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Chapter 3

Indefinite Forms

3.1 Reduction, Cycles

We now consider the indefinite forms, that is, the forms of positive
discriminant A = D > 0. Our treatment will closely follow that of
Mathews, our goal again being the determination of canonical forms
for the equivalence classes. In the case of negative discriminants, the
“reduced” forms are essentially unique in a given equivalence class.
For positive discriminants, however, it is not only the case that many
reduced forms can lie in the same class, an elegant structure is possessed
by the reduced forms-they form cycles. An indefinite form (a, b, ¢) of

discriminant D > 0 is called reduced if

0<b< VD (3.1)
VD —b<2|al<vVD+b

We make several easy deductions.

Proposition 3.1. If (a, b, c) is reduced, then VD —-b<2|cl|<

VD + b.
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Proof. Since b®> — 4ac = D, we have
(VD =b)- (VD +b) = —4ac=(2|al)-(2]c|).

Since 0 < b < /D, /D —b < /D + b. We have the situation Ty = zw,

with 2 < z < y, and it follows that z < w < y.

Proposition 3.2. The number of reduced forms of a given discriminant
s fintte. '

Proof. The number of values for b has been limited, so the finite

number of reduced forms follows from the finite number of factorings
of ¥ — D into 4ac.

Proposition 3.3. Any indefinite form is equivalent to a reduced form

of the same discriminant.

Proof. We give a reduction algorithm. If (a, b, ¢) is not reduced, we

choose § (which in this case is necessarily unique) such that
VD =2 |c|< —b+2¢6 < /D,

and we have

(a, b, ¢) ~ (¢, —=b+2ch, a— bs + c6°)

If | a — b6 + 6% |<| c |, the process is repeated. As in the reduction of

definite forms, the reduction process must be finite, terminating when
we get a form (A, B, C)such that | A|<|C |and VD -2 | A|< B <
VD. If this is true, then /D — B < 2 | A |. Further, since

|IVD—B|-|vVD+B|=4|4]C],
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we must then have | VD + B |> 2 | C' |. We continue the inequality:

IVD+B|>2|C|>2|Al|>VD-B.

Looking at the left and right ends of this, we see that B must be

positive, so that 0 < B < v/D and (4, B, C) is reduced.

We define two reduced forms (a, b, a') and (a/, ¥, c') to be adjacent
if 54+ b = 0 (mod 2a’). It is easy to see that there is a unique reduced
form adjacent to the right and to the left of any given reduced form.

Once again, there is a strong computational similarity between the
reduction algorithm and the standard algorithm for the greatest com-
mon divisor. As will be seen later in this chapter, more than a mere
similarity exists. Reduction of definite forms is identical with the con-
tinued fraction expansion of a related quadratic irrational, and the con-
tinued fraction algorithm applied to a rational number is precisely the

Euclidean algorithm.

Proposition 3.4. The set of reduced forms of a given discriminant

can be partitioned into cycles of adjacent forms.

Proof. We begin with any reduced form and proceed to the right
through successively adjacent reduced forms. Since the set of reduced

forms is finite, the list of successively adjacent forms must return to

" the original form. If there are no more reduced forms, the process

is finished; otherwise, we choose a form not yet used and repeat the
process.
Since adjacent forms are equivalent, under the matrix transforma-

tion -

1 bbb |
2a
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and equivalence is transitive, all forms in a given cycle are equivalent

to each other.
Proposition 3.4 is the easy half of the following major theorem. The
difficult half of the proof will be presented in Section 3.3 so as not to

disturb the continuity of the discussion.

Theorem 3.5. Two reduced forms are equivalent if and only if they

are in the same cycle.

We call the form (a, —b, c) the opposite of the form (a, b, c). An
ambiguous form is equivalent to its own opposite, since if b = ka, the

choice § = k gives
(a, b, ¢) ~ (¢, —b, a) ~ (a, b—2a6, c —bS + aé?) = (a, b, c).

We further define forms (a, b, ¢) and (c, b, a) to be associated. We

note that opposite forms are improperly equivalent (obtainable one

from another by a matrix transformation of determinant —1) under

(o 21)
0 -1
and its negative, and associated forms are improperly equivalent under
(1 o)
1 0
and its negative.

Proposition 3.6. The number of forms in any cycle, called the period

of the cycle, is always even.

Proof. The first and last coefficients of any reduced form are of oppo-

site sign. We may therefore form pairs of adjacent forms (a, b, ¢) ~
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(¢, ¥/, ) in which the coeflicient c is negative and a and ¢’ are positive.
Because the adjacency is clearly an adjacency of these pairs, it takes

an integral number of pairs to form any cycle.

