gen L, that is, that n is represented by every spinor genus in gen L. The following
assertion will be used for that purpose.

LEMMA 5.1. Suppose that the normalized ternary lattice L behaves well away
from the prime p and that n is a spinor exception for gen L. Then Q(v/—ndL) is a
quadratic extension of Q and

Q(vp) where p* = (—1)P~1/2p, if p is odd
v —ndL
Uvmnab) {@W-T, V=B ifp=2.

Proof. Let ¥ denote the spinor class field of L, as defined in [3]. A necessary
condition for n to be a spinor exception for gen L is that Q(v/—ndL) is a quadratic
subextension of ¥ (see, for example, [6]). Since L behaves well away from
p, 0(0F(Lg)) 2up,Q2 holds for all g#p. Consequently, ¥y is a multiquadratic
extension of ) which is unramified at all primes g # p. O
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COROLLARY 5.2. If the normalized ternary lattice L behaves well away from p
for some prime p = 1 (mod 4), then gen L has no spinor exceptions.

Proof. Since p = 1(mod 4), Q(v/p*) = Q(/p) is a real quadratic field. However,
for a positive definite lattice L, Q(v/—ndL) cannot be a real quadratic field, since
n and dL are positive. d

Every normalized ternary lattice L has a reduced basis, that is, a basis {e;, ez, e3}
such that Q(e;) = ui(L), the ith successive minimum of L, for each i = 1,2,3. For
such a basis, 2|B(e;,e;)| < Q(e;) holds whenever i < j. The sublattice Ze, + Zes
will be referred to as the leading binary section of L and its discriminant will be
denoted by do L. Note that doL has the following properties: (a) doL < p1(L)p2(L),
(b) doL = 0 or 3 (mod 4), and (c) B8 < ordydpL when p is odd and L, has the
splitting (2.1).

We are now in a position to establish upper bounds for the powers of the primes
occurring in the discriminant of a spinor regular normalized ternary lattice. The
results obtained are based upon corresponding bounds which are known for the
regular case. For each odd prime p € S, a bound for the power of p occurring in
the discriminant of a regular primitive integral ternary quadratic form appears in
[9, Theorem 3, 4 or 5]. The results for corresponding normalized ternary lattices
are summarized in the following proposition.

PROPOSITION 5.3. Suppose that p|dL for some regular normalized ternary
lattice L and some odd prime p. Let L, have the splitting (2.1).
(a) If 3 =0, then

1 ifp=17,11,13,17 or 23
v<{2 ifp=5 (5.1)
4 ifp=3.
(b) If 8 =1, then
1 if p=11,13,17 or 23
v<<K2 ifp=>5or7 (5.2)
4 ifp=3.

(c) If3>2,thenp=3, <3 and f+v<6.

The corresponding bounds for spinor regular normalized ternary lattices are given
in the following proposition.

PROPOSITION 5.4. Suppose that p|dL for some spinor regular normalized
ternary lattice L and some odd prime p. Let Ly, have the splitting (2.1).
(a) If B = 0, then (5.1) holds.
(b) If 8 = 1, then (5.2) holds, except possibly when p = 11, in which case v < 2.
(c) If > 2, then p=3 or 7, and

f=2andvy=3 forp=1,
f<5andy<8 for p = 3.
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Proof. Throughout the proof, it may be assumed that L behaves well away from
p, by Lemma 4.1. Whenever it can be shown that L is regular, the desired result
follows from Proposition 5.3. In particular, if 5 =0 or § =+, then spnL = gen L,
and L is regular. This establishes (a). Moreover, if p = 1(mod 4), gen L has no
spinor exceptions by Corollary 5.2 and again L is regular, so for the remainder of
the proof, it will be assumed that

p=3(mod4) and 1<fB<7.

Since it may also be assumed that p € S, this restricts attention to the primes 3,
7, 11 and 23.

