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ON SPINOR EXCEPTIONAL REPRESENTATIONS
J. W. BENHAM anp J. S. HSIA*

Let f(x,, - - -, x,) be a quadratic form with integer coefficients and c ¢ Z.
If f(x) = ¢ has a solution over the real numbers and if f(x) = ¢ (mod N) is
soluble for every modulus N, then at least some form A in the genus of
f represents c¢. If m =>4 one may further conclude that A belongs to the
spinor genus of f. This does not hold when m = 3. However, in that
situation there is a so-called “759, Theorem” which asserts that either
every spinor genus in the genus of f represents ¢ (i.e., there is a form in
each spinor genus representing c) or else precisely half of all the spinor
genera do. See [JW], [K], [H]. The theory of spinor exceptional represent-
ations is concerned with resolving the remaining 25%, ambivalence. This
we discuss in §§3, 4. We show in §1 a field-theoretic interpretation for
the various partitions of the genus into half-genera by certain “splitting
integers”, and in §2 how this splitting feature can be exploited in certain
cases to provide an invariant classification of forms up to spinor-equival-
ence, which may be viewed as a kind of a partial “spinor character theory”,
yielding in these instances an alternative to the algorithmic process of
determining spinor-equivalence expounded recently by Cassels in [C], [C,].

§0. Preliminaries

Unexplained terminology and notations are generally those from [OM].
Let F be an algebraic number field with R as its ring of algebraic integers,
V a regular quadratic F-space of dimension m, and L an R-lattice on V
with integral scale. Finite prime spots will be denoted by p < oo while
infinite ones by pe . Let G = G, be the genus of L and S be the spinor
genus of X. Suppose K is a lattice which is representable by G and such
that its rank rk(K) = dim(FK) = m — 2. Then, by Witt’s theorem we may
assume that FK is a subspace of V with orthogonal complement U. Put
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E, = F(v/ — 6,) where 3, is the discriminant of U. Whenever E, is used
in this context, we shall always assume that E, == F. Let J% be the sub-
group of the idele group JJ, of F' consisting of those ideles (i,) such that
i,€ (0O*(L,)) for all p < oo, where 6§ is the spinor norm function. Set N,
= Ng,/r(Jze) and He = Ni-P,-J% where D = 6(0*(V)). Now, the subgroup
Jy Py -Jy-J, of the adele group o, (split rotations) on V is independent
of the choice of Le G as J, contains the commutator subgroup of J,. We
denote this subgroup by J(V, K). The second entry depends only on the
isometry class of the ambient space FK. For, if K is replaced by K with
FK isometric to FK, then putting FK = U we see that ¢(J,)¢ ™! = Jy for
some ¢ € O*(V). This gives J(V, K) = J(V, K). A similar assertion holds
for H,. From the general theory of spinor exceptional representations,
one knows that # induces an isomorphism from J,/J(V, K) onto Jz/Hy,
and moreover, the group index [Jr: Hy] < 2. This leads us to call a
regular R-lattice K a splitting lattice for G if (i) rk(K) = m — 2, (ii) G re-
presents K, and (iii) [J: Hx] = 2. When K = {(c¢) we call ¢ a splitting
integer for G and Ey, 6, Nx, Hx, J(V, K) are denoted by E,, 4, N,, H,,
J(V, ¢) respectively. From the inequality [J : H;] < 2 it follows that either
every spinor genus in G represents K or else exactly half of all of them
do. The latter can occur if and only if the following two conditions are
fulfilled:

(I )2 0(JL) < NK
(II): O(L, : K,) = Ng(p) for all p < oo .

Here Ni(p) denotes the p-th component of N, and 6(L,: K,) is a certain
relative integral spinor norm group defined in [SP], [H,]. We say K is a
spinor exceptional lattice for G if its rank is m — 2 and if it is represent-
able by some, but not by every, spinor genus in G. The general theory
also shows that K is splitting for G if and only if condition (I) is satisfied,
and it is spinor exceptional for G precisely when both conditions (I), (II)
hold. When K is splitting, G is split into two so-called half-genera (Halb-
geschlecter—a term introduced in [K]) and we say two lattices M,, M, in
G belong to the same half-genus w.r.t. K iff M, = AM, for some A J(V, K).
Equivalently, 6(4) e H;. When, in addition, K is also spinor exceptional
then these half-genera take on added significance in that two lattices in
the same half-genus either have both of their associated spinor genera
represent K or both don’t. Naturally, if V is indefinite the meaning is
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even sharper. If K is spinor exceptional, and Xe G, we say X belongs
to the bad (resp. good) half-genus if S, doesn’t (resp. does) represent K.
Similarly, one may consider primitive representations and all the defini-
tions and assertions carry over excepting only that condition (II) needs
to be replaced by the obvious primitive analog:

(II)*: 0*(L, : K,) = Ng(p) for all p < co.

