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Cyclotomic Extensions

In this chapter we will explore the Galois theory of cyclotomic extensions, which
are extensions of the form Q C Q(¢,), ¢, = e*™/*. This will involve a study
of cyclotomic polynomijals and Gauss’s theory of periods. In the next chapter we
will apply these results to determine which regular polygons are constructible by
straightedge and compass.

9.1 CYCLOTOMIC POLYNOMIALS

In Section 4.2 we showed that if p is prime, then
Dp(x) =xP V4 xP2 1

is the minimal polynomial of ¢, = €**!/? over Q. In this section, we will describe
the minimal polynomial of ‘
’ ¢, = e2m‘ /n

n

over Q, where n is now an arbitrary integer > 1. We will also compute the Galois
group Gal(Q(¢,,)/Q). But first, we need two facts from elementary number theory.

A. Some Number Theory. We begin with the Euler ¢-function. Given a positive
" integer n, we define ¢ (n) to be the number of integers { such that 0 < i < n and
ged(i, n) = 1. We can interpret ¢ (n) in terms of the ring Z/nZ as follows. The
- invertible elements of this ring form the set

(Z/nZy* = {lil € Z/nZ| [i]Lj] = [1] for some [j] € Z/nZ}.
229
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One easily sees that (Z/nZ)* is a group under multiplication. In Exercise 1 you will
show that (Z /nZ)* has order ¢ (n). Thus i

9.1) ¢(n) = |(Z/nZ)*|.
Our first lemma gives the basic properties of the ¢-function.

Lemma 9.1.1. Let ¢ be defined as above. -
(a) If n and m are relatively prime positive integers, then ¢ (nm) = ¢ (n)¢ (m).
(b) If n > 1 is an integer; then ‘

1
s =n](1--),
_ 4
pln
where the product is over all primes p dividing n.

Proof. Since ged(n, m) = 1, Lemma A.5.2 implies that there is a ring isomorphism
a:Z/nmZ=Z/nZ x Z/mZ. In Exercise 2 you will show that « induces a group
isomorphism ’

(Z/nmZy* >~ (Z/nZ)* x (Z]mZ)*.

Then qb(nm‘) = ¢(n)¢ (m) follows immediately from (9.1).
Next observe that if p is prime and a > 1, then ¢ (p?) counts the number of
integers { such that 0 < i < p® and p1i. In other words, if

S=’{je2|o_<;j<p“andp|j},

then ¢ (p?) = p® — |S|. However, p|j for some 0 = Jj<p®ifandonlyif j = pe
for some 0 < £ < p®~!, Thus [S] = p?~1 so that ¢ (p?) = p? — po—1

For arbitrary n > 1, write n = p‘fl -+« ps*, where the p; are distinct primes and
a; = 1 for all i. Using part (a) and the formula @ (p?) = p® — p?~1 we obtain

¢(n) = (Pl - pi) = ¢ (pI) - p(p%) = P = pi (o = P
1 1 1
— p% ] — —).oop%(1 — — = n 1—'—-'—)
pl ( pl) ps ( . ps) })_I-J( P
This completes the proof. ’ O

Our second lemma is sometimes called Fermat’s Little Theorem.
Lemma 9.1.2. If p is prime, then a? = a mod p for all integers a.

Proof. Since the congruence is true when pla, we may assume that p { a. Then
[a] € (Z/pZ)*, so that [a]?~! = [1], since (Z/ pZ)* is a group of order p — 1
under multiplication. In congruence notation, this means that ¢”~! = 1 mod p.
The desired congruence follows by multiplying each side by a. - d
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‘B. Definition of Cyclotomic Polynomials. Our next task is to define the

cyclotomic polynomial ®,(x) for n > 1 and show that it has integer coefficients.
We begin with the factorization

(9.2) | 1= ] a-¢h.

0<i<n

Then define the nth cyclotomic polynomial ®,,(x) to be the product

9.3) | epx)= ] - A

O<i<n
ged(i,n)=1

Thus the roots of ®,(x) are ¢/ for those 0 < i < n rélatively prime to n. It follows
that @, (x) has degree ¢ (n). Combining this with (9.1), we see that

d(n) = deg (Dn(x)) = |(Z/nZ)"|.

This link between ®,,(x) and (Z/nZ)* will be used to determine Gal(Q(¢,,)/Q).
In Section 8.3 we defined a root of x” — 1 to be a primitive nth root of unity if its
powers give all roots of x” — 1. In Exercise 3 you will prove that in our situation,
the primitive nth roots of unity are ¢! for 0 < i < n and gcd(i, n) = 1. Thus the
roots of ®,(x) are the primitive nth roots of unity in C.
Here are some examples of cyclotomic polynomials.

Example 9.1.3. When n = 2, the only primitive square root of uniiy is —1, so that
®y(x) = x + 1. When n = 4, the primitive fourth roots of unity are i and i3 = —i,
so that

Da(x) = (x —i)(x +i) = x2 + 1.

Since ®1(x) = x — 1, we get the factorization
= 1= = DE+DHE*+1) = S1(x)P2(x)Pax).
Proposition 9.1.5 will show that x” — 1 has a similar factorization. <>

Example 9.1.4. Let p be prime. Since 1,..., p — 1 are relatively prime to p, it
follows that :

Pp(x) = (x = Lx — &)+ (x — 5 =

Using x? —1 = (x — D(xP~14...4+x+1), we obtain D,(x) = xP x40,
which agrees with the definition of ®,(x) given in Section 4.2. <>

In the following discussion we will write d|n to indicate that d is a positive divisor
of n. We now state some elementary properties of cyclotomic polynomials.
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Proposition 9.1.5. @, (x) is a monic polynomial with integer coefficients and has
degree ¢(n). Furthermore, these polynomials satisfy the identity

9.4) | " —1= H Dy(x).

dln

Proof. ®,,(x) is monic by definition and has degree ¢(n) as shown above. Next
we prove the factorization (9.4). The basic idea is that every number i in the range
0 <i < n gives a divisor d = ged(i, n) of n. Since different values of i can give
the same d, we can organize the factorization (9.2) according to d. This gives

x"—-lzn H(x——;‘,’;).

dln 0<i<n
ged(i,n)=d

For a fixed positive divisor d of n, the corresponding part of this factorization is

9.5) ' [T & =¢h.
O<i<n

. ged(i,n)==d

s

But ged(i, n) = d implies that i = dj and n = d%}, where gcd(/, :’—1) = 1. Also:
® 0 <i <nbecomes0 < dj < d¥%, which is equivalent to 0 < J<g-
o (d=¢u,sothatx — & =x — ¢ = x — (@3,

It follows that (9.5) can be written

T &= @), |

0<j<%
ged(j, 5)=1

which by (9.3) is the cyclotomic polynomial <I>g, (x). Thus the above factorizaﬁon
of x* — 1 becomes
" —1=]]®sx).
d|n
Then (9.4) follows since d is a positive divisor of n if and only if % is.
~ Itremains to show that &, (x) has integer coefficients. We prove this by complete

induction on n. The base case n = 1 is trivial, since ®;(x) = x — 1. Furthermore,
if n > 1, then (9.4) and our inductive hypothesis imply that

XM= 1= () [ @at)

din,d<n

= ®,(x) - a monic polynomial g(x) lwith ihteger coefficients.

