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Sums of Squares, Cubes, and Higher Powers

William C. Jagy and Irving Kaplansky
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Any integer is expressible as a sum of two squares and a cube,

ixed signs being allowed. We study the analogous question
;:)x square and two cubes, and obtain an affirmative answer in
the range from —4,000,000 to 2,000,000. For two squares and
a cube with everything positive, computations support the pos-
sibility that there are only finitely many exceptions. However,
z? + y? + 2° admits infinitely many positive exceptions.

1. INTRODUCTION

The “easier” Waring problems (fneaniné that the
summands are allowed to have mixed signs) have
traditionally been attacked, with some success, by
locating relevant identities. Recently Elkies and
Kaplansky [1995] handled the case of two squares
and a cube in this way. It seems reasonable to
regard this as the “minimal” case and to propose
one square and two cubes as the next step up the
ladder. In Section 2 we present what we are able
to say about this problem.

In Section 3 we return to two squares and a cube,
this time with everything positive. Here it is known
that almost all positive integers can be represented.
By this we mean that

lim E(n) _

n—oo n

0,

where E(n) is the number of non-represented in-
tegers < n. We shall call such numbers ezcep-
tions. Stronger statements are proved in [Roth
1949] and [Halberstam 1950]. The still stronger
statement that there are only a finite number of
exceptions may be true; we present numerical data.

The final section contains some observations on
two squares and an n-th power for n > 4, both in
the mixed case and with everything positive.
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2. A SQUARE AND TWO CUBES, MIXED STYLE

Here are two identities that do four-ninths of the
job:

9t = (3t +3)*+ (t - 1)° - (t +2)°,
3t+1=(3t+8)+ (t+1)* — (¢t +4)>

Clearly, the first of these equations shows that any
multiple of 9 is a sum of a square and two cubes,
and the second does the same for numbers congru-
ent to 1 mod 3.

A search, partly by computer, for identities ex-
pressing other linear functions of ¢ in this fash-
ion yielded nothing of interest. However, identities
where the left-hand side is a quadratic function in
two variables exist in abundance: in 2% + 33 + 23,
put z = u — y and treat v as a parameter, getting
&% + Juy? — 3uly + ud.

Some guidance is available in the case of cubes
(with mixed signs, of course), which has been thor-
oughly studied. Every integer not congruent to 4
or 5 (mod 9) is a sum of four cubes, and maybe all
are. This is proved by using several identities. See
[Mordell 1969, pp. 182-185] and the followup paper
[Cohn and Mordell 1972] for the state of the art,
including negative results on the prospect for fin-
ishing sums of four cubes by identities. The iden-
tity

62% + y* + 22 + 2
=z+1)°~(z -1 +4*+2% @1

which is exploited in [Davenport and Heilbronn'

1937al, gives rise to a similar pessimism concern-
ing 62° + y® 4 23. This does not directly jeopar-
dize % +y® + 2%, but it leads us to think that the
prospect for finishing a square and two cubes by
identities is not hopeful.

We therefore sought computational data, and
verified that every integer between —4,000,000 to
2,000,000 is expressible as a sum of a square and
two cubes. Initially there was a hand computation
for the interval from —1000 to 1000; this covered
all but about 100 of these numbers.

Then two programs were written. The first is,
in essence, a program for determining whether a
given integer IV is a sum of two cubes (mixed signs
allowed). Suppose that N = y3+23. Then N = ab,
where a = y+zand b = y?—~yz+22. In3yz = a?—b,
set z=a—y toget 3yla—y)=a>—b, or

3y* —3ay +a*—b=0.

A necessary and sufficient condition for this quad-
ratic equation to have rational roots is that the
discriminant

(3a)? - 4-3(a® - b) = 12b — 342

be a square. Indeed, when 126 — 302 is a square, N
is the sum of two integral (not just rational) cubes;
the proof is easy and we leave it to the reader. So
the procedure is to factor N = ab in all possible
ways and look for a case where 12b—3q2 is a square.
In practice the search was speeded up by using in-
formation mod 7 and mod 9. Then, to hunt for a
representation of some M as z% + % + 23, we suc-
cessively set x = 0,1,2,... and applied the test to
N = M — z. The question is whether the proce-
dure is going to terminate with success. It always

did.

Remark. A pleasant feature of this program is that
the number z is the smallest that will do.

The second program adapted ideas sent us by Ford
(sée acknowledgments at the end of the article).
Stitable a priori bounds were chosen for z, |y|, and
|z All values of % + y® + 23 that showed up in
a specified interval were noted in an array, thus
recording for each m in the interval a Boolean value

~x(m) € {0,1}, depending on whether the value m
ever occurred. Any targets m missed here were
then tested by the first program. The largest value
of x ever needed occurred in

—1,506,325 =105, 028% — 2186° — 8373.
Also noteworthy was

~1227 = 241227 — 872% 4 4333,
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the number 24122 being unusually large for such a
small target. In addition we did some spot check-
ing, the biggest target being

~—500,000, 000,001 = 345142 — 7517% — 4244%.