For more details of some of the assertions here, see [JW], [K], [H], [SP].
A relation between exceptionality and primitive exceptionality is the
following:

LemmMA. Every spinor exceptional lattice K for G induces a primitive
spinor exceptional lattice.

Proof. There is an Xe G which represents K. Let Y be a sublattice
of X isometric to K. If T is the set of primes p at which Y, is imprimitive
in X,, then T is a finite set. For each pe T embed Y, in a primitive sub-
lattice Y, of the same rank. Construct the sublattice ¥ of X satisfying:
17,, =Y, for pe T, and f’v =Y, for pe T. Hence, Y © Y and both span
the same space. So, E, = E; and Y is also splitting. Now, (X, : Y)=
N,(p) by hypothesis, and 6%(X, : Y,) < 6(X, : Y,) by construction. Since also
Ny(p) = Ny(p) and Nyp(p) < 6%(X, : ¥,) we conclude that 6%(X,: Y,) = Ny(p)

for all p < oo, ie., Y is the induced primitive spinor exceptional lattice
for G.

§1. Splitting lattices and field extensions

We give a field-theoretic interpretation of the partitions of the genus
into various half-genera. In particular, two spinor exceptional lattices are
represented by the same set of spinor genera if and only if the induced
relative quadratic extensions are identical. More precisely, we have:

PropositioN 1.1. Let A, B be two splitting lattices for G. Then, H,
= Hy if and only if E, = E,.

Proof. By the existence theorem of global class field theory, it is
sufficient to show that H, = H, precisely when P,-N, = Py-Nj.

Suppose first that H, < H,;, and a e N,. Write ¢ = d-b-r, where d € D,
be N, redé. Since B is a splitting lattice, we may suppose that r, =1
at all p < co. If T is the set of real spots where V, is anisotropic, then
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d is positive on T. Also, at every spot p we have the Hilbert symbols
satisfying: (a,, — d,), = (b,, — d5), = 1. Since J, and §, are both positive
on T, a, and b, must also be positive. Therefore, we may, in fact, assume
that r = 1 since 6(0*(V,)) = F) at each infinite spot p outside of T. This
means that P,-N, < P,-N,, whence P,-N, < P,-N,.

Conversely, suppose H, + H,. Put F* = ., h;-D, h, = 1. Then, P-
N,=P,-N,U---Uh,-P,-N,and P,-Ny = P,-N,U --- Uh, P, N, These
unions are disjoint since [Jr: P,-N, = [J,: P,-N;| = 2[F* : D]. But,
P,-N, is also disjoint from h;-P,- N, for j > 2. For, if not, some ac N,
is expressible as h;-d-b, with de D, be N,. But, there must be a prime
peT where h; <,0. Again, (a, — d,), =1 = (b, — ds), forces h; to be
positive at p. Therefore, we have P, -N, = P,-N,, yielding the contra-
diction that H, = H;.

Using the same sort of argument and noting further that

(Pp-Ng,NV - NPy Ng)Pp= Pp-Ng, (oo« NPy Ny,
and
(Pp-Ne,N -+ NP,-Ng)-Jé=He N - NHg,,
we have a slight generalization in

ProrositioNn 1.2. Let K, --- K,, B be splitting lattices for G. Then,
H,> Hy N ---NHg, if and only if E,  compositum Ey, ---Ey..

1.3. Put H, = Hy, and E;=E;, and E=E,---,E.. Let K, ---, K,
be splitting lattices for G which are independent in the sense that E/F
has degree 2". Using Proposition 1.2, an easy induction argument shows
that [J, : HN---NH,]=2". For each i there is an adele 4,¢, such
that 4,2 J(V, K,) and 4,eJ(V, K;) for all j+ i. Equivalently, 8(4,) € H,
for j # i and 6(A,) ¢ H,, This, too, follows from independence and Prop.
1.2. From this it follows that for any 1 < s < r and any permutation
i, ---,0,}of {1,---,r}, H,0---NH\H,,,,U---UH, is non-empty. This
fact is useful, and is the basis for the (partial) spinor character theory
discussed below.