Hence &, (x) is the quotient of x" — 1 by g(x). Since x" — 1 and g(x) lie in Z[x]
and g(x) is monic, the refinement of the division algorithm presented in Exercise 4
implies that @, (x) € Z[x). This completes the proof. ‘ O
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‘Here are some examples of how to use the identity (9.4).

Example 9.1.6. Let p be prime. Proposition 9.1.5 implies that

P — 1= 0Py and xP’ —1=e1@PHE) Py (x)-

Thus \
xP =1 =xP = 1)Pj2(x).

It follows that

2
xP -1

<I>p2(x) = 71

= xPP=D 4 xP(P=D 4 .4 x2P 4 xP + 1,

where the second equality folldws from

P_1 \
xx - =xP N xP 2 xP a1
by replacing x with x?. , : <>

I

Example 9.1.7. In the examples of cyclotomic polynomials given so far, the coeffi-
cients are always O or 1. This is true for all n < 105. You will show in Exercise 5
that ®195(x) is the polynomial

1+x+x2—-x5=—x6—2x74—x8-—x9+x12+x13+x14+x15
+x16+x17-——x20-—x22—-x24——-x26—-;x28+x.31+x32+x33+x34

+x35 4 x36 £39 x40 g4 42 _ 13 4 446 +xY7 + x%8.
'As n increases, the coefficients of ®,(x) can get arbitrarily large (see [1]). <>

C. The Galois Group of a Cyclotomic Extension. The first step in computing
Gal(Q(¢,)/Q) is to prove that ®,(x) is irreducible. For this, we will need the
following application of symmetric polynomials and Lemma 9.1.2.

Lemma 9.1.8. Let f € Z[x] be monic of pvositive degree, and let p be prime. If fp
is the monic polynomial whose roots are the pth powers of the roots of f, then:

(@ fp € Zlx}
(b) The coefficients of f and fp are congruent modulo p.

.Proof. If f hastoots yy, ...,V = deg(f), then
: . | |
) =1]e-vH =x =o)X ol ¥
i=1

Similarly, f(x) = x" —o1(¥1, .- > ye)x" Vo (=) or (Y1, . ., Vi), Inthese
formulas, o7, . . . , 0y are the elementary symmetric polynomials from Chapter 2.
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Observe that o;(x], ..., x7) is a symmetric poiynomiai. In Exercise 6 you will
show that the algorithm of Theorem 2.2.2 implies that

9.6) i@l ....xf) = o} + S, ..., 00,

where S(oy, ..., 0,) is a polynomial in o7y, . . ., o, with integer coefficients. How-
ever, if we reduce modulo p, then Lemma 5.3.10 implies that

of =oi(x1,...,x,)P =o;(x], ..., x})

as polynomials with coefficients in IF,, (see Exercise 6 for details). Combmmg this
with (9.6), we see that the coefﬁcxents of (o1, ..., 0,) are all divisible by p.

Now substitute yy, ..., ¥ for x1,..., x, in (9. 6) Since o; (y1, ..., ¥r) € Z for
all i and S has integer coefficients, we conclude that o; (yl .- s ¥F) € Z. Since the
coefficients of S are all divisible by p, we also have

.Ui()/{’,..-,yrp) =0y, ..., )P =0i(y1,...,y) mod p,

where the second congruence follows from Lemma 9.1.2. Thus the coefficients of
S and f, are congruent modulo p. . (]

We now show that ®,,(x) is the minimal polynomial of ¢, over Q.
Theorem 9.1.9. The cyclotomic polynomial ®, (x) is irreducible over Q.

Proof. Let f € Q[x] be an irreducible factor of ®,(x). Then Gauss’s Lemma, in
the form of Corollary 4.2.1, allows us to assume that f € Z[x] and that

9.7) Dy (x) = f(X)g (),

for some g € Z[x]. We can also assume that f and g are monic, since D, (x) is.
Let p be a prime not dividing n. The first step in the proof is to show that

(9.8) If ¢ is aroot of f, then so is ¢7.

We will prove (9.8) by contradiction, so suppose that f(¢£) = 0 and f(¢P) # 0.

As in Lemma 9.1.8, let f), € Z[x]be the monic polynomial whose roots are the
pth powers of the roots of f. In Exercise 7 you will show that the roots of Sp are
distinct prlmmve nth roots of unity, which implies that fp divides ®,(x). If f and .
fp had a common root, then f would divide Sp, since f is irreducible. This would
force f = Jp» since they are monic of the same degree. But f = Jp 1s impossible,
since f(¢£”) # 0and f,(£7) = 0 (the latter follows from f(¢) = 0 by the definition
of fp). Thus they have no common roots, so that (9.7) can be written

D, (x) = f(x)fp(x)h(x).

Since ‘<I>,, (x), f(x),and f),(x) are monic with integer coefficients, the refined division
algorithm of Exercise 4 implies that the same is true for A(x).
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Consider the map sending g (x) € Z[x]to the polynomial g (x) € IFp[x] obtained
by reducing the coefficients of g (x) modulo p. Since f&x)=f p»(x) by Lemma 9.1.8,
the above factorization implies that f 2(x) divides ®,(x) in Fplx]. Thus f 2(x)
divides x™ — 1, so that x" — 1 is not separable in Fp [x]. Butx" — 1is separable,
since p t n. This contradiction completes the proof of (9.8).

Now let ¢ be a fixed root of f and let ¢’ be any primitive nth root of unity.
In Exercise 7 you will show that ¢’ = ¢J for some j relatively prime to n. Let

j = pi--- pr be the prime factorization of j, and note that each p; is relatively
prime to n. Then successive application of (9.8) shows that

z, ;P.l , §P1P2, §P1P2P3, ey CPI“‘Pr — ;—'

are roots of f. Hence every primitive nth root of unity isarootof f. Since f divides
®,(x), we conclude that f = ®,(x). Thus &, (x) is irreducible, since f is. O

Theorem 9.1.9 implies that @, (x) is the minimal polynomial of £, over Q. Thus
[Q(Z,) : Q] = deg (Pn(x)) = ¢(n), which proves the following corollary.

Corollary 9.1.10. [Q(¢,) : Q] = ¢ (n). ' ’ [

/

" This makes it easy to compute the Galois group of a cyclotomic extension.

Theorem 9.1.11. There is an isomorphism Gal(Q(¢,) /Q)‘ ~ (Z/nZ)* such that
o € Gal(Q(¢,)/Q) maps to [£] € (Z/nZ)* if and only if o (8,) = Lf.

Proof. We know from (8.6) that Q C Q(¢n) is a Galois extension. Furthermore,
an element o € Gal(Q(¢,)/Q) is uniquely determined by o (£,,), which is a root
of ®,(x) because ¢, is. Thus 0({,) = ;‘,f for some £ relatively prime to n. By
Exercise 4 of Section 6.2, the map ¢ +> [£] is a well-defined one-to-one group
homomorphism Gal(Q(¢,)/Q) — (Z/ nZ)*. Then Corollary 9.1.10 implies that

| 1Gal(Q(¢,)/Q| = [Q,): QI = ¢(n) = (Z/nZ)*|.
1t follows that Gal((@(gn.)/ Q) — (Z/nZ)y* is an isomorphism. | (!

In the next chapter we will use Corollary 9.1.10 to characterize those n for which
a regular polygon with n sides is constructible by straightedge and compass.