Proposition 3.7. If the form f', associate to f, is in a different cycle
from that of f, then this is true for all forms in both cycles, which we

call associated cycles.

Proof. Cycling forward (to the righf) from f, the form adjacent to
f=(a, b, ¢)is(c, ¥, a'). Cycling backward (to the left) from f’ yields
(a’, ¥, ¢) ~ (¢, b, a). That is, cycling ferward from f we encounter
the associates of the forms encountered when cycling backward from

f'.

Proposition 3.8. A cycle which contains any ambiguous form contains
ezactly two and is its own associate. Conversely, a cycle which is its

own associate contains exactly two ambiguous forms.

- Proof. If a form f and its associate f’ are in the same cycle, then

we can cycle forward from f and backward from f’ through pairs of
associated forms. Since the cycles have finite length, we must eventually
arrive at adjacent associated forms (a’, b, a) ~ (a, b, a’). Since these
are adjacent, we have b+ b = 0 (mod 2a); that is, a|b, so that (a, b, a’)
is ambiguous. Similarly, cycling backward from f and forward from
f' will produce a different ambiguous form. A self-associate cycle thus
contains two ambiguous forms. It cannot contain more since the cycle
is complete when the second ambiguous form is found. And it is easy
to see that a cycle which contains an ambiguous form must be self-
associate since the form (a, ak, c¢) is the form adjacent to its own

associate (¢, ak, a).
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We call the reduced form (1, b, ¢) the principal form for a given

discriminant, and the cycle in which it lies the principal cycle.
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General Examples and Observations

For negative discriminants, reduced forms are, in general, asymmet-
ric since the third coefficient is at least as large as the first. For
positive discriminants, this is not true. Indeed, reduced forms oc-
cur in groups: for any given lead coefficient a the existence of one
reduced form (@, b, c¢) implies the existence of the reduced forms
(a, b, ¢), (—a, b, —c), (¢, b, a), and (—c, b, —a). Further, since
solutions to 4 = D (mod a) occur in pairs, we also have reduced
forms (a, —b + 2a0, a — bo + ¢), (—a, —b + 2a0, —a + bo — ¢),
(a —bo+ ¢, —b+2ao0, a), and (—a+ bo — ¢, —b+ 2a0, —a), where o
is the sign of a. These generally lead to further forms, and so on. The

following examples of cycles will illustrate the previous discussion.
For D = 1173 = 3 - 17 - 23 there are four cycles:

A) (1, 33, —21) ~ (=21, 9, 13) ~ (13, 17, —17) ~ (=17, 17, 13) ~
(13, 9, —21) ~ (=21, 33, 1) |

B) (=1, 33, 21) ~ (21, 9, —13) ~ (=13, 17, 17) ~ (17, 17, —13) ~
(=13, 9, 21) ~ (21, 33, —1).

C) (8, 33, —=7) ~ (-7, 23, 23) ~ (23, 23, —7) ~ (-7, 33, 3)
D) (-3, 33, 7) ~ (7, 23, —23) ~ (23, 23, 7) ~ (7, 33, —3)
For D = 1313 = 13 - 101 there are also four cycles:
A) (1, 35, —22) ~ (—22, 9, 14) ~ (14, 19, —17) ~ (=17, 15, 16) ~

(16, 17, —16) ~ (=16, 15, 17) ~ (17, 19, —14) ~ (14, 9, 22) ~

(22, 35, —1) ~ (=1, 35, 22) ~ (22, 9, —14) ~ (—14, 19, 17) ~
(17, 15, —16) ~ (—16, 17, 16) ~ (16, 15, —17) ~ (=17, 19, 14) ~
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(14, 9, —22) ~ (=22, 35, 1)

B) (13, 13, —22) ~ (=22, 31, 4) ~ (4, 33, —14) ~ (—14, 23, 14) ~
(14, 33, —4) ~ (—4, 31, 22) ~ (22, 13, —13) ~ (=13, 13, 22) ~
(22, 31, —4) ~ (—4, 33, 14) ~ (14, 23, —14) ~ (=14, 33, 4) ~
(4, 31, —22) ~ (22, 13, 13)

C) (7, 23, —28) ~ (=28, 33,2) ~ (2, 35, —11) ~ (=11, 31, 8) ~
(8, 33, =7) ~ (=7, 23, 28) ~ (28, 33, —2) ~ (=2, 35, 11) ~
(11, 31, —8) ~ (=8, 33, 7)

D) (7, 33, —8) ~ (=8, 31, 11) ~ (11, 35, —2) ~ (=2, 33, 28) ~
(28, 23, —7) ~ (=T, 33, 8) ~ (8, 31, —11) ~ (=11, 35, 2) ~
(2, 33, —28) ~ (—28, 23, 7)

A. O. L. Atkin has provided a labelling of the different kinds of
cycles. Although the reasons for the existence or nonexistence of such
cycles for a given discriminant will not appear until later, this labelling
is now presented as an observation about examples.