§2. A partial spinor character theory

We show how the splittings induced by the spinor exceptional integers
of a genus of ternary forms can be efficiently adapted to solve the spinor
equivalence problem in certain cases. This provides an alternative approach
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to the effective algorithmic process treated recently by Cassels in [C], [C/].
In principle, what we consider here should also apply to forms in any
number of variables. However, because the local relative spinor norm
groups O(L,: K,) have as yet not been fully calculated, we confine our
discussion only to the case of rk(K) = 1 where these groups are determined
in [SP].

2.1. We begin with a negative observation showing the limitation of
our method. Consider the ternary positive Z-lattice L = (1) | <(q4q;- - - ¢.)>
1<(Quq;- - -q,)*) where g, = 5(mod 8). Then, G, contains precisely 2" spinor
genera. See [EH]. This genus has no primitive spinor exceptional integers.
In fact, it does not have any splitting integer. For, if ¢ were one such
integer, then 2 must ramify in E,=Q(v'— c¢) since ¢ =1 (mod 4). But,
N,(2) does not contain 8(0*(L,)) = Q5. Similarly, we consider an indefinite
example with L = (— 1> | {(p,---p,)*> | {p:- - -p,)"> where p;, =1 (mod 8).
Then G; also has 2" spinor genera (= classes). Any splitting integer for
G; must have the properties: ¢ > 0, ¢ ¢ @%, c is representable by G; (e.g.,
ce(p,--+p,)Z). Also, we may assume that the only prime divisors of ¢
are from the p,’s. This example is significant for two reasons: first, G;
does have splitting integers but that a simple computation shows none
of them is primitively (spinor) exceptional; secondly, it shows that in the
case of an indefinite ternary genus it is possible that every form in the
genus represents (and primitively represents) all the integers allowed by
congruential considerations, and furthermore, the number of classes in
such a genus can be arbitrarily large. This feature is not known to hold
for definite ternaries. Indeed, it has been conjectured by the second author
that the classes in a definite ternary genus are characterized by their sets
of primitively represented integers.

2.2. A set of splitting integers {c, - -+, ¢,} for G = G, is independent
if the multi-quadratic extension F(v'—4,, - - -, ¥/ — 4,)/F with 4, e ¢; disc (FL)
has field degree 2". This set is called complete if [Jp: P,J§] =2". In
general, if a genus G has r independent splitting integers then it has at
least 2" spinor genera.

On the other side of the extreme, from the examples discussed in 2.1
there exist ternary genera (in both the definite and indefinite cases) which
possess complete systems of spinor exceptional integers. We present here
an example for the definite case. Consider
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L= )] {2 -p)y L 2Dps - P,

where p, = 5(mod 8) and (p,/p;) =1 for all i #+j. A direct calculation
will show that G has precisely 2"*' spinor genera, and that {1, p,, ---, p,}
is a complete system of (clearly primitive) spinor exceptional integers for
G. Therefore, these integers form a complete “spinor character theory”
for G in the following sense. Let § be a spinor genus in G. Put y,(S)
= + 1 with + 1 if and only if S represents p;,, i =0, 1, ---, n, and p, = 1,
and put

X(S) = (XO(S)> Tty Xn(S)) € {i 1}”“ .

Next, choose a spinor genus S, which is “regular” in the sense that it
represents a complete set of spinor exceptional integers of G. Hence,
x(S,) is trivial. Suppose A€, and Sy a spinor genus in G we put 4-Sy
= S,y. One sees that y induces a homomorphism

Xe : Jy —> {£ 1}**

given by 4+~ y(4-S,). To see this, one needs only to observe that 4-S,
represents c; if and only if AeJ(V,c)), ie., iff 6(4) e H,, = P,-N,,-J§.

2.3. In this subsection we show by means of an explicit numerical
example how the presence of sufficiently many independent spinor excep-
tional integers, together with Eisenstein reduction and certain graph-
theoretic considerations, provide a rather efficient classification up to
spinor-equivalence of positive ternary quadratic forms. See §§4, 5 below
for more details, as well as [SP,].