Historical Notes

While both Lagrange and Vandermonde made significant use of roots of unity,

the first systematic study of cyclotomic extensions is due to Gauss. Most of Gauss’s

results appear in Section VII of Disquisitiones Arithmeticae [4], published in 1801.
This amazing book covers a wide range of topics in number theory. In particular,
Gauss introduces the congruence notation @ = b mod n and proves a version of
Gauss’s Lemma (Theorem A.3.2). . :

In Section VII Gauss studies the extension Q C Q(£,), where p is prime. As
we will see in the next section, Gauss constructs primitive elements for intermediate
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fields and essentially describes the Galois correspondence. In Article 365 of [4]
he applies his results to the constructibility of regular polygons by straightedge and
compass. We will discuss this in the next chapter.

To study Q C (@({p), Gauss needed to know that CDp(x) =xP 1. 4 1is
irreducible over QQ. Not surprisingly, he proves this using Gauss’s Lemma. For

generaln > 1, the entry dated June 12, 1808 of Gauss’s mathematical diary (see [5])
reads as follows:

f The equation ... that contains all primitive roots of the equation x” — 1 = 0 can-
1% , not be decomposed into factors with rational coefficients, proved for composite
i values of n.

Unfortunately, Gauss’s proof has been lost. The first published proof that &, (x) is

irreducible (Theorem 9.1.9) appeared in 1854 and is due to Kronecker. Our proof

is based on arguments of Dedekind, as presented by Jordan in 1870. The key step

is (9.8), which we proved using Lemma 9.1.8. Schénemann’s proof of this lemma

dates from 1846, though Gauss proved it much earlier in an unpublished continuation
, of [4]. A modern proof of (9.8) is sketched in Exercise 8.

Exercises for Section 9.1

Exercise 1. Prove that a congruence class [i] € Z/nZ has a multiplicative inverse if and only
if gcd(i, n) = 1. Conclude that (Z/nZ)* has order ¢ (n). Be sure that you understand what
happens when n = 1.

Exercise 2. Assume that gcd(n,m) = 1. By Lemma A.5.2, we have a ring isomorphism
a:Z/nmZ = Z[/nZ x Z/mZthat sends [alpm to ([aln, [almn). Prove that « induces a group
isomorphism (Z /nmZ)* >~ (Z/nZ)* x (Z/mZ)*.

Exercise 3. Let ¢, = e2mi/n ¢ C. ‘Prove that {,’; for0 <i < n and ged(i, n) = 1 are the
primitive nth roots of unity in C.

Exercise 4. Let R be an integral domain, and let f, g € R[x], where f # 0. If K is the
- field of fractions of R, then we can divide g by f in K[x] using the division algorithm of
Theorem A.1.14. This gives g = gf + r, though g, r € K[x] need not lie in R[x].
(a) Show that dividing x2 by 2x + 1 in Q[x] gives x2 = g - (2x + 1) +r, where ¢, r € Q[x]
are not in Z[x], even though x2 and 2x + 1 lie in Z[x].
(b) Show thatif f is monic, then the division algorithm gives g = qf +r, where g, r € R[x].
Hence the division algorithm works over R provided we divide by monic polynomials.

Exercise S. Verify the formula for ®¢s(x) given in Example 9.1.7.

Exercise 6. This exercise is concerned with the proof of Lemma 9.1.8.

(a) Let f € Z[xy, ..., xy] be symmetric. Prove that f is a polynomial in oy, ..., 0, with
integer coefﬁcmnts
(b) Let pbeprimeandleth e Fplxy, ..., xnl Provethath(xq,..., x,,)p = h(x1 - x,’,’)

* Exercise 7. This exercise is concerned with the proof of Theorem 9.1.9.
(a) Let ¢ be a primitive nth root of unity, and let i be relatively prime to n. Prove that ¢/ is ;
a primitive nth root of unity and that every primitive nth root of unity is of this form.
i (b) Letyy,..., y, be dlstmct primitive nth roots of unity and let i be relatively prime to n.
' Prove that y[, ..., v} are distinct.

QU T R T AT ol s
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Exercise 8. This exercise will present an alternate proof of (9.8) that doesn’t use symmetric
polynomials. Assume that ¢ is root of f such that f(¢?) # 0. As in the text, g(x) € Z[x]
maps to the polynomial g(x) € Fp[x]. Let g(x) be as in (9.7).
(a) Prove that ¢ is a root of g(x”), and conclude that f(x)|g(x?).
(b) Use Gauss’s Lemma to explain why f(x) divides g(x?) in Z[x], and conclude that f x)
divides g(x?) in Fp, [x].
(c) Use Exercise 7 to prove that §(x)? = g(xP), and conclude that f(x) divides g(x)P.
(d) Now let 2(x) € FFp[x] be an irreducible factor of f (x). Show that h(x) divides g(x), so
that 2 (x)? divides f(x) g(x).
() Conclude that h(x)? divides x”* — 1 € Fp[x].
(f) Use separability to obtain a contradiction.

Exercise 9. In proving Fermat’s Little Theorem a? = a mod p, recall from the proof of
Lemma 9.1.2 that we first proved a?~! = 1 mod p when a is relatively prime to p. For
general n > 1, Buler showed that a®™ = 1 mod n when a is relatively prime to n. Prove
this. What basic fact from group theory do you use?

Exercise 10. Prove that a cyclic group of order n has ¢ (n) generators.
Exercise 11. Prove thatn = 3 ;,, ¢(d). o

Exercise 12. Here are some further properties of cyclotomic polynomials. ‘
(@) Given n, letm = [],, p. Prove that ®,(x) = ®,,(x"/™). This shows that we can
reduce computing @, (x) to the case when n is squarefree.

(b) Let n be an odd integer. Prove that @5, (x) = ®,(—x). ‘
(c) Let p be a prime not dividing an integer n > 1. Prove that ¢ pn(x) = Pp xP)/ Py (x).

Exercise 13. We know &5 (x) when p is prime. Use this and Exercise 12 to compute ®15(x)
and ®p5(x).

‘Exercise 14, The Mobius function is defined for integers n > 1 by

1, ifn=1,
n@) = { (—=1)5, ifn = py.-- ps for distinct primes py, ..., ps,
0, otherwise.

Prove that 35, (%) = Owhenn > 1.
Exercise 15.-Let i be the Mobius function defined in Exercise 14. Prove that

<1>,,(x) = [J@&? — pre/d,
din

This representation of &, (x) is useful when studying the size of its coefficients.

Exercise 16. Let n and m be relatively prime positive integers.
(a) Prove that Q(¢,,, &,,,) = Q(,,n)-
(b) Prove that &, (x).is irreducible over Q(¢,,,).
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9.2 GAUSS AND ROOTS OF UNITY (OPTIONAL) |

In this section we will explore how Gauss studied Q C Q(%,), where p isanodd

prime. Working 30 years before Galois, Gauss described the 1ntermed1ate fields of
this extension and used his results to show that x” — 1 = 0 is solvable by radicals.

A. The Galois Correspondence. If p is an odd prime, then Proposition 9.1.11
implies that

Gal(Q(£)/Q) =~ (Z/ pZy*.
Let’s recall what we know about this group:
e (Z/pZ)* is cyclic of order p — 1 by Proposition A.5.3.
e For every positive divisor f of p — 1, (Z/ pZ)* has a umque subgroup Hy of
order f by Theorem A.1.4.

Following Gauss, we let ¢ = f . Thus

ef =p—1,
and Hy has index e in (Z/pZ)*. We will use this notation throughout the section.
One further fact not mentioned earlier is the following: ,

e If f and f’ are positive divisors of p — 1, then H fCH f/ if and only if f|f’.
You will prove this in Exercise 1. Hence we can easily check when one subgroup is
contained in another.