Type 11: The complete ambiguous cycle is
(1, a, —1) ~ (-1, a, 1).

Type 21: The complete ambiguous cycle is
(a, abn, b). ~ (b, abn, a).

Type 12: The ambiguous cycle contains
(a, ab, ¢) ~ -~ (z, y, =) ~ - ~ (—a, ab, —¢) ~ -

Type 22: The ambiguous cycle contains
(a, ab, ¢) ~ -+~ (f, de, d) ~ -+
but does not contain the form (—a, ab, —c).

Type 20: The ambiguous cycle contains

(z, y, —z) ~ -~ (w, 2, ~w) ~ -
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Type 23: The cycle, which is not ambiguous, contains twice an even
number of forms.

Type 13: The cycle, which is not ambiguous, contains twice an odd
number of forms.

For reasons to be explained in the next section, the negative Pell
equation z? — Ay? = —4 is solvable exactly for discriminants A which
have cycles of Types 11, 12, and/or 13. For odd discriminants, the first

occurrences of the different types are given below.

11) Type 11, D = 5, the cycle being
(1’1’_1) ~ (_171’1),

21) Type 21, D = 21, the cycle being
(la 3, _3) ~ ('—3, 3, 1)7

12) Type 12, D = 17, the cycle being
(1,3,-2) ~ (=2,1,2) ~ (2,3,-1) ~ (—1,3,2) ~
(2’ 13 —2) ~ ('—2, 37 1);

22) Type 22, D = 33, the cycle being
(1,5,-2) ~ (—-2,3,3) ~ (3,3,—-2) ~ (—2,5,1);

20) Type 20, D = 205, the cycle being
(7,3,=7) ~ (=7,11,3) ~ (3,13, —3) ~ (=3,11,7);

23) Type 23, D = 321, the cycle being
(5,9, =12) ~ (—12,15,2) ~ (2,17, —4) ~ (—4,15,6) ~
(6,9, —10) ~ (=10,11,5);

13) Type 13, D = 145, the cycle being
(3,7,—8) ~ (-8,9,2) ~ (2,11,-3) ~ (—3,7,8) ~
(8,9,—2) ~ (2,11, 3).
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Examples
A
8
12
20
24
28
32
40
44
48
52
5
13
17

21

29
33

37
41

45

53

h
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Cycles

(1,2, -1)(~1,2,1)

(112’_2)(_212; 1)

(_17 2, 2)(2: 2, _1)

(1)4’_1)(_1)41 1)

(1a4: —2)(_2’4a 1)

(~1,4,2)(2,4,—1)

(1,4, —3)(~3,2,2)(2,2, ~3)(—3,4, 1)

(_1’41 3)(3’27_2)("'2:2;3)(3)47_1)

(1,4, —4)(—4,4,1)

(—1,4,4)(4,4,-1)

(1,6, —1)(~1,6,1)

(2: 4, _3)(—’3’ 2, 3)(3a 4, —2)(—2: 4: 3)(3’ 2’ —3)(—31 4, 2)
(1,6,—2)("‘2,6, 1)

(—1,6,2)(2,6,—1)

(1,6,—3)(=3,6,1)

(~1,6,3)(3,6,~1)

(1’ 6, _4)(—4: 2, 3)(3:4’ _3)(_3r 274)(4’ 6, —1)
(~1,6,4)(4,2,—3)(~3,4,3)(3, 2, —4)(—4, 6,1)
(1a 1, —1)(—17 1, 1)

(1,3,-1)(-1,3,1)

(1,3,-2)(-2,1,2)(2,3,-1)(~1,3,2)(2, 1, -2)(—2, 3, 1)
(1a31 —3)(_373a 1)

(-1,3,3)(3,3, —1)

(1,5,-1)(-1,5,1)

(1’ 5, _2)(_2) 3, 3)(3: 3, "'2)(_2’ 9, 1)

(_1) 9, 2)(2’ 3, _3)(_3’ 3, 2)(2; 3, _1)

