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ON SPINOR EXCEPTIONAL REPRESENTATIONS

J. W. BENHAM AND J. S. HSIA*

Let f(xί9 , xm) be a quadratic form with integer coefficients and ceZ.
If f(x) = c has a solution over the real numbers and if f(x) = c (mod N) is
soluble for every modulus N, then at least some form h in the genus of
/ represents c. If m 5> 4 one may further conclude that h belongs to the
spinor genus of /. This does not hold when m = 3. However, in that
situation there is a so-called "75% Theorem" which asserts that either
every spinor genus in the genus of / represents c (i.e., there is a form in
each spinor genus representing c) or else precisely half of all the spinor
genera do. See [JW], [K], [H]. The theory of spinor exceptional represent-
ations is concerned with resolving the remaining 25% ambivalence. This
we discuss in §§3, 4. We show in § 1 a field-theoretic interpretation for
the various partitions of the genus into half-genera by certain "splitting
integers", and in § 2 how this splitting feature can be exploited in certain
cases to provide an invariant classification of forms up to spinor-equival-
ence, which may be viewed as a kind of a partial "spinor character theory",
yielding in these instances an alternative to the algorithmic process of
determining spinor-equivalence expounded recently by Cassels in [C], [CJ.

§ 0. Preliminaries

Unexplained terminology and notations are generally those from [OM].
Let F be an algebraic number field with R as its ring of algebraic integers,
V a regular quadratic F-space of dimension m, and L an i?-lattice on V
with integral scale. Finite prime spots will be denoted by p < oo while
infinite ones by j^eoo. Let G — GL be the genus of L and Sx be the spinor
genus of X. Suppose K is a lattice which is representable by G and such
that its rank ΐk(K) = άim(FK) = m — 2. Then, by Witt's theorem we may
assume that FK is a subspace of V with orthogonal complement U. Put
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Eκ — JF(V— δκ) where δκ is the discriminant of U. Whenever Eκ is used

in this context, we shall always assume that Eκ Φ F. Let JF be the sub-

group of the idele group JF of F consisting of those ideles (ip) such that

ip e Θ(O+(LP)) for all p < oo, where θ is the spinor norm function. Set Nκ

= NEκ/F(JEκ) and Hκ = NKPD- Jf where D = 0(O+( V)). Now, the subgroup

JJJ'PV'JV'JL of the adele group Jv (split rotations) on V is independent

of the choice of L e G as J'v contains the commutator subgroup of Jv. We

denote this subgroup by J(V, K). The second entry depends only on the

isometry class of the ambient space FK. For, if K is replaced by K with

FK isometric to FK, then putting FK = UL we see that φ{Jπ)φ~ι = JΌ for

some φ e O+(V). This gives J(V, K) = J(V, K). A similar assertion holds

for Hκ. From the general theory of spinor exceptional representations,

one knows that θ induces an isomorphism from JV/J(V,K) onto JFjHκ,

and moreover, the group index [JF : Hκ] < 2. This leads us to call a

regular JMattice K a splitting lattice for G if (i) rk(l£) = m — 2, (ii) G re-

presents K9 and (iii) [JF : Hκ] = 2. When K ^ <c> we call c a splitting

integer for C? and #*, δκ, Nκ, HK9 J(V, K) are denoted by Ec, δc, Nc9 Hc,

J(V, c) respectively. From the inequality [JF : Hκ] < 2 it follows that either

every spinor genus in G represents K or else exactly half of all of them

do. The latter can occur if and only if the following two conditions are

fulfilled:

( I ) :

(Π): Θ(LP: Kp) = NK(P) for all p < oo .