By the isomorphism Gal(Q(¢,)/Q) = (Z/ pZ)* and the Galois correspondence,
the intermediate fields of Q C Q(¢,,) are the fixed fields

Ly= {oz € Q({‘p) | o () = « for all o with a({l,) = f;;, [i]l e Hf}

as f ranges over all positive divisors of p — 1. These fixed fields have the following
nice properties.

Proposition 9.2.1. The intermediate fields Q C Ly C Q&) satisfy:

(a) Ly is a Galois extension of Q of degree e.

(b) If f and f’ are positive divisors of p — 1, then LyD Ly lfand only if f1f.

(c) If f and f' are positive divisors of p — 1 such that fIf', then Gal(L¢ /L ¢1) is
cyclic of order f'/f.

Proof. You will supply the straightforward proof in Exercise 2. O

In particular, if p — 1 = g4 - - - g, is the prime factorization of p — 1, then we
get subfields

©.9)  Q=Lgg Clgug C - CLg_ g CLg CLI=Q()

- where [Lg;,,...q, : Lgigi4y-q,] = qi. Thus every element of Ly, ...q, is the root of a
polynomial of degree g; over Lg,q;.,,...q,-

All of this is a simple application of Galois theory. The surprise is that Gauss
understood most of this, including (9.9). Before discussing Gauss’s results, let’s do
an example. )
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Example 9.2.2. Let p = 7. Then (9.9) with p — 1 = 6 = 3 - 2 becomes

Q=L¢ C Ly C L1 = Q(¢&y),

where Lj is the fixed field of the unique subgroup of order 2 of Gal(Q(¢-)/Q).
To make this more explicit, consider 7, = &g+ {7"1 = {7+ E7 = 2cos(2r /7).
In Exercise 3 you will show that Q(z;) corresponds to the subgroup {e, t} of

Gal(Q(¢7)/Q), where t is complex conjugation. This subgroup has order 2, which
implies that

Lz = Q(n1).
In Exercise 3 you will also show that the conjugates of n1 over QQ are
Ny = ;‘-,2 -+ {7_2 = 2cos(4xr/7) and n3 = {73 + §7"3 = 2cos(61/7),
and that 71, 72, 13 are roots of the cubic equation
y4+y?—2y—1=0.

It is easy to check that ¢, is arootof x2 — pix + 1 € L>[x]. From here we can
express ¢, in terms of radicals as follows. Applying Cardan’s formulas to the above
cubic, one sees that ’

L LT a e+ LT
(9.10) m=—3+3 2(1+31«/§)+3 5 (1=3iv3),

provided that the cube roots are chosen correctly (see Exercise 3). Then applying
the quadratic formula to x2 — mx + 1 =0 gives '

=11y 1970 — 3
&y = 6+6\/2(1+3"/§)+~6 5(1-3iV3)

4= (- 50w - s,

where we use the same cube roots as in (9.10). <>

9.11)

Notice how (9.11) is similar to the formula

_=1+V5 i [54+4/5
- 4 2 2

gs

from Exercise 8 of Section A.2. These formulas were known to Lagrange and
Vandermonde in the 1770s. Vandermonde also worked out a similar formula for
¢11> Which is more surprising in that it required solving an equation of degree 5 by
 radicals (see [Tignol, Ch. 111). ’

B. Periods. In Section VII of Disquisitiones, Gauss proves the existence of radical |
formulas for ¢p, for any odd prime p. His proof uses periods, which for positive
divisors f of p — l.are carefully chosen primitive elements of L ¢ over Q.
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Letef = p— 1, and let H f C (Z/pZ)* be the uniqué subgroup of order f.

Given an element a = [i] € (Z [/ pZ)*, set ¢y = ;1’, This is well defined, since

¢j; = 1. Hence we can make the following definition.

Definition 9.2.3. Let )\ € Z be relatively prime to p. This gives [A] € (Z/pZ)* and
the coset [\1H f of Hy in (Z/ pZ)*. Then we define an f-period to be the sum

fin= 3 ¢

ac[AlHy
Here are some simple properties of f -periods.

Lemma 9.24. Letef = p — 1, and let (f, A) be defined as above. Then:
(a) Two f-periods either are identical or have no terms in common.

(b) There are e distinct f-periods.

(¢) The f-periods are linearly independent over Q.

(d) Leto e Gal(@(g'p)/(@) satisfy 0({1,) = ;‘;;. Then, for any f-period (f, 1),
| o ((fi 1) = (f.id). ,

- Proof. Recall that 1, $prenes {},”2 € Q(gp) are linearly independerit over Q, since

[@({I,) :Q] = p—1. Multiplying by ¢p shows that the same is true for $psovns ;g“l.
This implies that two f-periods coincide if and only if the corresponding cosets of
Hy are equal. Then part (a) follows because cosets are either identical or disjoint,
and part (b) because the number of cosets is the index of Hy in (Z/pZ)*, which

is e = 1’7“—1 Then part (c) is a consequence of part (a) together with the linear
independence of ¢,,, ..., 27! over Q. '
For part (d), observe that gl’; = {,[,i]. Thus (g, = ;I", implies that

()= D0 ()= X ¢la= 3 ¢b=(fin,
ac[MH ae[A)Hy belirlHy
where the third equality follows via the substitution b = [i]a. : |
Here are some particularly simple periods.

Example. 9.2.5. Since p is odd, the unique subgroup of (Z./ pZ)* of order 2 is
Hj = {[1], [—1]}. The cosets of this subgroup are [A\]H> = {[A], [—A]}, so that the
2-periods are ‘

20 =&y + ¢t =2cos2ma/p).

The number of 2-periods is e = 1’—'2‘—1
In particular, when p = 7, the distinct 2-periods are (2, 1), (2, 2), and 2, 3).
These were denoted 7y, 1, and 53 in Example 9.2.2. » <>

We now prove that f-periods give the desired primitive elements..
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Proposition 9.2.6. Let Ly be the fixed field of Hy. Then:
(a) Let (f, A1), ..., ([, Ae) be the distinct f-periods. Then

gx)=(x = (firD)) - (x = (S, X))

is in Q[x] and is the minimal polynomial of any f-period over Q.
(b) Any f-period is a primitive element of L 5 over Q.

Proof. An f-period n = (f, A) corresponds to a coset [A]Hy. If [i] € (Z/pZ)*,
then the f-period (f, i) corresponding to [iA]H is a conjugate of n over Q, by
Lemma 9.2.4. Since [iA]Hy gives all cosets of Hy as we vary [i], the conjugates
of n over Q are the e distinct f-periods (f, A1), ..., (f, Ae). Then part (a) follows
from the formula for the minimal polynomial given in equation (7.1) of Chapter 7.
It follows that Q C Q(n) and Q C Ly are extensions of degree e. Since
Gal((@(gp) /Q) = (Z/ pZ)* has a unique subgroup of index e, the Galois correspon-
dence implies that Q(n) = L ¢. This proves part (b). (]

As a corollary, we get the following interesting basis of L r over Q.
Corollary 9.2.7. The f-periods form a basis of L y over Q.