Denote by {a, b, ¢, e,f, g8 for the ternary Z-lattice with inner product

matrix
a g f
g b e
f e c

Consider the lattice A' = {4, 5,400>. Its genus contains four spinor genera
and twelve classes. More explicitly, let

A’ = (1, 80, 100> , A® = (16, 20, 29, 0, —8, 0> ,
B' = (1, 20, 4005, B* = <9, 9, 100,0,0, —1>, B* = {4, 45, 45, —5, 0,0,
Ct = (4, 25,805, C* = (5,16,1005, C* = (4, 20,101,0, —2, 0>,

D' = (16,20, 25) , D* = <4, 20, 105, —10, 0, 0y, D* = (4, 21, 100, 0, 0, —2) .
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The clases of the A-lattices form a single spinor genus §“, and similarly
for §%, §% §?. Also by a direct calculation, we obtain that {1, 5} form a
complete system of spinor exceptional integers. With respect to the integer
1, S4US? constitute the good half-genus while §4US° form the good
half-genus w.r.t. the integer 5. Now, if one is given two lattices X and
Y which are, say, in the genus under consideration, then one simply find
the reduce d forms X, Y and see to which spinor genus they belong. For
instance, if X = (16,136,9, 2,8, —16), and Y = <4, 180, 49, 60, 4, 20> then
by reduction theory, one sees that X = B?, Y = B® so that X is spinor-
equivalent to Y.

2.4. Remarks. Suppose the absolute discriminant of the base field
F is an odd integer, then the local relative spinor norm groups 4(L,: ¢
are determined in [SP]. In particular, one sees that if ¢ is a spinor ex-
ceptional integer for G, then the orders ord(c) are bounded above by
ord,disc(L,) for all p < oo satisfying —d, ¢ F5*. This is because if ptdisc(L,)
then condition (I) property of c¢ forces ord,(c) to be even, and condition
(II) forces ord,(c) < 1.

When a genus G admits some, but not a complete system of, spinor
exceptional integers, then the homomorphism y, defined in 2.2 serves only
a partial spinor character theory for G. Namely, if {c, - --,¢,} is a
maximal set of independent spinor exceptional integers for G with r < ¢,
2! = the number of spinor genera in G. One first observes that there is
always at least one regular spinor genus. To see this, consider any spinor
genus Sy in G. Suppose Sy does not represent {c,,, - - -, ¢;} and represents
the others. Then the discussions in 1.3 show that for each j there exists an
adele A(;) € Nirs J(V, e, \J(V, ¢;)). Therefore, upon putting 4 = []5., 4(G,),
we see that S,y is regular. Furthermore, since H, N ---NH, has index
2" in J, there are exactly 2'-" spinor genera in G which are regular with
respect to {c, ---,¢,}. Now, if we choose S, to be any one of them, and
define the “character homomorphism”

Xetdy —> {1}

as before. Then, y, is surjective with kernel J(V,c)N---NJ(V,ec,).
Hence, y¢ characterizes only up to this kernel.

§3. Relation between representations by L and by S,

The main result in [E] is the following: Let ¢ be a primitive spinor
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exceptional integer for G, where L is a ternary Z-lattice. Then c¢ is
primitively represented by S, if and only if L primitively represents cf’
for some £ > 0, (¢, 2 disc (L)) = 1, and the Jacobi symbol (—c disc (L)/t) = 1.
Here we generalize this result to an arbitrary number field which we need
in the next section.

First, we set some notations straight. Let G = G, be a fixed ternary
genus defined over a number field F, and ¢ a splitting integer for G, and
b the volume ideal of G. Following [E], for each te R = int(F) satisfying
(¢, 20) = 1 we define the idele j(?) = (j,(¥)) by

z, if ordy?) is odd

1 if ord,(?) is even, or pe co,

it) = {

where z, is any uniformizer at p. Since UF)* < 6(07(L,) for p v, j®)
is well defined in J,/6(J}).

