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Squaring Circles in the Hyperbolic Plane

'
The syndicated newspaper column of Marilyn vos Sa-
vant was particularly interesting one Sunday in Novem-
ber 1993 [Sa]. Ms. vos Savant announced there that she
had no faith whatsoever in the work of Andrew Wiles
on Fermat’s Last Theorem. In stating her objections to
the lmethodology of Wiles, she wrote that Janos Bolyai
“managed to ‘square the circle’—but only by using his
own hyperbolic geomet&'y.” The word “using” creates the
misleading impression that Bolyai used illicit methods to
square the circlein the Euclidean plane. What Bolyai did,
in fact, was to construct, using the correct'intrinsic ver-
sions of the compass and straightedge, a square and a
circle in the hyperbolic plane with the same area. In this
article, [ will exhibit all possible such examples (Theorem
A).Twill also show that the square and circle must be con-
structed simultaneously: there cannot be a construction
that begins with a circle of radius r and produces the
correct cornér angle o for the square of equal area (Ex-
ample B); neither can there bé a construction beginning
with o that produces the correct r (Example C). Theo-
rem A, discovered independently by the present author,
is contained in a 1948 article of Nestorovich [Nel] that
has received little attention in English-language publica-
tions. That article also has an example similar to those
in Example B, but Example C is not considered there. It
may be, therefore, that Example C and the interpretation
provided by Theorems B and C are new.

Introduction

With the normalization we will be using, the area of a
triangle in H? is the same as its “defect,” that being =
minus the sum of the three angles (the sum is guaranteed
smaller than 7). It follows that the areas of squares in
the hyperbolic plane are bounded above, although the
areas of circles are not. Indeed, a convex polygon with n
sides has area bounded by (n — 2)7, and this bound is
achieved only by figures with sides of infinite length. In
contrast, the circle of radius r has area 27 (cosh r — 1), and
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this can assume any positive value. Whether we consider
constructibility or not, only circles with area < 2 (so that
cosh r < 2) have a companion square with equal area.
The reader may well be more familiar with the the-
orems of geometry in H? than with straightedge-and-
compass constructions there. The very simplest construc-
tions used in the Euclidean plane E? are also available in
the hyperbolic plane, essentially unchanged. If we imag-
ine a creature in H’ drawing on a flat sheet of paper, our
creature can bisect segments, bisect angles, add or sub-
tract segment lengths, add or subtract angles, and draw
perpendiculars to lines, either through a point on the
line or “dropped” from a point off the line. Differences
from begin with the lack of a unique “parallel” to a
given line through a given point. For example, it is not
generally possible to trisect a line segment [Ma, p. 483].
Rather than “parallel” lines, given a line [ and a point
P off I, we may always construct rays m; and m, (half-
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lines), beginning at P, that are “asymptotic” to [, one in
each direction (see Fig. 1). These asymptotic rays, which
do not intersect [, can be characterized in several ways.
First, if we drop the perpendicular from P to a point
Q on I, then the angles between ray m; (j = 1,2) and
segment PQ are acute (and equal), and any ray through

P that makes a smaller angle with segment PQ must of

necessity intersect line [. It is also true that each ray gets
“closer and closer” to the line [: for instance, the distance
between a point R on m; and a point S on [, both at
distance s from the fixed point P, goes to 0 as s — oo.
The concept of asymptotic rays leads to the definition
of the function II, which describes a bijection between
nonzero lengths t and acute angles p, as illustrated in
Figure 1. Then pis called the “angle of parallelism” for the
length ¢, and ¢ could be called the “length of parallelism”
for p. The angle must be measured in radians, which are

definable in ]HIZ, based on the assignment of /2 radians
to the right angle. This defines the monotone decreasing
function IT: for this figure, I1(t) = pand II"'(p) = ¢.