Proof. The f-periods lie in L ¢ by Proposition 9.2.6. Furthermore, Lemma 9.2.4
tells us that the e such periods are linearly independent over Q. The corollary follows,
since [L  : Q] = e by Proposition 9.2.1. , d

Our next task is to describe the extension L ;7 C Ly in terms of periods, where
f and f’ are positive divisors of p — 1 satisfying f|f’. Setd = f’/f, so that
[Lf:Ly] =d. Any f-period (f, A) is a primitive element of Ly over L. We
‘need to describe its minimal polynomial over L /.
This is done as follows. Observe that Hy is a subgroup of indexd = f’/f in
Hy:. Hence every coset of Hy in (Z/pZ)* is a disjoint union of d cosets of Hy.
(Do Exercise 4 if you are unsure of this.) In particular, [A\]H is a disjoint union

(9.12) [AHfr = [K]]Hf U..-UlrqlHy,

where we may assume Al = A, since [AlHy C [A]H . This leads to thé following
description of the desired minimal polynomial.

Proposition 9.2.8. Ler f and f’ be positive divisors of p — 1 such that f| f’, and set
d = f'/f. Given an f-period (f, L), let \1 = A, X2, ..., Aq be as in (9.12). Then

Ch(x) = (x = (FAD)) - (x = (f, )

isin L ¢ tx] and is the minimal polynomial of (f, X) over L.
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Proof. The proof is similar to what we did in part (b) of Proposition 9.2.6. Setting
n = (f, 1), we need to show that as o varies over Gal(@({,,) /L ¢), the elements
o (n) give the f-periods (f, A1), ..., (f, Aq). ‘ :

To prove this, let o € Gal(Q(¢,)/L f7), so that o (¢,) = ¢ for[i] € Hyr. Then

o(m) =o((f, 1) = (f,id).
This f-period corresponds to the coset [i \]H . However,
[iAlHy C [iA]Hy = [Alli]Hfp = [AMH v,

where the final equality uses [i] € Hyi. By (9.12), it follows that [iAlHf = [A;1Hf
for some j, so that o () = (f, iA) = (f, Aj). Since every (f, A ) arises in this way
(see Exercise 5), the proposition is proved. - O

We will give an example of Proposition 9.2.8 below.

C. Explicit Calculations. The above results are pretty but somewhat abstract.
To compute specific examples, we need a concrete way to work with periods. The
key idea, due to Gauss, is to pick a generator [g] of the cyclic group (Z/ pZ)*. Since
this group has order p — 1, it follows that '

@/p2)* = (11, 18], [¢°). ..., [g”21}.

In other words, the p — 1 numbers 1, g, g2, e, g”f2 represent the nonzero congru-
ence classes modulo p. We call g a primitive root modulo p.

Given a primitive root g and ef = p — 1 as usual, Exercise 1 implies that Hy is
generated by g¢, that is,

Hy = {11, [g°), [g*], ..., [gV "1}
It follows that the coset [\]H f gives the f-period

f—1
e 2e (f~De je
©13) (SN =4+ 48 ) T =S s

j=0

So far, we have assumed that [A] € (Z/ pZ)*, that is, p t A. However, (9.13) makes
sense for any integer A. Since ¢j = 1, one easily sees that

(fiA) = f when pli.

_For an arbitrary A € Z, we call (f, 1) a generalized period. Thus a generalized
-period is an ordinary period if p {1 A and is equal to f if p|A.

In order to compute the minimal polynomials appearing in Propositions 9.2.6

and 9.2.8, we need to know how to multipty f-periods. Gauss expressed the product
of two f-periods in terms of generalized periods as follows.
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Proposition 9.2.9. If (f, 1) and (f, w) are f-periods with p{ and p { u, then

: f-1 .
AN = D (BN +w = (f g+ w.
[MelM)Hf j=0

Proof. Following [4, Art. 345], we set h = g°, so that

(fop) = Z gkt

since [h] generates Hy. We also have [A]Hy = [Ahe]H r for any £, which implies
that (f, A) = (f, Ah%). Thus

o f-1 f-1
f (o) = Z(f, M =3 M gt

£=0
4 [4 —1 = j [/
S (e - 2 (S
=0 j=0 “¢£=0 ’
= Z(f, AT + ).
j=0
This gives the desired formula, since h = g°. | O

Here is an example from [4, Art. 346].

Example 9.2.10. In this example and three that follow, we will consider the 6-
periods for p = 19. In Exercise 7 you will show that g = 2 is a primitive root

~ modulo 19. Since f = 6 implies e = 3, the unique subgroup of order 6 in (Z /19Z)*

is generated by [2]3 = [8]. Thus
= {[11, [8], [81% [81%, [81%, [81°} = {[11, [8], [7], [181, [11], [12]} C (Z/19Z)*.

" For simplicity, we will write [n] as n, so that

He =({1,7,8,11,12,18}.

The e = 3 cosets of Hg in (Z /19Z)* are Hg together with

2Hg = {2, 14, 16, 22, 24,36} = {2, 3, 5, 14, 16, 17},
4Hg = {4, 28, 32,44, 48,72} = {4, 6,9, 10, 13, 15}.
(Remember that we are working modulo 19.)
According to Proposition 9.2.9,
(6, D2 = (6, 14+1)+(6, T+1)+(6, 8+1)+ (6, 11+1)+(6, 12+1)+(6, 18+1)
= (6, 2) + (6, 8) + (6, 9) + (6, 12) 4+ (6, 13) + 6,
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where the second equality uses (6, 19) = 6. This shows that generalized periods
can arise when we multiply ordinary periods. However,

(6,8) =(6,1)
since 8 and 1 lie in the same coset of Hg. Using similar simplifications, we get
(6, 1)* = 2(6,1) + (6, 2) + 2(6, 4) + 6.
By Exercise 6 we also have _
(6, 1) + (6,2) + (6,4) = —1.
Then the formula for (6, 1)2 simplifies to
6, 1)2 =4 — (6,2).

 You will work out similar formulas in Exercise 7. <>

Example 9.2.11. Still assuming p = 19, our next task is to compute the minimal
polynomial of the 6-periods over Q. We will use the notation of the previous example.
~ By Proposition 9.2.6, the minimal polynomial is

(9.14) (x = (6, 1)) (x = (6,2))(x — (6,4)).
- In Exercise 7 yo‘u will use the methods of Example 9.2.10 to show that

(6, 1)(6,2) = (6, 1) +2(6,2) + 3(6, 4),
(9.15) (6,1)(6,4) = 2(6, 1) + 3(6,2) + (6, 4),
(6,2)(6,4) =3(6,1) + (6,2) + 2(6, 4).
Note that these sum to 6(6, 1) + 6(6, 2) + 6(6,4) = —6, since (as noted above)
6,1)+(6,2) + (6,4) = 1.
Using (9.15) and (6, 1)2 = 4 — (6, 2) (from Example 9.2.10), we hav¢

(6, 1)(6,2)(6,4) = (6,1)(3(6, 1) + (6,2) + 2(6, 4))
= 3(6, 1) + (6, 1)(6, 2) + 2(6, 1)(6, 4)
=12+5(6,1) + 5(6,2) +5(6,4) =7

(see Exercise 7 for the details). It follows that multiplying out (9.14) gives
(9.16) o X34 x—6x — 7.

This is the minimal polynomial of the 6-periods over Q. Its splitting fieldis Q C Lg,
the extension generated by the 6-periods. <>
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Example 9.2.12. Now consider the 3-periods for p = 19. Sihce 6/3 = 2, we see

that Lg C L3 is an extension of degree 2. Hence 3-periods have quadratic minimal
polynomials over Lg.