(b) By Corollary 2.8, L, = (b, ¢, pa) if v is odd, and L, = {a,c,pb) if v is even.
Thus p|dL in any case, and if Lp is split by a binary Sublattlce (1,Ap) (where A,
denotes a nonsquare unit modulo p), then (O (L,)) 2 u,,QZ and L is regular.
The remaining details of the argument will be presented only for the case p = 11,
since the arguments for the other primes are analogous and the results for those
primes agree with the regular case. The possibilities for L with 11|dL are #14,
#18 and #21 in Appendix A. In the case of #14 or #18, L has a unimodular
Jordan component gl Ajy). Thus it remains to consider the case that L is #21.
Then 6L = 11 and Ly; = (1,1,11), so Ly; = (1,11,117), and Q(L,) = 2Z, for all

q # 11. In particular, gen L represents 4 and 12, but none of 2, 6, 8 or 10 (since
these values are not in u?, ). Assume for the moment that -y is odd Then ord;1dL is
even and so ord;;n must be odd for any spinor exception n of gen L by Lemma 5.1.
In particular, neither 4 nor 12 is a spinor exception. Thus 4 and 12 are represented
by L, so u3(L) = 4 and pa(L) = 4 or 12. Let B denote the leading binary section
of L. If ps(L) = 4, then

B:(t 4> fort =0, 1or 2.

However, all of these possibilities for B are unimodular over Zi;, contrary to the
assumption that 8 = 1, which implies that 11|dB, so p2(L) = 12, and B must be of

the form
4 t
(t 12) fort=0, 1or2

The first two possibilities are ruled out as they are again unimodular over Zy;, so

(4 2
sa(t )

Now 14 € Q(L), but 14 ¢ Q(B). Thus, p3(L) < 14, and dL < 14dB = 616 < 11°.
Recalling that v has been assumed to be odd, it then follows that v = 1. On
the other hand, if < is even, then A;;(L) is spinor regular and (A;1(L))11 =
{a,11b,117"1c). Hence v < 2, as claimed.

(c) Suppose first that p > 7. If 3 is even, then (a, b, p”~Pc) is spinor regular, by
Corollary 2.8, and hence is regular, so y— £ < 1 by (5.1). However, we are assuming
that v # 3,s0 v = 8+ 1 and Lp =~ (a,b,pc). If B is odd, then (a, pb, p?~P*1c) is
spinor regular, again by Corollary 2.8. From the previous case, this forces y—8+1 <
2 and p # 23, so we again obtain v =+ 1 and Ly = (a,c,pb) for p=T7,11.

p = 23: As noted above, 3 must be even and 23ldf/, s0 #19 is the only possibility
in Appendix A for L. Thus, dI = 92 = 423, so ordydL is even, by Lemma 4.2(b).
By Lemma 5.1, any possible spinor exception for gen L must be a multiple of 4. By
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TABLE 1.
L #5 #8 #11 #15 #16 #24
dL 4.7 2.7 4-3-7 2-3-7 4-5-7 2-3-7
Form k? 2k? 3k2 6k2 5k2 6k

Lemmas 3.4 and 4.2(d), gen L represents either both of 2 and 2-3 (if a € u33) or both
of 2-5 and 2-7 (if @ ¢ u3;). As none of these integers are spinor exceptions for gen L, it
then follows that one of these pairs is represented by spn L, and hence by L itself, by
the assumption of spinor regularity. Thus, doL < 1 (L)pa(L) < 10-14 = 140 < 232,
contrary to the assumption that 8 > 1. Hence, there are no such spinor regular
ternary lattices.
= 11: Since 11|dL, L must be #14, #18 or #21 in Appendix A. In these cases,
the possible spinor exceptions for gen L which are not multiples of 11 are of the
forms 6k?, k2, or 2k?, respectively, by Lemma 4. 2(b) and Lemma 5.1. If I is #21,
then 6L = 11 and L11 = (1,1) L (11). Thus a € u?, and gen L represents 2q for all
primes q € u?,. In particular, 2-3 and 2-5 are in Q(gen L), but neither 6 nor 10 is
a spinor exception; so 6,10 € Q(spn L) = Q(L). Thus u1(L) < 6 and po(L) < 10.
Therefore, do. < 60, which contradicts the fact that 112|doL. Now consider the
cases when L is #14 or #18. In each case, Ly, is split by (1,Aq1). If B is even,
then L1 2 (a,b, pc) as seen above. It then follows that 8(0OF (L11)) 2 u1Q%; so
L would be regular, but no such regular ternary lattices exist, by Proposition 5.3.
Consider further the case that 3 is odd; thus 8 > 3. By Lemma 3.5 and Lemma
4.2(d), gen L represents either both of 2 and 25 (if a ¢ uf,), or both of 2.7 and
213 (if a € u%;). None of these integers are spinor exceptions for gen L, so one of
these pairs is represented by L. Thus dpl < 364, which contradicts the fact that
13|d0L Finally, we conclude that there are no such spinor regular ternary lattices.
= 7: Since 7[dL the possibilitiés for L are shown in Table 1, which also lists dL,
and the form of any possible spinor exceptions for gen L which are not multiples of
7, in each case.