Recall that for any finite abelian extension E/F there is a canonical
homomorphism

Jpsa = (a) —> (EE) . (E&f’;ﬂ) e Gal(E/F)
a P
inducing the Artin isomorphism from J;/P; N(Jz) onto Gal(E/F). The
infinite product of local norm residue symbols is only a finite product
since a, € U, and Ey/F, is unramified almost everywhere. Applying this to
our situation with a = j(f), E = E,, Ny {(Jy) = N,, we see that

<%§~*) - I (J@fi‘s/F) — 1e Gal(E,/F)

if and only if j(t) € Pr-N,, i.e., exactly when []oapeyosa (—0./P) = 1, where
(—0d./p) = 1 means that —d, e F}’. On the other hand, using the kind of
argument in § 1, one sees that j(¢) e P,-N, iff j(t)e P,-N,-J¢ = H,. Sum-
marizing, we have:

LEmMaA 3.1. Let ¢ be a splitting integer for G, and E. = F(v/ —3d,).
For any te R satisfying (t, 20) = 1, the idele j(t) is defined mod 6(J,), and

j®eH. iff ( Ij(/tf' ) =1 iﬂfordgmd(;"c) —1.

LemmA 3.2. If L primitively represents ct* where te R, (t, 20) = 1, then
¢ is primitively represented by AL for some A e J, with 6(4) = j(t) mod 6(J,).
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Proof. The proof is similar to Prop. 1.2, [E] except we use a lemma
from [HKK]. Let veL be a primitive vector (i.e., L/Rv is torsion-free)
with @Q(v) = c’. For each pl|t, L, is unimodular, and there is a local basis
{145 %s,,} | {2,,} With matrix form((l) é)_}_(—dp}, d,e U, for which v is ex-
pressible as x,, + a,,%,, @,,€ R, For each p|20 one may also embed v
in a binary sublattice with a similar expression of v in terms of the basis
vectors. Let S be the finite set of prime spots dividing 2tv. By Lemma
1.6, [HKK] (its generalization to number fields), there exist global vectors
x;, X, € L such that at each pe S x, approximates x, , (=1, 2), and d(x,, x,),
eU, at all pe S save but one spot p,. Therefore, B := Rx, + Rx, is a
direct summand of L, and we write L = B@Ux, for some fractional ideal
A, Put M = R 'x) + R(ix,) + Yx.. If the approximation above is good
enough then B, is isometric to R,x,, + R,x., (see e.g., [C] p. 123). One
sees easily that for each pe S there is a rotation ¢, on V, satisfying:
¢(L,) = M,, and 6(g,) =j, () mod UF*. For peS, L, =M, So, putting
M = AL, we see that {~'v is primitive in AL and 6(4) = j(¥) mod (J,).

ProrosITION 8.3. Let ¢ be a spinor exceptional integer for G,. Then,
S, primitively represents ¢ if and only if L represents ct’* primitively for some
teR, (t,20) =1, and ((E,[F)[j®) = 1.

Proof. Suppose M e S, primitively represents c. Replace M by Me
Cls(M) such that M, = L, for all q#p, where p, may be chosen to be any
finite prime spot where V,, is isotropic. In particular, we may suppose
that p, = (r,) is principal and relatively prime to 20. If x € M is a primitive
vector with @Q(x) = ¢, choose k so that y = zf-x is primitive in L. So, L
primitively represents ct* with ¢ = z¥. Lemma 3.2 implies ¢ is primitively
represented by AL for some Aed, with 8(4) = j(t) mod 8(J,). Hence, S,
and S, belong to the same good half-genus w.r.t. c¢; in other words,
0(4) e H, and so ((E./F)/j(t)) = 1 by Lemma 3.1. The converse is now clear.

§4. Representations and graphs

In this section we adopt the notations and terminology of [K,], and
we use q(—), b(—, —) instead of our usual @(—), B(—, —). Thus, g(x + )
— g(x) — g(y) = b(x, y), and a ternary free lattice is regular when d(e,, e,, ;)
:= det(b(e;, ¢;)) is a unit for any lattice basis {e, e,, e,}, and is called half-
regular if its half-discriminant — d'(e, e, €;) = — d{e,, e;, €;)/2 is a unit.
Let L be a ternary Z-lattice and p a prime when L, is half-regular. Using
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Kneser’s neighborhood theory approach, a graph Z(L, p) is constructed in
[SP,] whose vertices consist of lattices X e G, such that X, = L, for all
g # p, and two vertices X, Y are adjacent (neighboring) if and only if
their distance d(X, Y,p) = 1,1e, [X: XNY] =[Y: XNY] =p. This graph
is a tree (i.e.,, a connected graph without any loop). The corresponding
local graph at p is identifiable with the Bruhat-Tits building for the spin
group of V,. This setting may be broadened to arbitrary number fields
as well as to lattices of rank greater than three. We simply state here
that if L is a ternary R-lattice which is half-regular at a prime spot § on
F, then there is a graph R(L, p) which is constructed in a similar way,
and it too is a tree. A basic result about the graph Z(L,p) is that it
contains representative classes from at most two spinor genera; but, if a
spinor genus is represented in the graph then every class in this spinor
genus is represented. This property remains true for the graph R(L, p).
We denote by g(L, p) the number of spinor genera in G, that is represented
in R(L,p). Two questions naturally arise in this context:

(A): For which prime spot p is g(L, p) = 2?