Since 2 is a primitive root modulo 19, the subgroup H3 C (Z/19Z)* is generated
by [2]6 [8]2 [7]. Using the notation of Example 9.2.10, we have

He={1,7,8,11,12,18} = {1,7, 11} U {8, 12, 18} = H3 U 8H;.

This shows that
6,1)=@G, 1)+ (@3,8),

and in a similar way, one obtains

6.2) = (3,2) + (3, 16),
(6,4) = (3,4) + (3, 13).

However, Proposition 9.2.9 implies that
(3, 1)@3, 8) = (3, ’1 +8)+ (3, 7+8)+ (3,114 8) =(3,9) + (3,15) + 3,
-‘and since (3,9) = (3,4) and (3, 15) = (3, 13) (do.you see why?), we get
G, DG, 8)=0G,49+@3,13)+3 = (6,4) + 3.
By Proposition 9.2.8, the minimal polynomial of (3, 1) and (3, 8) over Lg is
©17) (x =G, D)(x — 3,8) =x%— (6, )x + (6,4) + 3.
Exercise 7 will consider the minimal polynomials of the other 3-periods. <>

Example 9.2.13. The 1-periods for p = 19 are the primitive 19th roots of unity
(1, = gf‘g ford =1,...,18. In Example 9.2.12, we noted that H3 = {1, 7, 11},
which means that

3. 1) = L9+ Ly + 414
By Exercise 7 the minimal polynomial of ¢, ¢/, and ¢} over L3 is

(9.18) (x — &19)(x — ;‘19)(x - ;‘ ) =x3 -3, l)x + (@3, 8)x - 1.

Combining this with (9.17) and (9.16), one can write an explicit formula for ¢, 4 that
involves only square and cube roots.

In Exercises 8 and 9 you will use similar methods to derive the formula
cos2n/17) = — ¢ + 1517 + V34 — 2J/17 Y
+l\/17 + 317 — /34 — 23/17 — 2/34 + 2/17,

due to Gauss. In Chapter 10, we will see that th1s leads immediately to a stralghtedge—
and-compass construction of a regular 17-gon.’ ,

9.19)
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One reason these methods work so well is that the JS-periods are linearly inde-
pendent over QQ by Lemma 9.2.4. Hence any linear combination of f-periods with
coefficients in Z or Q is unique. However, we’ve seen cases where generalized
periods (f, L), p|A, also occur. But this is no problem, since (f, A) == f in such a
case, and we also know that the distinct f-periods sum to —1 (see Exercise 6). Thus
a generalized f-period can be expressed in terms of ordinary f-periods. Hence we
can always reduce to an expression involving only f-periods, where we know that
the representation is unique.

D. Solvability by Radicals. When studying Q@ C Q(¢,), we saw in (9.9) that a
prime factorization p — 1 = q1q2 - - - ¢, gives intermediate fields

(@ = qu"‘Qr C Lq2"'Qr C R C Lqr-_lth C Lqr C Ll = Q({p)

suchthat [Ly,,,...q, : Lg;g;,1.-q,] = qi. If we focus on one of these fields and the next
larger one, then we get an extension of the form

(9.20) Ls; C Ly

where fq divides p — 1 and q is prime. The theory of periods shows that (f, 1) is
a primitive element of L s and the examples given above make it clear that in any
particular case we can compute the minimal polynomial of (f, 1) over L z,.

When p = 19, the minimal polynomials found in Examples 9.2.10 to 9.2.13
have degrees 2 or 3. Hence their roots can be found by known formulas. But when
p = 11, the period (2, 1) = 2cos(2mr/11) has minimal polynomial

¥y 4+ oyt —4yd —3y2 4 3y +1

(see Exercise 10). Is this polynomial solvable by radicals? More generally, are the
minimal polynomials of periods solvable by radicals? ;

For a theoretical point of view, this question is trivial, since Q C (@(;I,) is a
radical extension (;‘{,’ = 1 € Q). It follows by definition that any f -period (f, A)
is expressible by radicals over Q, since ( fir) e Q({p). Things become even more
trivial if you recall that when we studied solvability by radicals in Chapter 8, we felt
free to adjoin any roots of unity we needed, including ¢ e .

Hence it appears that solving the minimal polynomials of periods by radicals is
completely uninteresting. The problem is that this ignores the inductive nature of
what’s going on. The real goal, which goes back to Lagrange’s strategy for solving
equations, is to construct pth roots of unity using only radicals and roots of unity
of lower degree (we will discuss Lagrange’s strategy in Chapter 12). This is what
Gauss does in Disquisitiones. ‘

Thus, when studying Q Q(;p), we may assume inductively that we know all
“mthroots of unity form < p. Furthermore, as explained in the discussion preceding
(9.20), it suffices to consider the extension L fq¢ € Ly, where we may assume that
the fqg-periods are known. The idea is to express an f-period in terms of radicals
that are gth roots involving fg-periods and gth roots of unity. These roots of unity

ES

are known, since g < p.
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To do this in practice, we will use Lagrange resolvents. Let w be & primitive gth
root of unity. In Exercise 11 you will prove that

Gal(L f ()/L f4(®)) = Gal(L /L t4) == Z./qZ.

Since L s4(w) contains a primitive gth root of unity, Lemma 8.3.2 implies that
L f(w) is obtained from L s4(w) by adjoining a gth root. Furthermore, the proof
of Lemma 8.3.2 shows that the element adjoined is a Lagrange resolvent. Recall
from (8.7) that if o is a generator of Gal(L r(w)/L r4(w)) and B € L s (w), then we
get the Lagrange resolvents

a=B+o " o)+ -+ D o17I(B)

fori =0,...,9 — 1. Wewilluse 8 = (f,1) € Ly C Ly(w). InExercise 11 you
will show that we can pick the generator o so that-for any f-period (f, 1),

(9:21) o ((f, V) = (f, 8°9)
(note that g|e,'since fq|p — 1). Thus the above Lagrange resolvents can be written
9.22) i = (f, D)+ o7 (£, g9 + - + 07T @TD(f, gD/,

If weset A; = a,‘.’ , then we can define &/A; = «;. Then the f-periods in (9.22) can
be expressed in terms of radicals as follows.

Theorem 9.2.14. Let o; and A; = o be defined as above.
(@) ap € Lyg(w)and A; = o € Lg(w)forl =i <q—1
(b) ForO<tf=<g-1, -

1 /
(f, g%/ = 5(“0 + ot YA+ YA+ + 007D Aq'fl)'

v Before beginning the proof, let’s explain the f-periods appearing in the theorem.
The extension L, C Ly corresponds to the subgroups Hy C Hyq of (Z/pZ)*.

Since e = P—'f‘—l, Exercise 1 shows that these subgroups are generated by [g€] and
[g¢/9] respectively. In Exercise 11 you will use this to prove that

(9.23) qu = Hf Uge/qu nge/qu U...J g(q_l)e/qu.
By Proposition 9.2.8, the f-periods (f, g¢/9) are the conjugates of (f, 1) over L z,.