Janos Bolyai provided a construction for the asymp-
totic ray to a line [ in aligiven direction, beginning at a
point P off the line (see Fig. 2). We first drop a perpendic-
ular from P to [, arriving at point Q. Next, draw the ray
j through P that is perpendicular to segment PQ in the
desired direction. Along the line [, in the same direction
from Q, choose any point R, and then drop the perpen-
dicular from R back to j, arriving at S. Use the compass
to draw a ¢ircle around point P with radius equal to the
length of ghe segment QR. The point of intersection of
this circle with segment RS, labeled T, allows us to draw
theraym = PT, and this ray is asymptotic to [.

It is also necessary to know hbw to reverse the pre-
vious construction: Given an acute angle p, defined by
rays m and n through a common point P, construct the
ray [ that is perpendicular to n and asymptotic to m (sge
Fig. 3). The illustrated construction is due to Bonola [B, p.
106]. There is the necessity, in this method, of somehow
knowing a point W on n that is so far away from P that
the ray w through W asymptotic to m makes an acute
angle with the segment PW. It is not clear ahead of time
how to do this, unless we’ve already solved the problem
for an even smaller angle than p. Knowing some point
W sufficiently far away, We draw the ray w, and then
drop perpendiculars from P and W to X and Y on rays w
and m. The segments PX and WY will intersect “in the
interior” of the infinite triangle formed by segment PW

_and rays n and w, at a point we label T. Finally, drop the

perpendicular from T to the point Q along segment PW.
Extending the segment QT to the ray | = (T)I" gives us
the required ray. Bolyai’s original work (described in [B,
appendix III, pp. 216 -226]) gives a lengthy sequence of
intermediate constructions to solve the previous prob-
lem. Bonola’s construction has the virtue of needing no
explicit trigonometry for its justification. Martin found
a method requiring few steps and no knowledge of any
point “sufficiently far away” [Ma, p. 484].



There is an “absolute measurement” of length in H?,
an idea apparently due to Lambert [B, pp. 44-49]. One
may associate to a given segment the angle at a ver-
tex of the equilateral triangle with edges congruent to
that segment, or some prescribed function of that an-
gle. Further, there are “natural units” of length. One
such is Schweikart’s constant p, defined by the equation
TI(p) = 7 /4. Another is Gauss’s constant k, which can be
associated with a relationship among the curves called
“horocycles” [Ma, pp. 413-415]. The significance of k
in hyperbolic trigonometry is analogous to that of the
radius of the sphere in spherical trigonometry. Martin
refers to k as the “distance scale.” He proves results in-
volving triangles, length, or area for the case k = 1, and
then describes the adjustment for other values of k, es-
sentially dividing any length by k [Ma, pp. 433-434].
For instance, the comparison between the two constants
is sinh (p/k) = 1. I will also restrict to the case k = 1.
It should be noted that it will not be possible to con-
struct the length we are now calling 1 with compass and
straightedge; life is like that.

A short glossary of trigonometry in H? is appropriate.
This material, with different choices of symbols, is pre-
sented in Chapter 32 of [Mal, especially pp. 425 to 433.
If we have any triangle (Fig. 4), we find a Law of Sines,
along with two distinct versions of the Law of Cosines.
The extra law can be said to result from the fact that any
two triangles in H? that are similar are necessarily con-

gruent. .
/7

. f .
sin 3 sin -y
sinh b  sinh ¢’

sin o

sinha
cosh b cosh ¢ — cosh a

Cos o = - -
sinh b sinh ¢

cos « + cos 3 cos
cosh g = _+ _B T
| _ sin 3 sin v
o
For a triangle with a right angle at vertex C, that is,
v = /2, we find a vérsion of the Pythagorean Theorem
and various other facts:

cosh ¢ = cosh a cosh b, cosh ¢ = cot « cot 3,

Cos o . sinh a

cosh a = — , sin a0 = — ,
sin 3 sinh ¢

anh b ; tanh a
Cos (v = an o= ———.
tanhc’ sinh b

We have already seen the construction of asymptotic
rays, resulting in a type of infinite, “singly asymptotic”
right triangle. The trigonometry for these reduces to re-
lations between the finite edge, of length t, and the acute
angle 11(t):