Suppose first that @ € u2. Then 2,22 € Q(L7). It can be seen from Table 1 that
22 is never a spinor exception for gen L, and 2 can be a spinor exception for gen L
only when L is #8. In the latter case, Lo is split by H, but then Ly must also be
split by H, and so L represents 4. Then 4 € Q(gen L) and it follows that 4 € Q(L).
Thus in all cases p1(L) < 4 and po(L) € 22, s0 doL < p(L)po(L) < 88. However
£ > 2 implies that 72|dy L. Moreover, doL = 3 (mod 4), so doL > 3-49 = 147 > 88,
a contradiction.

Now consider the case a € Aqu?. Then 2-3,2-5 € Q(L7). If L is 45, #8 or #16,
then &L is not divisible by 3, and so 6 € Q(L3). Thus, in these cases, 6 € Q(gen L).
However, 6 is not a spinor exception for gen L for any of the possibilities for
L, s0 6 € Q(L). On the other hand, if L is one of #11, #15 or #24, then 5L
is not divisible by 5 and so 10 € Q(L5) thus, 10 € Q(gen L), but 10 is not a spinor
exception for gen L in any of these cases, so 10 € Q(L). In all cases, we conclude
that g (L) < 10. Also, 2:13 € Q(gen L). As 26 is not a possible spinor exception for
gen L for any of the possibilities for L, it follows that 26 € Q(L) and ua(L) < 26.
Hence, p1(L)pa(L) < 260 < 7° and 8 < 2, as asserted. Consequently, 8 = 2 and

y=pF+1=3.
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p = 3: Consider first the case that a € Azu3. Then 2 € Q(gen L). If 2 is a spinor
exception for gen L, then Q(v/—2dL) = Q(v/—3) and, in particular, ord7dL is even.
Since L behaves well at 7, it follows that L+ is split by H. Hence, 2-7 € Q(L7) and
14 € Q(gen L), but 14 is not a spinor exception for gen L since ord;(—14dL) is odd.
Thus at least one of 2 and 14 is represented by L. Thus 3 (L) < 14. Next, note that
2-19 € Q(gen L), since 19 ¢ S. As ordy9(—38dL) is odd, it follows that 38 is not a
spinor exception for gen L and so 38 € Q(L), so p2(L) < 38. Then doL < 532 < 3°.
Consequently, 8 < 5.

Now consider the case @ € u3. An examination of the discriminants of the lattices
appearing in Appendix A shows that it cannot be the case that the primes 5 and
11 simultaneously divide dL; so at least one of these primes, denote it by g, fails
to divide dL and it follows that 2¢ € Q(gen L). Moreover, ord,(—2¢dL) is odd
by Lemma 4.2(b), and so 2q € Q(L). Consequently, u1(L) < 22. Repeating this
argument with the pair of primes 17 and 23 yields p2(L) < 46. Hence, doL < 1012 <
37, and so 8 < 6. Suppose that 8 = 6. Then 3%|doL. Since doL = 0 or 3 (mod 4),
it follows that doL > 37, a contradiction; so again in this case, # < 5, as claimed.
The inequality v < 8 then follows either from (5.1) (if 8 is even) or (5.2) (if 8 is
odd). Cd

PROPOSITION 5.5. Let L be a spinor regular normalized ternary lattice.

(a) If Lo is split by H or A, then ordodL < 7.

(b) Let Ly = (2a,2%1b,271c) with B, € Z such that 1 < 8 <y and a,b,c €
uy. If B < 1, then v < 8. In general, § < 9 and vy < 16. Consequently, ordedL < 28.

Outline proof. Without loss of generality, it may be assumed that L behaves
well away from 2. If Ly is split by H or A, then (0% (L3)) 2 usQ%, as noted
previously. Consequently, L is regular and the result stated in (a) follows from [9,
Theorem 3]. It remains to consider those L for which Ly has an orthogonal splitting
as given in the statement of (b). In future arguments, it suffices to consider a, b,
and ¢ to be integers modulo 8 in such a splitting. The proof proceeds by considering
three cases for the size of §: (i) 8 =0, (ii) 8 = 1, and (iii) §# arbitrary. Moreover, it
may be assumed throughout that v > 5, since otherwise there is nothing to prove.