(1; 9, —'3)(_3a 1, 3)(3’ 9, _1)(—1) 5; 3)(3’ 1, _3)(_3, 3, 1)
(1’ 5) —4)(_4, 3; 2)(2a 5: _2)(—29 3a4)(4a 5> _1)
(—1,5,4)(4,3,—-2)(—2,5,2)(2, 3, —4)(—4, 5,1)
(1,5,~5)(5,5,1)

(-1,5,5)(5,5,—1)

(1x77_1)(—'1a7’ 1)
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3.2 Automorphs, Pell’s Equation

The equation z2 — dy? = 1, with d a fixed integer and = and y assumed
to be int-eger variables, has been called Pell’s equation, although this
is, in fact, a misattribution due to Euler. We shall, in general, refer
to the equations z2 — Ay? = £4 as Pell’s equations, and the equation
with only the minus sign as the negative Pell equation; we note that
if A is a discriminant of binary quadratic forms, then the .existence
of a solution to the Pell equations implies the existence of a solution
to z2 — Ay? = +1, where the + signs correspond. We recall that an
automorph of a binary quadratic form is a nontrivial transformation

(1.1) of determinant +1 under which the form is equivalent to itself.

Theorem 3.9. If A is any discriminant of binary quadratic forms,

then there ezists a solution (z,y) to the Pell equation
z? — Ay? = 4. (3.2)

There is a one-to-one correspondence between automorphs of (definite

or indefinite) forms (a, b, ¢) of discriminant A and solutions of the
Pell equation (3.2).

Proof. We have defined the principal root of a form for positive definite

forms; for indefinite forms the definition is identical:

_ —b+VA
o 2a¢

w

Now, if an automorph exists for a reduced form under a transformation

(1.1), then
aw+ f

yw+ 8§

w =
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This can be rewritten as a quadratic equation in w:

yw? 4+ w(§ —a) — B =0.

But we already have aw?+ bw+c = 0, and the form (a, b, c) is assumed

to be primitive, so we must have v = ka, § — a = kb, and 8 = —kc for

k an integer. This gives
(6§ — a)® + 48 = AK>.

We reduce this to get

(a+8)% — Ak?* =4,

Given any automorph of a reduced form, then, we have a solution of

the Pell equation 22 — Ay? = 4. Given any solution of that equation,

conversely, we have integers

o« = (a—b)/2,
B = —ey,

v = ay,

§ = (z+by)/2,

and an automorph of the form (a, b, ¢). The correspondence between

automorphs and solutions is clear; only the existence of solutions is yet
in question.

If A is a negative discriminant, then the equation is solvable only
for A = —3 or —4, and, of course, only for +1 on the right-hand side.

This case was covered in Chapter 2.
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It is only necessary, then, to consider positive discriminants A. If we
begin with the principal form of discriminant A and move through the
principal cycle, we obtain transformation matrices which produce from
a reduced form the equivalent adjacent reduced form. At some point
we finish the cycle and return to the principal form. The product of
all the transformation matrices is thus a transformation matrix which
takes the principal form to itself. Since it cannot, except in trivial
instances, be the identity matrix,' it is the matrix of an automorph
of the principal form. From this we get a solution to (3.2), and the
theorem is proved. An example is given at the end of this chapter.

For the remainder of this chapter, only positive discriminants A =
D are considered. Among all the solutions (X,Y) to (3.2), there exists
one for which X and Y are positive and (X + Y+/D)/2 is of least
magnitude. We call this the fundamental solution of (3.2), noting that
if X’ and Y” are positive and (X’,Y”) is another solution of (3.2), then
X <« X"and Y <Y’ must also be true. |

Theorem 3.10. All pairs (X,,Y,) generated by

(X +YVD)"  X.+Y.V/D
_ =

o n>1 (3.3)

are solutions of equation (3.2). All solutions of equation (3.2) in posi-

tive rational integers are given by (3.3).

Proof. That X, and Y, are rational integers follows by induction and

observations about the parity of X, Y, and D. We then observe that

(X -YV/D)*  X,—Y.VD
B 2

- (3.4)

and thus
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X2 - DY? . (X2 - DY?) _
4 B 4n B
This proves the first part. To prove the second part, assume that

1.

another solution (7', U) exists. Then there exists an n > 1 such that

(X+YVD)" T+UVD (X +YV/D)*
on ST ST m

We multiply by the (positive) value (X, — ¥,/D)/2 and get

2<T' +U'VD < X +YVD,

with 27" = TX, + UY, and 2U' = TY, + UX,,. Again, by parity
arguments, 7" and U’ are integral. Now, since 7" + U'/D > 2 and
(I"+ U'VD) - (T' = U'/D) = 4, we find 0 < T' — U'/D < 2, which
allows us to see that T' and U’ are both positive. This, however, would
contradict the fact that (X 4+ Y+/D)/2 was the fundamental solution.