tanh ¢t = cos II(t), sinh t = cot TI(t),

TT(¢t
cosh t = csc [I(t), ¢ ‘=tan ~I—;Q

/

Other Constructions

In discussing the problem of “squaring the circle,” Bolyai
introduced an angle, which I shall call §, associated with
the radius r of a circle. It should be noted (having ar-
ranged k = 1) that the area within a circle in H? is ex-
pressed by 4w sinh?(r/2). The angle 6 will be constructed
so that tan 6 = 2 sinh(r/2). The result is that the area of
the circle is equal to 7 tan? §. There are explicit methods
for beginning with § and constructing r [Ma, p. 489] and
for beginning with r and constructing 6. Asaresult, ques-
tions of constructibility for r can be rewritten as questions
about . We exhibit the standard diagram (Fig. 5) illus-
trating the relationship between § and 7, which is used
in both these constructions.

Figure 4.

ol

rIA

Figure 5.
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Figure 6.

It is necessary to describe the construction of a right
triangle with the other two angles o and /3 prescribed,
and with o + 8 < /2 (see Fig. 6). First, construct lengths
z and t so that II{z) = « and II(t) = n/2 — (. As
a < w/2 - 3, it follows that z > {, so we may use the
compass to draw a right triangle with hypotenuse z and
one leg t. Call the other leg of this right triangle length b.
Finally, construct the right triangle with one leg of length
band the adjacent angle equal to . A combination of the
various trigonometric relations shows that the angle op-
posite to the edge of length b is, in fact, equal to 3.

Comparison of Constructibility in E? and H?

Our main tool is an observation that an angle is con-
structible in H” if and only if it is constructible in E’
[Ma, p. 483]. This follows from comparing trigonometry
in H? and F? as explained below. It is uncertain where
the observation was first recorded.

Suppose we give the name E to the set of lengths in
E’ that are constructible, beginning with some assigned
length denoted 1. The elements of E are thought of as
real numbers. By courtesy, the length 0 is a member of
E,and if s < 0 and |s| € E, we agree to say s € E. Re-
call that one can use the compass and straightedge in E?
to add or subtract lengths, multiply or divide them, and
produce the square root of a given length. By consider-
ing intersections of lines and circles, it is shown that the
preceding operations characterize E exactly: it is a field
and is the smallest subfield of R that is “closed under
square roots”: if s € E, s > 0, then /s € E.

As to the hyperbolic plane, it turns out that a length
¢ in H? is constructible with compass and straightedge
if and only if sinh t € E, or cosh ¢ € E, or tanh ¢ € E,
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these conditions being equivalent. Again, we consider 0
constructible, as also negative ¢t when |t| is constructible.
Knowing the correct result, it is not difficult to prove
this theorem. The original proof of the theorem is spread
over at least four articles. These begin with two by
D. D. Mordukhai-Boltovskoi ((M-B1] and [M-B2]), which
together show both sides of the if-and-only-if statement,
but allow the use of a third drawing instrument called
the “hypercompass.” Later articles by Nestorovich estab-
lished that all constructions that include the extra “hy-
percompass” can be performed with just the compass
and straightedge. The interested reader may consult the
monograph of Smogorzhevskii [Sm] or the problem book
of Nestorovich [Ne2]. Another proof, discovered without
knowledge of [M-B2], appears in the book of Kagan [Ka].

By considering a right triangle with any side of length
1 we find that an angle « is constructible in E? if and
only if sin «, or cos «, or tan « is in E, these conditions
being equivalent. Consider a right triangle in H* with
one side equal to Schweikart’s length p, which satisfies
sinh p = 1. Using hyperbolic trigonometry, we find that

an angle 7 is constructible in H? if and only if sin 7, or
cos 7, or tan 7 is in E, these conditions being equivalent,
ie.,

An angle « can be constructed in H? if and only if it can be
constructed in .

Matching Areas in H?