Case (i): In this case, there exists a basis {u,v,w} in which Ly 2 (2a,2b,27"1c),
for some a,b,c € uy. Then A4(L2) is spanned by {2u,u + v,w}, as shown in the
proof of Lemma 2.4. Thus A4(L2) = N L (27"1¢), where

~ {8a 4a
N= (4(1 2(a+b)) '

If ab = 3 (mod 4), then a+b € 4Z,, and n(A4(L)) = 8Z (sincey > 3); 50 Aa(L2) =
A4(L2)Y/* Hence Ap(Lg) = NY/* 1 (27~1c). Here N'/4 is a unimodular lattice with
n(NY4) = 2Z,; thus, N'/4 = H or N'/* = A by [8, 93:11]. It then follows from
part (a) that v —1 < 7.

Only the subcase ab = 1 (mod 4) needs to be considered further. Note that this
condition is equivalent to the condition a + b € 2us. In this case, n(A4(L)) = 4Z
and s0 Ag(La) = A4(Lg)'/2. Thus Aa(L2) = N2 1 (27¢) = (2a/,2V/,27¢), for some
a’,¥ € uy again satisfying a’d’ = 1(mod 4). Repeatedly applying Ay a total of
times results in a lattice K for which Ks 22 (2d,2e,2f), with d, e, f € us. Applying
A2 to K then yields the lattice L. As can be seen from the proof of Lemma 2.4,
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Ly 2= P L (4€) for some ¢ € up, where P = H or P = A. By examining the 2-adic
splittings of the lattices in Appendix A, we see that the resulting L must be one of
the lattices

H1, 4, #5, 6, #7, #9, #11, #12, 416, 17, #18, 419, 720. (5.3)

We temporarily assume that v is odd. Then L, is split by H for the odd primes p
for which p?|dL, and L, & f} for all other odd primes p.

Now note that 0(O+(L2)) D (0" ({a,b))) = N(Q2(V—ab)), by [5, Proposition
B}, where N denotes the norm mapping from Q(v/~ab) to Q2. The remainder of
the argument is divided into the subcases ab = 5(mod 8) and ab = 1(mod 8).
In the subcase that ab = 5(mod 8), it follows from the above spinor norm
calculation that the spinor class field X7, must equal Q. Hence L is regular. There
are two possibilities to consider: {a, b) = (1,5) and {a, b) = (—1, 3) over Zg. Suppose
first that (a,b) = (1,5). Then 2 € Q(gen L); hence 2 € Q(L) and (L) = 2. By
examining the 5-adic splittings of the lattices in (5.3), we see that 10 € Q(ﬁg,),
hence in Q(Ls). Thus 10 € Q(gen L) and it follows that 10 € Q(L) and pu2(L) < 10.
The leading binary section B of L must then be of the form (2,2t) for t =1, 2,
3, 4 or 5. However t = 2 and t = 3 are ruled out since (2,4) and (2,6) do not
represent 10; ¢ = 4 is ruled out since Ly contains a 2-modular sublattice of rank 2,
by assumption. Hence B 22 (2,2) or (2, 10). If 13|dL, then 13|dL, by Lemma 4. 2(b),
and L would have to be #13 or #20. For both of these possibilities, H splits Lis.
Thus, in all cases, 26 € Q(genL) and hence 26 € Q(L), but 26 is not represented
by B. Hence p3(L) < 26 and so dL < 520 < 2'°. We conclude that v < 5 whenever
(a,b) = (1,5). A similar analysis when (a,b) = (—1,3) also leads to the conclusion
that v < 5. This completes the subcase ab = 5 (mod 8).