Here Nκ(p) denotes the p-th component of Nκ and Θ(LP: Kp) is a certain

relative integral spinor norm group defined in [SP], [HJ. We say K is a

spinor exceptional lattice for G if its rank is m — 2 and if it is represent-

able by some, but not by every, spinor genus in G. The general theory

also shows that K is splitting for G if and only if condition (I) is satisfied,

and it is spinor exceptional for G precisely when both conditions (I), (Π)

hold. When K is splitting, G is split into two so-called half-genera (Halb-

geschlecter—a term introduced in [K]) and we say two lattices Mu M2 in

G belong to the same half-genus w.r.t. K iff M2 = ΛMX for some ΛeJ(V, K).

Equivalently, Θ(A) e Hκ. When, in addition, K is also spinor exceptional

then these half-genera take on added significance in that two lattices in

the same half-genus either have both of their associated spinor genera

represent K or both don't. Naturally, if V is indefinite the meaning is



SPINOR EXCEPTIONAL REPRESENTATIONS 249

even sharper. If K is spinor exceptional, and XeG, we say X belongs

to the bad (resp. good) half-genus if Sx doesn't (resp. does) represent K.

Similarly, one may consider primitive representations and all the defini-

tions and assertions carry over excepting only that condition (II) needs

to be replaced by the obvious primitive analog:

(II)*: Θ*(LP : Kp) = Nκ(p) for all p < oo .

For more details of some of the assertions here, see [JW], [K], [H], [SP].

A relation between exceptionality and primitive exceptionality is the

following:

LEMMA. Every spinor exceptional lattice K for G induces a primitive

spinor exceptional lattice.

Proof, There is an Z e ( ? which represents K. Let Y be a sublattice

of X isometric to K, If T is the set of primes p at which Yp is imprimitive

in X9, then T is a finite set. For each p e T embed Yp in a primitive sub-

lattice Yp of the same rank. Construct the sublattice Y of X satisfying:

Ϋp = Yp for pgΓ, and Ϋp = F, for p e T, Hence, Ϋ 2 Y and both span

the same space. So, Eγ = EΫ and Ϋ is also splitting. Now, Θ(XP: Yp) =

Nγ(p) by hypothesis, and Θ*(XP: Ϋp) <Θ(XP: Yp) by construction. Since also

NΫ(p) = Nγ(p) and NΫ(p) < Θ*(XP: Ϋp) we conclude that Θ*(X9: Ϋp) = NΫ(p)

for all p < oo, i.e., Ϋ is the induced primitive spinor exceptional lattice

for G.

§1. Splitting lattices and field extensions

We give a field-theoretic interpretation of the partitions of the genus

into various half-genera. In particular, two spinor exceptional lattices are

represented by the same set of spinor genera if and only if the induced

relative quadratic extensions are identical. More precisely, we have:

PROPOSITION 1.1. Let A, B be two splitting lattices for G, Then, HA

= HB if and only if EA = EB,

Proof. By the existence theorem of global class field theory, it is

sufficient to show that HA = HB precisely when PF-NA = PF-NB.

Suppose first that HA < HB, and a e NA. Write a = d-b-r, where d e D,

b € NB, r e Jf. Since B is a splitting lattice, we may suppose that rp = 1
at all p < oo. If T is the set of real spots where Vp is anisotropic, then
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d is positive on T. Also, at every spot p we have the Hubert symbols

satisfying: (ap, — δA)p = (bp, — δB)p = 1. Since δA and δB are both positive

on T, ap and bp must also be positive. Therefore, we may, in fact, assume

that r = 1 since θ(0+(Vp)) = ί1* at each infinite spot p outside of T. This

means that PD NA<PD- NB, whence PFNA < PF- NB.

Conversely, suppose HA Φ HB. Put Fx = Uy-i hrD, hx = 1. Then, PF

NA = PD'NA[J . Uht PD-NA and PF-NB = PD-NBU - . {JhrPD'NB. These

unions are disjoint since [Jp : PD'NA] = [J^ : PD NB] = 2[FX : Z)]. But,

PD'NA is also disjoint from hj'PD'NB for y > 2. For, if not, some aeNA

is expressible as /ι ̂  d - b, with de D, be NB. But, there must be a prime

ί> e T where hj < p 0 . Again, (ap, — δA)p = 1 = (bp, — δB\ forces hό to be

positive at p. Therefore, we have PD-NA = PD-NB, yielding the contra-

diction that HA — HB.