We have already mentioned the auxiliary angle 6, with
the property that the area of the circle of radius r is
7 tan? 0. A “square” will be a convex quadrilateral with
four equal edges and four equal angles (which must be
acute). Let us refer to the corner angle of the square
as o. This square can be constructed from eight right



triangles with angles ¢/2 and /4 (Fig. 7). In each tri-
angle, denote by y/2 the length of the side opposite
the angle 7/4, so that the edge of the resulting square
is length y. One of the trigonometric relations reads
cosh(y/2) = cos(w/4) + sin(o/2), from which follows
the remark (for the square and circle of equal area) that
cosh y = tan?{(r cosh r)/4}. Since the area of each tri-
angle is its defect, 7 — (n/2 + /4 + 0/2) = w/4 — 0/2,
the area of the square is 8(7/4 — ¢/2) = 21 — 40.

Our matching area problem can now be written in
terms of angles in H?, that is, 27 — 40 = 7 tan® 4. The
conditions that the square and circle be constructible are
‘therefore expressible in terms of the constructibility —in

E” — of angles o and 6 that satisfy 27 — 40 = r tan2 6.

Suppose we give the symbol w to the common area
of the square and circle. Since w = 27 — 40, it follows
that w is a constructible angle in E’. We are considering
w = 7 tan? . As 6 is a constructible angle, tan # and its
square are elements of F. If we write z = tan” §, we have
a constructible angle w and a constructible length z in
E? such that w = 7. To relate the various symbols, we
record

— _ e — 29 _ -2 (T
W =27 — 40 = wx = 7w tan” § = 47 sinh (2)
= 27w (cosh r - 1).

We note that 20 + 7w coshr = 2w, aswellas z + 2 =
2 cosh r.

The equation w = 7z can be analyzed using a famous
result about transcendental numbers over Q. For conve-
nience, we refer to those complex numbers that are alge-
braic over Q as simply “algebraic” and assign to them
the symbol A. Recall that the algebraic numbers A ¢ C
form a field, and that 7 € A. One may find the following
theorem stated in [Ni, p. 134

GELFOND-SCHNEIDER THEOREM (GS): If ¢ and
are nonzero algebraic, o # 1, and x ¢ Q, then any value of
X is transcendental.

Remarks. The value of ¢X is defined to be exp(x log ¢),
so it is multivalued like the logarithm. Also, GS applies
when y is an algebraic number with nonzero imaginary
part, such as —24. Since one value for i =% is ¢, this shows
that ™ is transcendental. Finally, GS prohibits ¢ = 1, but
allows ¢ = —1.

The reader will note that £ C A, so that E(4) is also
a subfield of A. We may profitably return to the equa-
tion w = wz, between a constructible angle w and a

constructible length = in E”. Since w is constructible,
sin w = sin mx and cos w = cos 7z are both in E. It fol-
lows that '™ = cos 7z + ¢ sin 7wz belongs to E(i) C A.
If we choose log(—1) = wi, this means that (—1)* =
exp(x log(—1)) = exp(inrz) is in A. On the other hand,
z € E C A,sothat (—1)* € Aimplies x is rational by GS.
From a relationship exhibited earlier,  + 2 = 2 cosh r,
we note that cosh r must also be rational.
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Figure 7.

Now thatz € Q, suppose we write z asm /nin “lowest
terms,” that is, m,n € Z,n > 1, and ged(m, n) = 1.
Then there must be integers u and v such that um +
vn = 1. If we multiply this through by =/n, we find
umn/n + vr = w/n, or uw + vr = w/n. As v and v
are integers, and w is a constructible angle, 7/n must
also be a constructible angle. This is related to a famous
question, with a famous answer, supplied by Gauss and
Wentzel (see [K1]). By placing an angle 27 /n at the center

of a circle and copying it n times, we construct, in E? a
regular polygon of n sides. The famous answer implies
that n must have prime factorizationn = 27 F, F;, - - F;
(where the F;, are distinct primes of the form 1+22'), j >
0, 7 > 0. The F;, are often called “Fermat numbers,” and
only five are known to be prime: writing F; = 1 + 27,
theseare Fy =3, F; = 5, I, = 17, F3 = 257, and F; =
65, 537. The next one, Fs, has a factor of 641, and Fg has a
factor of 274,177. In the year 1987, the values F5s through
F>; were known to be composite [R, pp. 71-74]. In this
year 1994, when secret codes are based on the difficulty
today’s computers have factoring a “random” number
with 200 digits, it is sobering to note that even Fio has
over 300 digits in decimal notation.