(B): When g(L, ) = 2, how are the two spinor genera related?
We address to these two questions here.

4.1. We first fix some notations. Let = be a fixed uniformizer in F,.
A half-regular lattice is easily seen to be isotropic and R,-maximal on V,.
Hence, L, admits a basis {e,, e, e;} where g(e;) = 0 = g(e,), b(e,, e,) = 1. Let
0, = 8. _es'Ser-res € 0*(V)). Then, o(L,) = R(ne,)) + Rz 'e;) + R,e,, and has
spinor norm 6(c,) = =-F;%. Define the adele 2(p) = (F(p)) by 2 (p) = 1 for
q# p, and 3 (p) = g, For each prime spot p where L, is half-regular, we
define the idele j(p) = (j,(v)) by j.(p) =1 and j(p) = n. Since L, is half-
regular, it is not difficult to see that (0*(L,))=U,-F}* and therefore, j(p)
is also well defined modulo 6(J,). For ¢ e O*(V,) we denote the distance
d(L,, $(L) = n by [L,: LNKL)] = Nygh™

Lemma 4.2. 6(p) € UF® if and only if d(L,, ¢(L,)) is even.

Proof. By the invariant factor theorem, we may assume that the basis
{e, e, e} for L, is also such that ¢(L,) = R(z"e,) + Rz "e,) + R,e, where
e; is orthogonal to e, e,, Here, n = d(L,, #(L,)). There is an isometry fe
O*(4(L,)) such that f(z"e,) = g(e,), f(x~"e;) = 4(e.), and f(e;) = g(e;). Clearly,
¢ = f-a;, and 6($) = 0(f)6(c,)" € x"- U,- F* since L, is half-regular. This
completes the proof.
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This proof is somewhat simpler than the one given in [SP,]. An im-
mediate consequence of this lemma is that the graph R(L,p) represents
classes from at most two spinor genera, a result cited earlier. Further-
more, if g(L, p) = 2, then adjacent lattices belong to different spinor genera.

4.3, Suppose M is a neighbor of L in R(L, p). Then, M = X(p)L for
a suitable choice of basis {e, e, e;} for V,. But, (2(p))=j(p) mod 4(J,).
Hence, M is spinor-equivalent to L if and only if j(p) e P,Jé In other
words, |R(L, p)| contains lattices from only one spinor genus exactly when
j(®) € P,Jé. This answers question (A). For an example, if L is the Z-
lattice (1>_| (17> | (17*> then |Z(L, p)| contains two spinor genera for p =
3, 5, 7, 11, 23, 29, 31, 37, 41, 67, ---etc. Here G, has two spinor genera
and eight classes, 4 classes in each spinor genus. A generalization of
this example is the following:

ExampLE 44. Let p,---,p, be primes each congruent to 1 (mod 8)
and (p,p;) =1 for i+ j. Consider the Z-lattice L = (1) | {(ps---p,y |
{p:---p,)*>. Let p be a prime not dividing the half-discriminant of L,
which is — 4(p,---p,)’. Then, |Z(L, p)| contains lattices from only one
spinor genus if and only if (p,/jp) =1 for i =1, ---,r. Note: in this ex-
ample, G, has 2" spinor genera, but has no splitting integers.

4.5. Suppose now c is a splitting integer for G, and p a prime spot
at which L, is half-regular. Let M be a neighbor of L in R(L,p). As
before, M = X(p)L for a suitable basis of V,, and 6(2(p)) = j(p) mod 8(J,).
Thus, M and L belong to the same c-half-genus if and only if j(p) € Pp-
N,-J§ = H,. By the proof of Lemma 8.1, this can happen if and only if
(E./F)[j() =1, ie., iff —d,eF In particular, the following is quite
useful in applications:

PropPoSITION. If ¢ is a (primitive) spinor exceptional integer for G, and
— 8, is a non-square at p, then the graph R(L, p) contains two spinor genera,
one from the good c-half-genus and one from the bad. Whereas, if g(L, p)
= 2 and — 0,€ F}* then either both spinor genera (primitively) represents
¢ or both do not.