| i
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3.3 Continued Fractions and Indefinite
Forms

We define a continued fraction expansion of z (cf) to be a function

:z:=f(a0,...,aN)=ao+ L - (35)

(11+ -I'-ﬁ-

At present z may be any sort of numiber, although soon only rational

numbers and real quadratic irrationals will be considered. We define
the values a; to be the partial quotients of the cf. The above cf will be

abbreviated as
[a07 ) a’N]a

whose n-th convergent is

R(n) = [ag,...,a,], 0<n < N.

Theorem 3.11. Defining

RP__1=1
Py = ao

Pn = an'Pn—1+P—27forn217
and
Q—l = 0

Qo =1
Qn = an‘Qn—1+Qn—2a fOT?”&Zl,
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then

Rn=[aﬂa---aan]ZPn/anornZO- (36)

Proof. The theorem holds for n = 0. We assume that it holds for

n < m and calculate

[ao, .. samia] = [ao,...,am + 1/apm 4]
(am + 1/ams1) - Py + Pr_s
(am + 1/am+1) ) Qm—l + Qm-2
@m41 * (@ Py + Pp_3) + P4
Am41 * (aQO—l + Qm—2) + Qm—l
Gt 1P + Py

am+1Qm + Qm-—l
P‘m+1

Qm+1 ’

where the penultimate equality is by induction.

There are three other formulas of iriterest, all of which can be proved

by direct calculation and/or recursion:

PoQn-1— Pr1Qn = (=1)", n >0, (3.7)

P, P, (1)
Qn Qn—l B QnQ'n—l

, n >0, (3.8)

PnQn—Z - Pn—-2Qn = an(_l)n_17 n 2 1. (39)

We now restrict ourselves to the case when each a;, ¢t > 1, is positive

and integral. These are called simple continued fractions (scf’s). In this
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case any finite scf represents a rational number z. Before proving the

converse, we define the
Continued Fraction Algorithm: Define a;, X;, and Z; by

z = ag + Zo,chosen so that 0 < Zp < 1, | (3.10)
X,-=1/Z,—_1=a.,-+Z,-, 121,05 Z; < 1.

The algorithm continues as long as Z; # 0. The (not necessarily inte-
gral) values X; are the i-th complete quotients in the cf expansion, that
is,

z = [ao,...,Xi]

Theorem 3.12. Any rational number = has a representation as a finite

stmple continued fraction.

Proof. We shall not prove this. The proof is straightforward; indeed it
is a rephrasing of the usual algorithm for computing the greatest com-
mon divisor of the numerator and denominator of the rational number
z.

Example: Let z = 267/111. Then computing in order ap , Zo , X1

,81 421, ..., and then P; and @Q; afterwards, we have
1 a; P Q; Z; X; I P;-111 — Q, - 267 I
—1 1 0 : ‘ 111
0 2 2 1 45/111 45
1 2 5 2 21/45 111/45 21
2 2 12 5 3/21 45/21 3
3 7 89 37 0 21/3 0
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We now have one more major list of facts.

Theorem 3.13. Let z = [ao,...,ayn] be a finite scf. Then
a) Ry, < Ranyz and Ry,_y > Rynyq for all n > 0.
b) Ry, < Rgiyq for alln,i > 0.
¢) Ry, < z and Ry,_1 > z for all convergents except the last.

d) Qn>Qn-y foralln >1

e) gcd(Prn,Qr) =1 for all n.

Proof. a) Looking at (3.9), and remembering that the a; and @; are all
positive, we see that the right-hand side of (3.9) is positive or negative
according as n is even or odd.

b) In (3.8), it is clear that Ry, < Ry,41 for all n. If Ry, > Ry; 11 were to
hold for some n < ¢, then Ry; > Ry;41 would hold since by part a Ry, is
an increasing sequence. Similarly, if Ry, > Ry;41 were to hold for some
n > i, then Ry, > Ry,y; would hold since the R,,,; are decreasing.
These are both contradictions.

c¢) This is obvious. z has some value, which is larger than the even
convergents and smaller than the odd ones, except for the equality
which holds for the last.

d) This is evident from the defining equations of Theorem 3.12 and the
new assumption that the a; are positive.

e) In (3.7), the gecd of P, and @, must divide either —1 or +1 and
hence must be 1.