Returning to the equations w = 27 — 40 and w =
7 tan’@ = mx, we find that o, the corner angle of the
square, satisfies 0 = (27 — w)/4, so that ¢ is a rational
multiple of 7, with denominator n as described above.
We shall reject the “square” with o = 7/2; if that made
any sense in H?, it would be a single point, with area 0.
We shall allow the square with four infinite edges and
o = 0, of area 2r. There is a countably infinite set of
satisfactory angles o, and they are dense in the interval
from O to m/2. We have shown that the problem of con-
structing the two figures is equivalent to the problem of

constructing regular polygons in E? (or, indeed, in H):
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THEOREM A. Suppose a square of corner angle o and a circle
of radius r in M2 have the same area w, so that w < 2m. Then
both are constructible if and only if o satisfies these conditions:
0 < o < /2, and o is an integer multiple of 2r/n, n a
positive integer such that the regular polygon of n sides can be
constructed with compass and straightedge in .

Note that we simultaneously produced the square and
the circle from auxiliary information, and required that
both be constructible with compass and straightedge.
The natural question occurs, “What of a method that be-
gins with any o or r, and produces the other?” Theorem
A is silent on this question; however, there are no such
methods. We exhibit two (dense sets of) examples, show-
ing that there is no general method in either direction.

Example B. Let m/n be a rational number in lowest
terms, such that n is not a power of 2, but has some
odd prime factor d. Then § = arctan (m/n) is a con-
structible angle. But w = 7 tan?# = wm?/n® cannot be
constructible, as that would imply constructibility for the
regular polygon of d? sides. If there were a construction
that began with r (whence ) and produced the correct
w (whence o), then whenever » was constructible, the re-
sulting o would be the outcome of a long construction.
Our family of examples provides constructible r with
the corresponding o nonconstructible, thus precluding
the existence of such a method.

THEOREM B. There can be no general construction in H’
that begins with the radius r of a circle and produces the corner
angle o of the square with matching area.

Remark. The article [Nel] provides the example

sinh(r/2) = %\/2 —V2.

This means that & = arctan V2 — /2, so r and 6 are
constructible. For the corresponding square, however,
o = m/2/4, which is not constructible. The conclusion
reached from this example translates as: The class of cir-
culable squares is wider than the class of quadrable circles.

For the next example, not contemplated in [Nell, we
quote another theorem [Ni, p. 41]:

OLMSTED’S THEOREM. If 7 is a rational multiple of ,
the only possible values of tan T that are rational are 0, 1,
and —1.

Example C. Let g be some rational number, ¢ > 0,q#1.
As ¢ € E, we can certainly construct the angle o =
arctan q. Since o # /4, Olmsted’s theorem shows that
o/mis irrational. Ascos o = 1/4/1+¢* € Eandsin 0 =
a/v/1+ ¢ € E, then ¢ € E(i) C A. Choose log(-1) =
i, $0 (=1)°/™ = exp((o/m)log(—1)) = exp(ci). This
time, since (—1)"/ 7 is algebraic, we use GS to conclude
that o /7 is transcendental. Since w = 27 — 4o, it follows

36 THEMATHEMATICAL INTELLIGENCER VOL. 17, NO. 2, 1995

that w/7 is transcendental. As w = 7 tan® §, we have
w/m = tan’f, and so we know that tan? @ is transcen-
dental, finally showing that tan ¢ is itself transcendental.
Because F C A, this means that, although ¢ = arctan ¢
is constructible, the angle § appropriate to o is not. If
there were a construction that began with ¢ (whence w)
and produced the correct § (whence ), then whenever
we constructed o, the resulting r would have been con-
structed. Qur family of examples precludes the existence
of such a method.

THEOREM C. There can be no general construction in H?
that begins with the corner angle o of a square and produces
the radius v of a circle with matching area.
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