Proof of Theorem 9.2.14. Part (a) follows easily from the'properties of Lagrange
resolvents presented in the proof of Lemma 8.3.2. For part (b), let A¢ = gt/q. Then
} for any integer m we have '

q—1 q—1
E :wmzai — Zwmt(
i=0 i=0 O=

g—1 g-1 .
= (e (A0 = a (A,
£=0 i=0 ‘ ,

q—-1

©7(f, 1))
0



248 CYCLOTOMIC EXTENSIONS

where the last equality follows from Exercise 9 of Section A.2. This gives the desired
formula for (f, A,,), since o; = /A; fori > 0. J

From a computational point of view, the results of this section give a systematic
method for expressing A; = a? in terms of fg-periods and gth roots of unity. This
works because f-periods and fg-periods are linearly independent not only over Q
but also over Q(w), where w is a primitive gth root of unity (you will prove this
in Exercise 12). Thus the radical formula for (f, g?¢/9) given in Theorem 9.2.14 is
explicitly computable.

Mathematical Notes

Here are comments on two topics relevant to what we did in this section.

= Primitive Roots Modulo p. The formulas presented in this section illustrate the
usefulness of knowing primitive roots modulo p. Gauss explains a method for finding
primitive roots in [4, Art. 73-74). See also [9, p. 163]. :

Let g, denote the smallest positive primitive root modulo p. For example, 2 is a
primitive root modulo 19, which implies that g19 = 2. In 1962 Burgess [3] proved
that for any & > O there is a positive constant C (&) such that

gp < C(e)piate

for all odd primes p. This says that g p can’t be too big relative to p. On the other
hand, Kearnes [8] proved in 1984 that given any integer m > O there are infinitely
many primes p > m such that g, > m. So gp can still get large.

If we fix a primitive root g modulo p, then the discrete log problem asks the
following: given an integer a not divisible by p, find i such that a = g’ mod p.
We write this as i = log, a. It is easy to describe an algorithm for finding log, a
(divide a — gi by pfori =0,1,2,...,and stop when the remainder is zero). But
finding an efficient algorithm for log, a is much more difficult. Several modern
encryption schemes, including the Pohig-Hellman symmetric key exponentiation
cipher (described in [9, Sec. 3.1]) and the Diffie~-Hellman key exchange protocol
(described in [2, Sec. 7.4] and [9, Sec. 3.1]), would be easy to break if discrete logs
were easy to compute.,

Primitive roots modulo p are also used in the Digital Signature Algorithm sug-
gested by the National Institute of Standards and Technology. A description can be
found in [2, Sec. 11.5]. As above, one could forge digital signatures if discrete logs
were easy to compute.

There are also purely mathematical questions about primitive roots modulo p. A
- list of unsolved problems can be found in [6, Sec. F.9].

"= Periods and Gauss Sums. Let p = 17. By Exercise 9 we have

@, 1) =3(~1+/17),
(8,3) = 3(—-1-17),
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which easily implies L
B8,1) - (8,3) =/17.

In Exercise 13 you will show that this can be written

17
ay ..
(9.24) 3 (17) 8 = /17,
) a=0
where, for an odd prime p, the Legendre symbol (%) is defined by
0, if pla,
(2)=1+1, if 2 = g mod i
, pta, x* =a mod p has a solution,
p -1, if p{a, x2 = a mod p has no solution.

More generally, for an odd prime p, a quadratic Gauss sum is defined to be
p
a La
8¢ = -—) {p
Gauss used these sums to prove quadratic reciprocity. He also proved the remarkable
formula
_} /P, if p=1mod4,
817 livp, if p=3mod 4.

Notice how this generalizes (9.24). A careful discussion of quadratic Gauss sums
can be found in [7, Ch. 6].

- Historical Notes

Most results of this section are implicit in Section VII of Disquisitiones. The
main difference is that we have stated things in terms of the Galois correspondence,
which to each divisor f of p — 1 associates the subgroup Hy of (Z/pZ)* and the
subfield L s of Q(¢ ). For Gauss, on the other hand, each divisor f gets associated
to the collection of f-periods (f, A). In general, he considers elements rather than
the fields in which they lie. For example, consider [4, Art. 346], which asserts that
given (f, X), any other f-period (f, n) can be expressed as

(fi ) = a0 + a1(fi2) + 02 (fi WP + - et (f, 1)

for some uniquely determined integers ap, . .., &e—1. For us, this gives the unique
representation of (f, i) as an element of L ¢ = Q((f, 1)).

Another difference is our use of cosets. For example, if g is a primitive root
modulo p and f divides p — 1, then Gauss notes that the distinct f-periods are

(ﬁD&ﬁ@JﬁfLQHUJPU,
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where e = E—}l For us, this follows from Lemma 9.2.4,' since Hy C (Z/pZ)* is
generated by [g€], so that its cosets in (Z/pZ.)* are

[11Hy, [g1Hf, [g*1Hy, ..., [g¢ " 1Hf.

Cosets give a conceptual basis for what Gauss is doing, and the same is true for the
minimal polynomials computed in Proposition 9.2.8.
It is also interesting to note that Gauss makes implicit use of the Galois group
Gal(Q(¢,)/Q). We saw in Lemma 9.2.4 that o ({,) = ; implies that o ((f, A)) =
(f, kr). Now consider the following quote from [4 Art. 345]

IV. It follows that if in any rational integral algebraic function F = ¢ (¢, u, v, ...)
we substitute for the unknowns ¢, u, v, etc. respectively the similar periods
(fL M), (f, ), (f, V), etc., its value will be reducible to the form

A+B(f,)+ B'(f,8)+B"(f.g%) ...+ B*(f,g°")

and the coefficients A, B, B’, etc. will all be integers if all the coefficients in F are
integers. But if afterward we substitute (f, kA), (f, k), (f, kv),etc.fort, u, v,
etc. respectively, the value of F will be reduced to A+ B(f, k) + B'(f, kg)+etc.

A “rational integral algebraic function” is a polynomial with coefficients in Q. Here
is an example of what this means.

Example 9.2.15. In Example 9.2.10, we showed that
6,1)* =4 —(6,2)

when p = 19. Using k = 2, the above quotation from Gauss tells us that
(6,2)2 = 4 — (6, 4).

In modern terms, thlS follows by applying the automorphism o € Gal(Q(¢,9)/Q)
that takes ¢o to ¢7. So the Galois action is implicit in Gauss’s theory! <>

Gauss’s result that x? — 1 is solvable by radicals is less compelling from the
modern perspective, though it is still interesting when one thinks inductively. But
historically, being able to solve special but nontrivial equations of high degree was
important. Here is what Gauss says in [4, Art. 359]:

Everyone knows that the most eminent geometers have been unsuccessful in
the search for a general solution of equations higher than the fourth degree, or
(to define the search more accurately) for the THE REDUCTION OF MIXED
EQUATIONS TO PURE EQUATIONS. ... Nevertheless, it is certain that there
are innumerable mixed equations of every degree that admit a reduction to pure
equations, and we trust that geometers will find it gratifying if we show that our
equations are always of this kind.

For Gauss, an equation is “pure” if it is of the form x™ — A = 0 and “mixed”
otherwise. Thus, reducing “mixed equations to pure equations” is what we call
solvability by radicals. Of course, in saying “our equations,” Gauss is referring to
the minimal polynomials satisfied by the periods, as constructed in Proposition 9.2.8.
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Gauss’s study of the pth roots of unity is an important midpoint in the development
leading from Lagrange to the emergence of Galois theory. Gauss uses Lagrange’s
inductive strategy to work out the Galois correspondence for Q C Q(£,), and his
theory of periods makes everything explicit and computable. He also shows that
Lagrange resolvents are the correct tool for studying solvability by radicals; paving
the way for Galois’s analysis of the general case.