Using the same sort of argument and noting further that

(PD NXιΓi ΠPD'NKr)PF = PF NKlΠ .. ΠPF-NKr

and

(pD NKln (λPD-NκyjG

F = HKln ΠHKT ,

we have a slight generalization in

PROPOSITION 1.2. Lei j ^ Kr, B be splitting lattices for G. Then,

HB > HKχ Π Π HKr if and only if EB c compositum EKχ EKr.

1.3. Put H, = # „ . and E~EKv and E = Eu 9 Er. Let ! £ , , iΓr

be splitting lattices for G which are independent in the sense that EjF

has degree 2r. Using Proposition 1.2, an easy induction argument shows

that [JF : Hi (Ί Π iϊ r] = 2r. For each i there is an adele Λt e Jv such

that J , g J ( y , if,) and ^, e J(V, ^ ) for all j Φ i. Equivalently, Θ(ΛZ) e Hj

for j φ i and Θ(A^) e H^ This, too, follows from independence and Prop.

1.2. From this it follows that for any 1 < s < r and any permutation

{iu , ir} of {1, , r}, JEΓ̂ Π Π ^ 5 \ ^ S + 1 U UHir is non-empty. This

fact is useful, and is the basis for the (partial) spinor character theory

discussed below.

§2. A partial spinor character theory

We show how the splittings induced by the spinor exceptional integers

of a genus of ternary forms can be efficiently adapted to solve the spinor

equivalence problem in certain cases. This provides an alternative approach
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to the effective algorithmic process treated recently by Cassels in [C], [CJ.

In principle, what we consider here should also apply to forms in any

number of variables. However, because the local relative spinor norm

groups Θ(LP: Kp) have as yet not been fully calculated, we confine our

discussion only to the case of rk(i£) = 1 where these groups are determined

in [SPJ.

2.1. We begin with a negative observation showing the limitation of

our method. Consider the ternary positive Z-lattice L = <l)_L<((<Mr * <2V)2)

_L<(<7o<3Ί <2V)\> where qt = 5(mod8). Then, GL contains precisely 2r spinor

genera. See [EH]. This genus has no primitive spinor exceptional integers.

In fact, it does not have any splitting integer. For, if c were one such

integer, then 2 must ramify in EC = Q(V— c) since c ΞΞ 1 (mod 4). But,

Nc(2) does not contain Θ(O+(L2)) = Q2

X Similarly, we consider an indefinite

example with L = <— 1>J_ <(pr Pr)2>_L<Gv * 'PrY) where Pj = 1 (mod 8).

Then GL also has 2r spinor genera ( = classes). Any splitting integer for

GL must have the properties: c > 0, eg Qx2, c is representable by GL (e.g.,

c e (pi *pr)*Z). Also, we may assume that the only prime divisors of c

are from the p/s. This example is significant for two reasons: first, GL

does have splitting integers but that a simple computation shows none

of them is primitively (spinor) exceptional; secondly, it shows that in the

case of an indefinite ternary genus it is possible that every form in the

genus represents (and primitively represents) all the integers allowed by

congruential considerations, and furthermore, the number of classes in

such a genus can be arbitrarily large. This feature is not known to hold

for definite ternaries. Indeed, it has been conjectured by the second author

that the classes in a definite ternary genus are characterized by their sets

of primitively represented integers.

2.2. A set of splitting integers {c1? , cr) for G = GL is independent

if the multi-quadratic extension F(V— δl9 , V— δr)/F with δj e Cj disc (FL)

has field degree 2r. This set is called complete if [JF : PDJf] = 2r. In

general, if a genus G has r independent splitting integers then it has at

least 2r spinor genera.