Finally, consider the subcase ab = 1 (mod 8). Under this condition, ¥j = Q or
Q(y/~1). Since v is assumed to be odd, ordadL is even. In particular, if the integer
n is a spinor exception of gen L, then ordan must be even. The possibilities for (a, b)
up to isometry over Zy are now {1,1) and (3, 3). Suppose that (a, b) = (1,1). Again
pi(L)=2.1If L is not #1, ord,dL is odd for at least one odd prime. Then 4 is not
a spinor exception, and so us(L) < 4. The only possible leading binary section for
L is B =2 (2,2) ((2,4) is not possible since Ly contains a 2-modular sublattice of
rank 2). At least one of 66 and 114 is represented by gen L. However, neither of
these values is represented by B and neither can be a spinor exception for gen L
(for any prime p not dividing dL, ord,n must be even for any spinor exception n;
for lattices in (5.3), no discriminant is divisible by 19, or by both 3 and 11). Hence
us(L) € 114 and dL < 1824 < 2' when L is not #1. When L is #1, it can be
shown that 10 € Q(L) and so pa(L) < 10. The possible leading binary sections can
then be shown to be (2,2) or (2,8). In either case, u3(L) < 66, and it follows that
v < 5. Thus it has been established that v < 7, under the assumption that v is
odd.

To extend the result in all cases to lattices with « even, first apply Ay to L
to convert to a lattice for which 7 is odd. It then follows by the results already
established that v < 8. This completes case (i).

Case (ii): The lattice L, has a splitting of the type (2a, 4b,27**c) for some a, b, ¢ €
Up. Repeatedly applying the mapping Az a total of v+ 2 times will result in a lattice
L for which Ly = P L (4¢), with € € up and either P = H or P & A; so L must
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occur in the list (5.3). Again we treat the case that 7 is odd first. Then L, is
split by H for the odd primes p for which p?|dL, and L, = L2 for all other odd
primes p.

The argument now proceeds by considering the eight distinct isometry classes
over Zsy for {a,2b). For example, suppose that (a,2b) = (1,2) over Zy. Then ¥f C
Q(\/—_Q), so ordon must be even for any spinor exception for gen L, so p (L) = 2.
When L is not #1, 4 € Q(gen L) and 4 is not a spinor exception since ord,dL is
odd for some odd prime p. Hence, uo(L) < 4. If L is #1, then 6 € Q(L). Neither
of the lattices (2,2) or (2, 6) is represented by L over Z, since Ly does not contain
any binary 2-modular sublattice; so the leading binary section of L must be (2,4).
By examining the local structures at 2, 5 and 7 for L in (5.3), it can be seen that
in all cases at least one of 70 and 140 is represented by gen L. Moreover, 70 is
never a spinor exception, since ord;70 is odd, and 140 can be a spinor exception
only when ordsdL and ordzdL are both odd; the latter occurs only when L is
#16. Tt can be checked directly that 70 € Q(gen L) when L is #16. Since neither
70 nor 140 is represented over Z by (2,4), we conclude that pz(L) < 140. Thus
dl, < 1120 < 21 and it follows that v < 5. Similar arguments for the seven
remaining cases for the isometry class of (a,2b) over Zj yield that v < 7 in all
cases. Extending to lattices with v even as before then yields the result v < 8 as
claimed.

Case (iii): Successive application of the mapping A; will transform the lattice L
into a lattice K with

_ | (@2a, 20, 27H1=Bc/y if B is even
27T @al, 4b, 27 20) if B s odd

for some a’, b, ¢’ € uy. Consequently, v — 8 < 8 when 3 is even, by case (i) above,
and v — B+ 1 < 8 when 3 is odd, by case (ii) above. Finally, a bound for 8 can
be obtained by considering the four possible cases for a modulo 8. For example,
when @ = 3 (mod 8), both 38 and 86 are represented by gen L, and neither is a
spinor exception. Thus u1 (L) < 38 and p2(L) < 86; so the discriminant of the leading
binary section of L cannot exceed 3268, which is less than 2!2. By considering
the splitting of Lo, it follows that 3<9. Similar arguments show that <9 also
holds for the other possibilities of ¢ modulo 8. The claimed bound for ordadL now
follows. 1
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Appendix A

Table A.1 lists representatives from all equivalence classes of regular ternary
lattices M for which §M is squarefree. These correspond to the equivalence classes
of regular primitive integral ternary quadratic forms of squarefree discriminant
determined in [12]. For each lattice M, the table lists a reference number, the
matrix of M with respect to a reduced basis, the discriminant of M, and the local
splittings of M at each of the prime divisors p of dM. In these splittings, A and H
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are used to represent the binary even unimodular lattices with matrices

(12) = (o)

respectively, over Zs, and the symbol A denotes a nonsquare unit modulo the
designated prime.
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