3. TWO SQUARES AND A CUBE, POSITIVE STYLE

The agenda here is to study the representability
of a positive integet in the form z2 4+ 4 + 2° with
z > 0. We identified 434 exceptions, the largest
being 5,042,631. Ford confirmed this list and ex-
tended the search to 50,000,000; no further excep-
tions arose. oo s

Congruence properties of these 434 integers ar
of some interest. We start with the best behavior.
(It is to be understood that we are speaking only of
this list; we make no conjectures about what hap-
pens beyond 50,000,000.) There are no exceptions
of the form 8m + 2 and only one, 813, of the form
4m + 1. The 17 exceptions divisible by 4 termi-
nate at 47984. After that all exceptions have the
form 4m + 3 or 8m ++ 6. This behavior was an-
ticipated and is easy to explain. For instance: for
numbers of the form 4m + 3 or 8m+ 6 it is fruitless
to try taking the cube to be even. Not foreseen was
the fact that the exceptions starting at 137,486 are
all of the form 7m 4+ 1. But this yields to a little
Monday morning quarterbacking. Six out of seven
cubes are congruent to +1 mod 7. Thus a number
M of the form 7m + 1 is in extra jeopardy: three
times out of seven, M — 23 is divisible by 7, and
hence unlikely to be a sum of two squares.

We note at this point that the quadratic form

¥ +y® + 1327

behaves similarly with respect to numbers of the
form 8m + 2 and 4m + 1; up to 1,000,000 it rep-
resents all numbers of either form with a single
exception, 721. This is presumably just a coinci-
dence. From the corollary to Theorem 3 in [Duke
and Schulze-Pillot 1990] it is known in this context
that there are only a finite number of exceptions.

4. A SQUARE AND TWO CUBES, POSITIVE STYLE

It is natural to raise this question too. Nearly sixty
years ago Davenport and Heilbronn [1937a] showed
that almost all integers are represented. They did
this on the way to showing that almost all positive
integers are sums of four positive cubes, and they
made use of the identity (2.1).

Ford also ran this problem up to 50,000,000.
He found 1,938,144 exceptions, the largest being '
49,999,990.

The paper [Ford 1995], among other things, tack-
les the tougher case of z?+y>+ 2* and reports on a
selective search all the way up to the area of 10'8.

. 5. HIGHER POWERS

Let n be an odd positive integer. Davenport and
Heilbronn [1937b] proved that almost all positive
integers can be written as z%-+y*+2" with z > 0. Is
is possible to strengthen this statement to say that
the representation holds from some point on? The
following simple result, suggested by exploratory
computations, shows that the answer is negative,
at least for certain values of n:

Theorem. Let p be a (positive) prime of the form
4m+1. Then 216p® cannot be written as v2+y?+2°
(even if we are generous and allow z to be negative
as well as positive).

Thus the conjecture in [Vaughan 1981, p. 105] is
a little too optimistic (it is easy to see that the
assumption of no congruence obstructions is satis-
fied).

Proof. Write A = 216p® — 2°. Our task is to show
that A cannot be a sum of two squares. Assume
the contrary. We first find three restrictions on z:

e z cannot be even, for then %A is of the form
4m + 3.

e z cannot be of the form 4m + 1, for then A is of
the form 4m + 3.

e 2z cannot be divisible by 3, for then the exact
power of 3 dividing A is 27.
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Thus z is of the form 4m + 3 and is prime to 3.
The coup de grice is delivered by the algebraic
factorization

A = (6p — 2*)(36p® + 6p2° + 2°).

The first factor has the form 4m + 3. It follows
that some prime ¢ of the form 4m + 3 must divide
both factors of A. Now ¢ cannot be 3, for 3 does
not divide 6p — z*. Also, ¢ divides

(6p — 2*)* — (36p® + 6pz> + 2%) = —18p2°>.

So ¢ divides 2. But it also divides 6p — z*, and
we reach the nonsensical conclusion that ¢ divides
6p. Cl

Remarks. (a) See [Vaughan 1981, p. 123, exercises 1
and 2| for a similar result. An interesting contrast
to these results is given in exercise 1 on page 35 of
the same work.

(b) Many other choices can replace 216p® in the the-
orem, and 9 can be replaced by any odd composite
number (we shall not enter into the details).

(¢) In this way, one can show that z? 4 2 + 2",
mixed style, cannot represent all integers if n is
odd and composite (and in fact there must be an
infinite set of positive exceptions and an infinite
set of negative exceptions).

(d) On the other hand, if n is an odd prime, it is

conceivable that, mixed style, 2 + y% + 2™ repre-
sents all integers. Some modest computations for
n =05, 7, and 11 support this possibility.

(e) If n is even and greater than 3, then x2 + y? —
2™ fails to represent certain sequences of integers
obtained in the style of the theorem. In this cage,
however, there are congruence obstacles as well.

Finally, we report on an investigation of numbers
represented by g = 22 + y® + z%. Here we must
of course confine the search to numbers which are
sums of three squares. A convenient procedure is
to introduce the companion polynomial

h =z + y* + 42

We see that g represents a number 4B if and only if
h represents B, and likewise exchanging the roles of
g and h. At the modest price of working with two
polynomials, we can thereby ignore multiples of 4.
Thus in the case of g we stick to numbers that are
not divisible by 4 and not congruent to 7 mod 8;
for h we stick to numbers congruent to 1 or 2 mod
4. The largest exceptions we have are 88,540,435
for g and 345,731,050 for h. These exceptions were
found by selective fishing in troubled waters; we do
not know all smaller exceptions.
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