On the other side of the extreme, from the examples discussed in 2.1

there exist ternary genera (in both the definite and indefinite cases) which

possess complete systems of spinor exceptional integers. We present here

an example for the definite case. Consider
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L = <1>±<(22/V Λ)>±<24(/v -Pn)2} ,

where pt ΞΞ 5 (mod 8) and (jpjpj) = 1 for all iΦj. A direct calculation

will show that G has precisely 2n+1 spinor genera, and that {l,pl9 -9pn}

is a complete system of (clearly primitive) spinor exceptional integers for

(7. Therefore, these integers form a complete "spinor character theory"

for G in the following sense. Let S be a spinor genus in G. Put χ^S)

= ± 1 with + 1 if and only if S represents pu i = 0, 1, , n, and p0 = 1,

and put

Next, choose a spinor genus SO which is "regular" in the sense that it

represents a complete set of spinor exceptional integers of G. Hence,

χ(S0) is trivial. Suppose ΛeJv and Sx a spinor genus in G we put A S^

= SΛX. One sees that χ induces a homomorphism

χ * : ^ — > { ± l } n + ί

given by Λ «-> χ(yl £0). To see this, one needs only to observe that A So

represents c, if and only if ΛeJ(V,Cj), i.e., iff θ(A)eHCj = PD-NcfJ%

2.3. In this subsection we show by means of an explicit numerical

example how the presence of sufficiently many independent spinor excep-

tional integers, together with Eisenstein reduction and certain graph-

theoretic considerations, provide a rather efficient classification up to

spinor-equivalence of positive ternary quadratic forms. See §§ 4, 5 below

for more details, as well as [SPJ.

Denote by <α, 6, c, e, /, g) for the ternary Z-lattice with inner product

matrix

a

g

f

g

b

e

f
e

c

Consider the lattice A1 = <4, 5, 400). Its genus contains four spinor genera

and twelve classes. More explicitly, let

A2 = <1, 80,100> , A3 = <16, 20, 29, 0, - 8 , 0> ,

Bι = <1, 20, 400> , W = <9, 9,100, 0, 0, -1> , B% = <4, 45, 45, - 5 , 0, 0> ,

C1 = <4, 25, 80> , C2 = <5,16,100> , C3 = <4, 20,101, 0, -2,0> ,

D1 = <16, 20, 25) , D2 = <4, 20,105, -10, 0, 0>, D3 = <4, 21,100, 0, 0, -2> .
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The clases of the A-lattices form a single spinor genus SA, and similarly

for SB, Sc, SD. Also by a direct calculation, we obtain that {1, 5} form a

complete system of spinor exceptional integers. With respect to the integer

1, SΛUSB constitute the good half-genus while SAUSC form the good

half-genus w.r.t. the integer 5. Now, if one is given two lattices X and

Y which are, say, in the genus under consideration, then one simply find

the reduce d forms X, Y and see to which spinor genus they belong. For

instance, if X = <16,136, 9, 2, 8, -16>, and Y == <4,180, 49, 60, 4, 20> then

by reduction theory, one sees that X = B2, Y = J53 so that X is spinor-

equivalent to Y.

2.4. Kemarks. Suppose the absolute discriminant of the base field

F is an odd integer, then the local relative spinor norm groups Θ(LP: c)

are determined in [SP]. In particular, one sees that if c is a spinor ex-

ceptional integer for GL then the orders ord/c) are bounded above by

ord^disc^) for all p < oo satisfying —δc g F*2. This is because if pJ(disc(Lp)

then condition (I) property of c forces ord/c) to be even, and condition

(Π) forces ord^c) < 1.