We now pass from finite scf’s to infinite ones.

Theorem 3.14. If ag is an integer and ay,...,ay,... iS any sequence
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of positive integers, then

T = JLIEO-[aO,.. ey by
exists, and is greater than any even convergent and smaller than any
odd convergent.
Proof. The even convergents are increasing and the odd convergents
are decreasing, so if the limit exists the rest must be true. But by (3.8)

and Theorem 3.13d we have

1 < 1
QnQn+1 Qn+12 |

The right hand side goes to 0 as n — 0, so the limit does exist.

| Rn+1 - Rn '=

From this point on, only periodic simple continued fractions are
considered, that is, scf’s for which a; = a;45 for all + > I and some
fixed J. We write this as

:[’a-07 cees@r_1, *ab R 7"*‘a'I+J—1]7
with the * indicating the period. We can now, at last, prove one of the

main theorems and return to the discussion of quadratic forms.

Theorem 3.15.
a) If w is an irrational root of a quadratic equation with integer co-
efficients, then the scf for w is periodic.

b) If an scf is periodic, then its value is an irrational root of a

quadratic equation with integer coefficients.

Proof. a) Let w be the root of

aw?® +bw+c=0,
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where without loss of generality we have a > 0. Writing D = b% — 4ac,

we can see that Z; = (—B + v/D)/(24) with A > 0, 0 < B < VD,
and B? — D = 4AC for a positive integer C. From there it is clear
that all of the Z; are of this form. But this limits the values of B to
a finite list, and consequently there are only finitely many values Z;
which occur. Clearly, then, the cf is periodic since the choice of Z;
from Z; is unique. |

b) Let w = [ag,...,ar-1,*ay,...,*ar4j—1]. Then, in the notation of
(3.10), X7 is the value of the purely periodic part. If P//Q' and P"/Q"

are the last two convergents of [ay,...,ar47-1], then
XI = [*aIa RS *aI+J—17XI]

so that ‘

_ P'X[-l-P”

QX +Q"

(The left-hand X; is the value of the periodic scf; the right-hand X

X

are from applying the defining recursions of the P and Q convergents.)
Thus, X7 is a quadratic irrational, satisfying an equation with integer

coefficients. Now, we can also write

.= P+ X1+ Pr_,
Qr-1Xr+ Qr-2’

and hence z is a quadratic irrational, satisfying an equation which can

be seen to have integer coefficients.

We now return to our main topic. Given a discriminant of binary
quadratic forms D > 0, we define w = \/m, if D is even, and w =
(=1 + +/D)/2, if D is odd. These are the principal roots of forms
(1, 0, —D/4) and (1, 1, (1~ D)/4), respectively, which forms we write



VS

ac,

ar

to

i+1

of
Q”

an

Ty

ms

ite

41

as f = (1, b, (b— D)/4). Expanding the cf for w produces w = ag + Zo,

with 0 < Z; < 1 and a¢ an integer. Under the transformation
(1 ao')
0o 1/’
f becomes (1, b+ 2ag, *), where b+2ao < VD < b+2ag+2. This form

is thus reduced, with principal root Z,. At this point, expansion of the
cf and cycling through the principal cycle of forms of discriminant D
are essentially the same.

Let us now consider the equivalences
1, b, (b—D)/4) ~ (1 = co, bo, a) ~ (e, by, ) ~ ...

under the action of the above transformations T;. Then the sequences

Z; = (=b; +VD)/(2¢;) and X; = (b; + VD)/(2¢iy1) are clear. We have

the following theorem.

Theorem 3.16. If M = T,...T; transforms (1, b, (b — D)/4) into
(Ci, b,‘, C,'+1), then

(2P + Qi) — DQi = 4cita.

Proof. The proof follows from writing

w = Xnt1Pn + Py
Xn+1Qn + Qn-—l .

. The rest follows simply by calculation.

In the expansion of the cf it may happen that (1, b, (D —5b)/4) and
(=1, b, (b — D)/4) lie in the same cycle; if this is true, the cycle of
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forms is twice as long as the period of the cf, with the cf cycle being
repeated in the period of forms. If this happens, we choose to call the
length of the cf period to be the same as the length as the cycle of
forms. (This is the case in our example at the end of this chapter. The
cf for (=5 + V/41)/2 has a period of length 10 and not 5.) With this
convention, we obtain two theorems which together give us the precise

determination of the solutions to the Pell equations.