Thus, the presence of splitting integers or (primitive) spinor exceptional
integers sheds new informations on the representational properties of the
graphs R(L,p) at various prime spots p. This answers, at least partly,
our question (B).
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§5. Appendix

We show how the results of §4 can be efficiently used to construct
the classes in the genus. In particular, if there is a complete system of
spinor exceptional integers for G, the construction of all the classes in G,
is quickly accomplished. We illustrate this point by considering the ex-
ample given in 2.3, using the same notation for {a, b, c, ¢, f, g>. We first
make two preliminary, but useful, observations:

(1) If Xel|Z(Y, p)| then Z(X, p) = Z(Y, p).
(2) If XeS8y then Z(X, p) = Z(Y, p) for all applicable p.

(1) is nearly obvious. To see (2) one just needs to remember that if a
lattice M belongs to the graph Z(IV, p) then every class in S, is repre-
sented in the graph as well.

We shall re-label the lattices as we construct them. We begin with
M = (4,5,400) in basis {e,, e;, e;}. We construct the graph Z(M, 3). Using
the method developed in [SP,] we see M has 4 neighbors

M, = Z(3(e; + e,)) + Z(3e,) + Ze,
M, = Z(3(e, — €)) + Z(3e,) + Ze,
M, = Z(3(e, + ey)) + Ze, + Z(3ey)
M, = Z(3(e; — &) + Ze; + Z(3e,) .

M, and M, both (Eisenstein) reduce to (1,20, 400> = L, while M, and M,
reduce to <{4,45,45, —5,0,0> = K. Similarly, L has 4 neighbors which
reduce to two classes: N = (1, 80,100> and, of course, M. From the
neighbors of K we pick up a new class R = (16, 20, 29, 0, —8, 0>, and the
class J = ¢9,9,100,0,0, —1> from the neighbors of R. After this point
no new class appears. Thus, each vertex is adjacent to 4 vertices re-
presenting two different classes, and the picture for the graph Z(M, 3) is
given below. Note that the prime 2 is not applicable since M is not
half-regular there. Since {1, 5} is a complete system of (primitive) spinor
exceptional integers for G, and since M manifestedly represents 5, we
seek for a small prime p where — §; is a non-square in @, so as to have
Z(M, p) contain spinor genus from both the good and the bad half-genus
with respect to ¢ = 5, by the Proposition in 4.5. Such a prime is p = 3
since 0, = 1. Therefore, the neighbors L, K of M belong to the bad half-
genus w.r.t. 5. Since the genus G, has 4 spinor genera, we need to go
on. So far, we have caught the two spinor genera S*4 = Cls(M)U Cls(V)
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The graph Z(M, 3)
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UCIs(R), and $Z=Cls(L)UCls(K)UCls(J). S“ is regular because it repre-
sents both 1 and 5, while §? represents 1 but not 5. We need a spinor
genus which does not represent 1. Since §, = 5 and (—5/7) = 1 we cannot
use p = 5, 7. However, (—5/11) = — 1, so both Z(M, 11) and Z(L, 11) will
yield a desired spinor genus. '

Consider Z(L,11). L has 12 neighbors every 4 of which yield the same
reduced forms, and the new classes obtained are: F = (5, 16,100), G =
{4, 20,101, 0, —2, 0%, and H = {4, 25,80>. Now, the neighbors of F, G, H
will all be in S, by 4.2; their neighbors turn out to be again isometric to
either F, G, or H. Hence, Z(L, 11) adds only 3 new classes which form
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the third spinor genus S¢ and we see that S¢ represents 5 but not 1.
So, the spinor character theory of §2 tells us that the fourth remaining
spinor genus should represent neither 1 nor 5. By (2) above, the graphs
Z(K,11) and Z(J, 11) are all isomorphic to Z(L,11). On the other hand,
since (— §,/11) = (- §;/11) = — 1, the ‘graph Z(M, 11) should produce the
final desired spinor genus according to 4.5. Indeed, this spinor genus S”
= Cls(W)UCls(X)UCls(Y), where W = (4,20, 105, —10,0, 0>, X = (4, 21,
100, 0,0, —2>, and Y = <16, 20, 25>. This completes the genus G, with 4
spinor genera and each having 3 classes.
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