When a genus G admits some, but not a complete system of, spinor

exceptional integers, then the homomorphism χG defined in 2.2 serves only

a partial spinor character theory for G. Namely, if {cu , cr} is a

maximal set of independent spinor exceptional integers for G with r < t9

2ι — the number of spinor genera in G. One first observes that there is

always at least one regular spinor genus. To see this, consider any spinor

genus Sx in (7. Suppose Sx does not represent {cih9 , cir} and represents

the others. Then the discussions in 1.3 show that for eachy there exists an

adele A{i3) e C\kΦjJ(V, cίk)\J(V, ct). Therefore, upon putting A = \\r

j=hA{ί^

we see that SΛX is regular. Furthermore, since HCχ Π Π HCr has index

2r in JF there are exactly 2l'r spinor genera in G which are regular with

respect to {c1? , cr}. Now, if we choose SO to be any one of them, and

define the "character homomorphism"

as before. Then, χG is surjective with kernel J(V, cx)Γ\ f)J(V, cr).

Hence, χG characterizes only up to this kernel.

§3. Relation between representations by L and by SL

The main result in [E] is the following: Let c be a primitive spinor



254 J. W. BENHAM AND J. S. HSIA

exceptional integer for GL where L is a ternary Z-lattice. Then c is

primitively represented by SL if and only if L primitively represents cf

for some t > 0, (t, 2 disc (L)) = 1, and the Jacobi symbol ( — c disc (L)/t) = 1.

Here we generalize this result to an arbitrary number field which we need

in the next section.

First, we set some notations straight. Let G = GL be a fixed ternary

genus defined over a number field F9 and c a splitting integer for G, and

t) the volume ideal of G. Following [E], for each teR = int(F) satisfying

(t, 2t>) = 1 we define the idele j(t) = (;p(ί)) by

, if ordJt) is odd

if oτάp(t) is even, or p e co ,

where πp is any uniformizer at p. Since UPF$2 c: Θ(O+(LP)) for

is well defined in JF/Θ(JL).

Recall that for any finite abelian extension EjF there is a canonical

homomorphism

JF3 a — (αM) v
\ a p

inducing the Artin isomorphism from JFjPF NE/F(JE) onto Gal (E/F). The

infinite product of local norm residue symbols is only a finite product

since ap e Up and E$/Fp is unramified almost everywhere. Applying this to

our situation with a — j{t), E = Ec, NE/F(JE) — Ne9 we see that

( Π
ordp(ί)odd

if and only if j(t) e PF Nc, i.e., exactly when Πopdp(oodd(—SJp) = 1, where

( — δjp) = 1 means that — ̂ e ί 1 ^ . On the other hand, using the kind of

argument in § 1, one sees that j(t) ePF-Nc iff j(t) ePD-Nc-J% = ffc. Sum-

marizing, we have:

LEMMA 3.1. Let c be a splitting integer for G, and Ec = F(V—δe).

For any t e R satisfying (t, 2t>) = 1, the idele j(t) is defined mod Θ(JL), and

= l iff Π
ordp(ί)odd

LEMMA 3.2. // L primitively represents cf where teR, (t, 2b) = 1, then

c is primitively represented by ΛL for some ΛeJv with Θ(Λ) = j(t) mod Θ(JL).
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Proof. The proof is similar to Prop. 1.2, [E] except we use a lemma

from [HKK]. Let i e L be a primitive vector (i.e., L/Rv is torsion-free)

with Q(v) — cf. For each p\t, Lp is unimodular, and there is a local basis

{#I,P> Λ%JJL{*s,J with matrix formL Q)J_< — dp), dpe Up for which υ is ex-

pressible as xίtP + a2)Px2>p, a2)PeRp. For each p|2b one may also embed υ

in a binary sublattice with a similar expression of υ in terms of the basis

vectors. Let S be the finite set of prime spots dividing 2Vo. By Lemma

1.6, [HKK] (its generalization to number fields), there exist global vectors

xl9 x2eL such that at each p e S xt approximates xitP (i = l, 2), and d(xί9 x2)p

e Up at all p g S save but one spot p0. Therefore, B : = Rxx + Rx2 is a

direct summand of L, and we write L = jBΘ§ίx3 for some fractional ideal

2ϊ. Put M = R(t~1xl) + R(tx2) + 2ίx3. If the approximation above is good

enough then Bp is isometric to Rpxί>p + Rpx2)P (see e.g., [C] p. 123). One

sees easily that for each peS there is a rotation φp on Vp satisfying:

φp(Lp) = Mp, and θ(φp) =jp(t)mod UpFf. For J)gS, Lp = Mp. So, putting

M = ΛL, we see that t~ιυ is primitive in ΛL and #(J) = j(t) moάθ(JL).