Theorem 3.17. If the continued fraction expansion of w = (-1 +
\/E)/Q (for odd D) or of w = \/5/2 (for even D) is of length n, and
if P = P,_1 and Q = Qn_1 are the penultimate convergents in the first
period of the expansion, then (X,Y) = (2P + @, Q) is the fundamental
solution of (3.2).

Proof. Clearly (2P+Q, Q) is a solution, but then (2P+Q+Q\/l_))/2 =
((X/+ Y+/D)/2)" for some n. Then the expansion of the cf for (2P +
Q + Q\/_D-) /2 contains n copies of the cf for the fundamental solution
of (3.2). But no such repetition can occur, except for the double period
that occurs if, as mentioned above, the (—1, *, **) form appears in
the principal cycle; however, that would, by Theorem 3.16, provide a
solution to z? — Dy? = —4.

The following theorem can now be proved by carefully combining

previous results.

Theorem 3.18. Let A = D be a positive discriminant of quadratic

forms. Solutions to the Pell equation
z? — Dy* = —4 (3.11)
exist if and only if the reduced forms (1,b,¢) and (—1,b, —c) of discrim-

inant D lie in the same cycle. If this is true, then
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a) the length of the continued fraction expansion of w = (—14+vD)/2
(for odd D) or of w =+/D/2 (for even D) (which is the length of
the cycle of forms) is an even integer 2n;

b) if P = P,y and Q) = Qn—1 are the penultimate convergents in
the first half-period of the expansion, then (X,Y) = (2P + Q,Q)
is the solution of (3.11) for which X ‘andY are positive integers
and (X + Y/D)/2 is of least magnitude;

¢) all solutions to (3.11) are given by the odd powers of (X+Y/D)/2;

d) all solutions to (3.2) are given by the even powers of(X+Y\/ﬁ)/2;
the fundamental solution to (3.2) is

=l

The solution to (3.11), if it exists, will be called the fundamental solu-

b ' tion to that equation. -

We now prove Theorem 3.5.

Theorem 3.5. Two reduced forms are equivalent if and only if they

are in the same cycle.

Proof. Our proof, which follows closely that of Mathews, will take

several steps. We define a continued fraction to be regular if all the

partial quotients after the first are.positive.

Proposition 3.19. If an infinite cf contains only a finite number of
nonpositive partial quotients, it can be converted in a finite number of

steps to a regular cf. |
i
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Proof. Let a, be the last nonpositive partial quotient (pq).
Case t. a, = 0.

Since [z,0,y, 2] = [z + v, 2], we have

[. veglr_1, 0,ar+1, QAr42,- - ] = [ R / P | -+ AQri41yQry2y- - ]

We note that this shifts the last nonpositive pq to the left.

Case i. a, = —k # —1.
It can be shown that

[...;ar1,—k,ap41,... ] =] . 58,1 —1,k—2,1,a,_; —1,...].

Since a, is the last nonpositive pq, a,41 — 1 is nonnegative. If it is zero

or if k is 2, the reduction of the previous case has the effect of shifting
the last nonpositive pq to the left.
Case iii. a, = —1.
Since [...;x,—l,y,...] =[..,z—-2,1,y —2,...]
and [...,z,—-1,1,y,2,...]=[..,z—y—2,1,2—1,...],
the last nonpositive pq is again shifted to the left.
We can thus shift the nonpositive terms to the left, eventually elim-
inating them entirely. In each case the number of partial quotients

changes by zero or by two.

Proposition 3.20. Ify = (az + B)/(yz + §) for some transformation
in the modular group T', then y can be written
y= [:tta ai, ..., asr, :i:u,rc] )

with ay,...,as all positive.

Proof. Let +t be chosen so that —(Xt — £8/6) is a positive proper

fraction. We can expand £/6 into a cf with an odd number of partial
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quotients 8/8 = [£t,a4,...,az;]. (We can make the length 2r + 1 since
[2] = [z — 1,1].) If P/Q is the penultimate convergent, then by (3.7),
BQ —6P =1=cab— By. Then a = P+ upf and v = Q + ué for some
integer u. Then

afy = [+t ay,. .., a2, ul.

Consequently,

= [:‘L‘,t,‘a’l, BN/ Y ﬂ:u, .'E].

We now prove Theorem 3.5. Let f = (a, b, ¢) and f' = (da', ¥/, )
be two reduced equivalent forms. With no loss of generality for our
purposes, we can choose a and a’ positive so that the principal roots w
and w' are positive proper fractions. Since the forms are equivalent, a

transformation of the usual sort exists so that
o = (ow+ )/ (1w +6).