In spite of its beauty, what Gauss does in Section VII of [4] is not perfect. Some
proofs are omitted and others have gaps. For example, Gauss does not prove the
assertion about the Galois action made in the quotation before Example 9.2.15.
Also, as noted in [Tignol, p. 195], Gauss’s study of solvability assumes without
proof that when fgq divides p — 1, the f-periods are linearly independent over the
field generated by the gth roots of unity. (You will prove this in Exercise 12.)

Galois was very aware of Section VII of Disquisitiones. For example, Galois
describes the “group” of Q € Q(&,), n prime, as follows [Galois, pp. 51-53]:

In the case of the equation %E'—-:fl' = 0, if one supposes a = r, b =r8,¢c = re’ ,
..., g being a primitive root, the group of permutations will simply be as follows:

a b c d ... k

b c d ... k a s
c d k a b :
k a b ¢ i

in this particular case, the number of permutations is equal to the degree of
the equation, and the same will be true for equations where all of the roots are
rational functions of each other.

Here, r is a primitive nth root of unity. Each line is a cyclic permutation of the
one above it, which leads to a cyclic group of order n — 1. This quotation also
reveals that for Galois, a “permutation” was an arrangement of the roots and that the
- permutations (in the modern sense) are obtained by mapping the first arrangement
in the table to the others. You will work out the details of this in Exercise 14. We
will say more about how Galois thought about Galois groups in Chapter 12.

Exercises for Section 9.2

Exercise 1. Let G be a cyclic group of order n and let g be a generator of G.
(a) Let f be a positive divisor of n and set e == n/f. Prove that H £ = (g°) has order f and
hence is the unique subgroup of order f.

(b) Let f and f’ be positive divisors of p — 1. Prove that H f C Hy if and only if f|f 7
" Exercise 2. Prove Proposition 9.2.1.

Exercise 3. Let n1, N2, n3 be as in Example 9.2.2.
(a) We know that ¢, is a root of O+ x4 3+ 12+ x4+1=0. Dividing by x> gives

WPt tx+1+x V4 x24 53 0.

Use this to show that N1, N2, N3 are roots of y3 + y2 -2y — 1,
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(b) Prove that [Q(n1) : Q] = 3, and conclude that Q(ny) is the fixed field of the subgroup
{e, 7} C Gal(Q(&7)/Q), where T is complex conjugation.

(¢) Prove (9.10).

Exercise 4. Let A C B be subgroups of a group G, and assume that A has index d in B.
Prove that every left coset of B in G is a disjoint union of d left cosets of A in G.

Exercise 5. Complete the proof of Proposition 9.2.8.
Exercise 6. Prove that the sum of the distinct f-periods equals —1.

Exercise 7. This exercise is concerned with the details of Examples 9.2.10, 9.2.11, 9.2.12,
and 9.2.13.

(a) Show that 2 is a primitive root modulo 19.
(b) Use the methods of Example 9.2.10 to obtain formulas for (6, 2)2 and (6, 4)2.

(c) Show that the formulas of part (b) follow from (6, 1)2 = 4 — (6, 2) and part (d) of
Lemma 9.2.4.

(d) Prove (9.15) and use this and Exercise 6 to show that 6, 1)(6,2)(6,4) =17.
(e) Find the minimal polynomials of (3, 2) and (3, 4) over the field Lg considered in Exam-

ple 9.2.12. p
(f) Show that (9.18) is the minimal polynomial of {19 over the field L3 considered in Ex- -
ample 9.2.13.

Exercise 8. In this exercise and the next, you will derive Gauss’s radical formula (9.19) for
cos(2r/17). ‘

(a) Show that 3 is a primitive root modulo 17.

(b) Show that '

Hg = {1,2,4,8,9,13, 15, 16},
Hy = {1, 4, 13, 16}, '
Hy = {1, 16},

where we write the congruence class [#] modulo 17 as n.
(c) Use Propositions 9.2.8 and 9.2.9 to compute the following minimal polynomlals:

Extension | Primitive Elements | Minimal Polynomial

QcCLg (8,1),(8,3) x24x—4

Lg C Lg 4,1),(4,2) x2 — (8, x — 1
4,3), 4,6) x2 —(8,3)x — 1

Lyc Ly 2D, 24 x% — (4, Dx + (4, 3)

. The resulting quadratic equations are easy to solve using the quadratic formula But how do
the roots correspond to the periods? For example, the roots (8, 1), (8, 3) of x%2+x —4are
(—1 £ +/17)/2. How do these match up? The answer will be given in the next exercise.

Exercise 9. In thls exercise, you will use numerical computations and the previous exercise
to find radical expressions for various Jf-periods when p = 17. -
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(a) Show that

(8,1) =2cos(2n/17) + 2cos(4r/17) 4+ 2cos(8m /17) + 2 cos(16m /17),
“4,1) =2cosRrr/17) 4+ 2cos(8r/17),

4,3) =2cos(6rr/17) + 2cos(10rr/17),

2,1) =2cos(2n/17).

Then compute each of these periods to five decimal places.
(b) Use the numerical computations of part (a) and the quadratic polynomials of Exercise 8
to show that

@, 1) =3(-1+V17),
(8,3) = $(—1-17),

@1 = (= 1+ V17 +/34 - 2V17),

@42 = §( =1+ V17— /34— 2VT7),

@3 =3(-1-VTT+34+2V17).

(c) Use the quadratic polynomial x2 — 4, Dx — (4, 3) and part (b) to derive ,(‘9.1'9)“. .

Exercise 10. Let p = 11. Prove that y°> + yt—4y3 -3 y2+3y+1isthe nlinirhal polynomial
of the 2-period (2, 1) = 2cos(2n/11).

Exercise 11. Let L s, C L s be the extension studied in Theorem 9.2.14. Thus f and fgq
divide p — 1, and q is prime. As usual, ef = p — 1 and g is a primitive root modulo p.
Finally, let w be a primitive gth root of unity.
(@) Lett € Gal(Q(gp) /Q) satisfy r(gp) = g'ge/q ,andleto’ = 7|, s be the restriction of
‘to L f. Prove that o generates Gal(L s /L £g)-
(b) Prove that Gal(L p(w)/L yq(w)) > Gal(L /L £4), where the isomorphism is defined by
restriction to L f.
(©) Leto € Gal(L f(w)/L fq(w)) map to the element o’ € Gal(L f/L fq) constructed in
part (a). Prove that o satisfies (9.21).
(d) Prove the coset decomposition of Hy, given in (9.23).

Exercise 12. Let p be an odd prime, and let m be a positive integer relatively prime to p.
(a) Provethatl,¢,, ..., ;‘II,’ ~2 are linearly independent over Q(¢,,,).

(b) Explain why part (a) implies that Eproeen by —1 are linearly independent over Q-
(c) Let f|p — 1. Prove that the f-periods are linearly independent over Q(¢,,).

' Exercise 13. Prove (9.24).

Exercise 14. Consider the quotation from Galois given at the end of the Historical Notes.

‘(a) Show that the permutations obtained by mapping the first line in the displayed table to
the other lines give a cyclic group of order n — 1. Also explain how these permutations
relate to the Galois group.

- (b) Explain what Galois is saying in the last sentence of the quotation.

Exercise 15. What are the 1-periods?
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Exercise 16. Redo Exercise 3 using periods.

Exercise 17. Let f be an even divisor of p — 1, where p is an odd prime. Prove that every
Sf-period (f, A) lies in R. ; .
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