PROPOSITION 3.3. Let c be a spinor exceptional integer for GL. Then,

SL primitively represents c if and only if L represents cf primitively for some

t e R, (t, 2b) = 1, and ((EJF)lJ(t)) = 1.

Proof. Suppose MeSL primitively represents c. Replace M by Me

Cls(M) such that Mq — Lq for all qφp0 where p0 may be chosen to be any

finite prime spot where VPo is isotropic. In particular, we may suppose

that £0 = (tfo) is principal and relatively prime to 2b. If x e M is a primitive

vector with Q(x) = c, choose k so that y — πl x is primitive in L. So, L

primitively represents cf with t = π*. Lemma 3.2 implies c is primitively

represented by ΛL for some ΛeJv with Θ(Λ) = j(t) moάθ(JL). Hence, SL

and SΛL belong to the same good half-genus w.r.t. c; in other words,

Θ(Λ) e Hc and so ((EJF)lj(t)) — 1 by Lemma 3.1. The converse is now clear.

§4. Representations and graphs

In this section we adopt the notations and terminology of [KJ, and

we use g(—), b(—, —) instead of our usual Q(—), B(—, —). Thus, q(x + y)

— q(x) — q(y) = b(x, y), and a ternary free lattice is regular when d(el9 e2, e3)

:= det(b(eί, eό)) is a unit for any lattice basis {eu e2, e3}, and is called half-

regular if its half-discriminant — d'(el9 e2, e3) = — d(eί9 e29 e8)/2 is a unit.

Let L be a ternary Z-lattice and p a prime when Lp is half-regular. Using
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Kneser's neighborhood theory approach, a graph Z(L,p) is constructed in

[SPJ whose vertices consist of lattices XeGL such that Xq = Lq for all

q Φ p, and two vertices X, Y are adjacent (neighboring) if and only if

their distance d(X, Y, p) = 1, i.e., [X :XΓ)Y] = [Y: Xf] Y] = p. This graph

is a tree (i.e., a connected graph without any loop). The corresponding

local graph at p is identifiable with the Bruhat-Tits building for the spin

group of Vp. This setting may be broadened to arbitrary number fields

as well as to lattices of rank greater than three. We simply state here

that if L is a ternary i?-lattice which is half-regular at a prime spot p on

F, then there is a graph R(L, p) which is constructed in a similar way,

and it too is a tree. A basic result about the graph Z(L9p) is that it

contains representative classes from at most two spinor genera; but, if a

spinor genus is represented in the graph then every class in this spinor

genus is represented. This property remains true for the graph R(L, p).

We denote by g{L, p) the number of spinor genera in GL that is represented

in R(L9 p). Two questions naturally arise in this context:

(A): For which prime spot p is g(L, p) = 2?

(B): When g(L, p) = 2, how are the two spinor genera related?

We address to these two questions here.

4.1. We first fix some notations. Let π be a fixed uniformizer in Fp.

A half-regular lattice is easily seen to be isotropic and i^-maximal on Vp.