Then ' = [+t,a4,...,as,, Tu,w]

= [+¢,a1,. .. 02, Fu + di, *dy, .. ., *d |
if [#dy, ..., *dyp] is the cf for w. We may use Proposition 3.18 to make
all the partial quotients after the first positive and then note that the
first partial quotient is zero since w’ is a positive proper fraction. It 1s
easy to show that a purely periodic cf is unique for a given quadratic
irrational so that the periodic part of the expansion of w' is merely a
cyclic permutation of that for w. Indeed, since the operations of Propo—b
sition 3.18 change the number of partial quotients by zero or two each

time, the period for w’ is a shift of that for w by an even number of

- partial quotients. (This is important since the first coefficients of adja-

cent forms alternate in sign; without the evenness of the permutation
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we could not distinguish cycles from their associates.) Thus, by cycling
forward from f we arrive at a reduced form whose principal root is
w'. But the principal root and the discriminant uniquely determine the
form, so this form is f’.

We prove one final theorem which will be used later.

Theorem 3.21. Let A be a positive discriminant of binary quadratic
forms and p be any prime. In the notation of Theorem 3.9, we have
that

a) there exists an n such that p | Y, ;

b) the least positive residues modulo p of the integers (X,,Y,) form

a periodic sequence.

Proof. We only prove this for odd primes p; the proof for p = 2 is
similar. If A is a discriminant of forms, then so is Ap?; therefore, a
solution exists to the equation 22 — Ap?y? = 4. Part a follows from the
fact that this solution (z, py) to 22 — Ay? = 4 must be one of the pairs
(Xn, Y2).

We have that

-Xp + 1/;)\/Z Xl + }/i\/z P
2 2
X; + Y, Al-D/2,/A
2
A
X1+ Y (;) VA
2 b

1l

where the congruences are taken modulo p, and the symbol '(%) is

the quadratic residue symbol if p does not divide A and 0 if it does.
We may thus define X = X; and Y = (-ﬁ—) Y; to be least positive

T e et o e s o g i s o = vt 3 e
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residues of these congruences (mod p)-

(X1 +Y;4/A)/2)" produce a sequence congruent modulo p to the powers

It is clear that the powers

of (X + Y+V/A)/2)", and this sequence is recurrent.

Ezample. :
Let D = 41. The cf expansion of (—1 + 1/41)/2 is

i a P Qi Z X;

—1 1 0

0 2 2 1 (V41 -5)/2

1 1 3 1 (V41-3)/8 (VA1+5)/8
2 2 8 3 (V41 -5)/4 (V41+3)/4
3 2 19 7 (V41-3)/4 (VEl1+5)/4
4 1 271 10 (V41 -5)/8 (V41+3)/8
5 5 154 57 (V41-5)/2 (V41+5)/2
6 1 181 67 (v/41-3)/8 (V/41+5)/8
7 2 516 191 (V41 -—5)/4 (VAl+3)/4
8 2 1213 449 (V41 -3)/4 (V41+5)/4
9 1 1729 640 (V41-—5)/8 (V41+3)/8
10 5 9858 3649 (V41 —5)/2 (V41+5)/2

The cycle is completed, and the cf is [2, *1, 2, 2, 1, *5]. The effect on

the forms is this, where the equivalences after the first are done with

0 -1
r=(0 7))

for which the § are —1,2,-2,1,-5,1,—2,2,—1:

transformations

(1,1,-10) ~ (1,5, —4) ~ (=4,3,2) ~ (2,5,—2) ~
(—2,3,4) ~ (4,5, 1) ~ (=1,5,4) ~ (4,3,2) ~
(=2,5,2) ~ (2,3, —4) ~ (—4,5,1).

The cumulative equivalence is achieved by the transformations com-

(62 =)

puted as follows:

To =
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T.T, = '~To(0 —1)

1 —aq
- (& 5)
Qo —Ch
T0T1T2 = (—Pl —PZ)

_Ql _Q2
_P, P
T T, T, s — (__ o Q‘;)
P, P
namnz - (5 5.

Thus, for example, (1,1,—10) ~ (2,5, —2) under
gy
-1 -3/
We see that (1,5, —4) ~ (—1,5,4) under

(7 —40)
10 -57/°

This provides us with the solution 642 — 41 - 10% = —4, which is the

: fundamental solution for (3.11). Continuing to the end of the cycle, we

find that (1,5,—4) first becomes equivalent to itself under

(—449' —2560)
—640 —-3649/°

From this we get the solution 40982 — 41 - 6402 = 4, which is the

fundamental solution for (3.2).