Hence, Lp admits a basis {eu e2, e3} where q{el) = 0 = q(e2), b(eί9 e2) — 1. Let

*P = Sei-€2-Sei.πe2 e O+(VP). Then, σ,(Q = Rp(πed + R^-'e,) + R,e3, and has

spinor norm θ(σ,) = π-Ff. Define the adele Σ(p) = (Σq(p)) by Σq(p) = 1 for

q Φ p, and Σp(p) = σp. For each prime spot p where Lp is half-regular, we

define the idele j(p) = (jq(p)) by jq(p) = 1 and jp(p) = π. Since Lp is half-

regular, it is not difficult to see that θ(O+(Lp))=UpFf2 and therefore, j(p)

is also well defined modulo Θ(JL). For φeO+(Vp) we denote the distance

d(Lp, φ(Lp)) = n by [Lp: LpΓ)φ(Lp)] = NF/Qp\

LEMMA 4.2. θ(φ) e UPF^2 if and only if d(Lp, φ(Lp)) is even.

Proof. By the invariant factor theorem, we may assume that the basis

{eu e2, e3} for Lp is also such t h a t φ(Lp) = Rp(πneϊ) + Rp(π'ne2) + Rpez where

β3 is orthogonal to eu e2. Here, n = d(Lp, φ(Lp)). There is an isometry fe

O+(φ(Lp)) such t h a t f(πneύ = Φ(ed, f(π'ne2) = φ(e2), and f(e3) = φ(e3). Clearly,

φ = f σn

p, and θ(φ) = θ(f)θ(σp)
n eπn Up-F^2 since Lp is half-regular. This

completes the proof.
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This proof is somewhat simpler than the one given in [SPJ. An im-

mediate consequence of this lemma is that the graph R(L, p) represents

classes from at most two spinor genera, a result cited earlier. Further-

more, if g(L, p) = 2, then adjacent lattices belong to different spinor genera.

4.3. Suppose M is a neighbor of L in R(L, p). Then, M = Σ(p)L for

a suitable choice of basis {eue2,e3} for Vp. But, θ(Σ(p))=j(p) moάθ(JL).

Hence, M is spinor-equivalent to L if and only if j(p) e PDJF- In other

words, \R(L, p)\ contains lattices from only one spinor genus exactly when

j(p) e PDJF* This answers question (A). For an example, if L is the Z-

lattice <1>_L<17>J_<172> then \Z(L,p)\ contains two spinor genera for p =

3, 5, 7, 11, 23, 29, 31, 37, 41, 67, etc. Here GL has two spinor genera

and eight classes, 4 classes in each spinor genus. A generalization of

this example is the following:

EXAMPLE 4.4. Let pl9 ,pr be primes each congruent to 1 (mod 8)

and (pJPj) = 1 for ί Φ j . Consider the Z-lattice L = (1} J_ <Pi p r ) _|_

<(Pi * *Pr)2> Let p be a prime not dividing the half-discriminant of L,

which is — 4Qv φ r )
3 . Then, \Z(L,p)\ contains lattices from only one

spinor genus if and only if (pjp) = 1 for i = 1, , r. Note: in this ex-

ample, GL has 2r spinor genera, but has no splitting integers.

4.5. Suppose now c is a splitting integer for GL and p a prime spot

at which Lp is half-regular. Let M be a neighbor of L in R(L, p). As

before, M = Σ(p)L for a suitable basis of VP9 and ί(^(p)) = j(p) mod 0(JL).

Thus, Λf and L belong to the same c-half-genus if and only if j(p)ePD-

NC'J$ = Hc. By the proof of Lemma 3.1, this can happen if and only if

((EJF)lj(p)) = 1, i.e., iff -δce Fp

x 2. In particular, the following is quite

useful in applications:

PROPOSITION. If c is a (primitive) spinor exceptional integer for GL and

— δc is a non-square at p, then the graph R(L, p) contains two spinor genera,

one from the good c-half-genus and one from the bad. Whereas, if g(L, p}

— 2 and — δce F*2 then either both spinor genera (primitively) represents

c or both do not

Thus, the presence of splitting integers or (primitive) spinor exceptional

integers sheds new informations on the representational properties of the

graphs R(L, p) at various prime spots p. This answers, at least partly,

our question (B).
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§ 5. Appendix

We show how the results of §4 can be efficiently used to construct

the classes in the genus. In particular, if there is a complete system of

spinor exceptional integers for GL the construction of all the classes in GL

is quickly accomplished. We illustrate this point by considering the ex-

ample given in 2.3, using the same notation for <α, b,c,eyf,g}. We first

make two preliminary, but useful, observations:

( 1 ) If Xe \Z(Y,p)\ then Z(X,p) =

( 2 ) If XeSγ then Z(X,p) ^ Z(Y,p) for all applicable p.

(1) is nearly obvious. To see (2) one just needs to remember that if a

lattice M belongs to the graph Z(N, p) then every class in SM is repre-

sented in the graph as well.

We shall re-label the lattices as we construct them. We begin with

M = <4, 5, 400> in basis {eu e2, ez}. We construct the graph Z(M, 3). Using

the method developed in [SPJ we see M has 4 neighbors

Mx = Z(-i(ex + ej) + Z(3e2) + Zez

M2 = Ziϋβy - e2)) + Z(3e2) + Ze3

M3 = Z(i(e2 + e3)) + Zex + Z(3e2)

M4 - Z(i(e2 - e3)) + Zex + Z(3e2) .

Mt and M2 both (Eisenstein) reduce to <1, 20, 400> = L, while Ms and M4

reduce to <4, 45, 45, — 5, 0, 0> = K. Similarly, L has 4 neighbors which

reduce to two classes: N = <1,80,100) and, of course, M. From the

neighbors of K we pick up a new class R = <16, 20, 29, 0, — 8, 0>, and the

class J = <9, 9,100, 0, 0, —1> from the neighbors of R. After this point

no new class appears. Thus, each vertex is adjacent to 4 vertices re-

presenting two different classes, and the picture for the graph Z(M, 3) is

given below. Note that the prime 2 is not applicable since M is not

half-regular there. Since {1, 5} is a complete system of (primitive) spinor

exceptional integers for GM and since M manifestedly represents 5, we

seek for a small prime p where — <55 is a non-square in Qp so as to have

Z(M,p) contain spinor genus from both the good and the bad half-genus

with respect to c = 5, by the Proposition in 4.5. Such a prime is p = 3

since d5 = 1. Therefore, the neighbors L, K of M belong to the bad half-

genus w.r.t. 5. Since the genus GM has 4 spinor genera, we need to go

on. So far, we have caught the two spinor genera SA = Cls(M)UCls(iV)
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U Cls(J5), and SB=Cls(L) U Cls(K) U Cls(J). SΛ is regular because it repre-

sents both 1 and 5, while SB represents 1 but not 5. We need a spinor

genus which does not represent 1. Since δt = 5 and (—5/7) = 1 we cannot

use p = 5, 7. However, (-5/11) = - 1, so both Z(M, 11) and Z(L, 11) will

yield a desired spinor genus.

Consider Z(L, 11). L has 12 neighbors every 4 of which yield the same

reduced forms, and the new classes obtained are: F = <5,16,100>, G =

<4, 20,101, 0, - 2 , 0>, and H - <4, 25, 80>. Now, the neighbors of F, G, H

will all be in SL by 4.2; their neighbors turn out to be again isometric to

either F, G, or H. Hence, Z(L, 11) adds only 3 new classes which form
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the third spinor genus Sc, and we see that Sc represents 5 but not 1.
So, the spinor character theory of §2 tells us that the fourth remaining
spinor genus should represent neither 1 nor 5. By (2) above, the graphs
Z{K, 11) and Z(J, 11) are all isomorphic to Z(L, 11). On the other hand,
since (— δjlΐ) = (— δjlΐ) = — 1, the graph Z(M, 11) should produce the
final desired spinor genus according to 4.5. Indeed, this spinor genus SD

= Cls(W)UCls(X)UClβ(Y), where W = <4, 20,105, -10, 0, 0>, X=<4,21,
100, 0, 0, -2>, and Y = <16, 20, 25>. This completes the genus GM with 4
spinor genera and each having 3 classes.
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