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Progress of iteration theory since 1981

GYORGY TARGONSKI

Introduction

This survey tries to highlight a number of recent developments in iteration
theory, and to point out a number of unsolved problems, thus also trying to predict
the direction the evolution may take.

At least two things in this approach are arbitrary. “Recent” was chosen to mean
“since about 19817, when [Targonski 81] was published, to the best of my
knowledge the first book on iteration theory in general.

The choice of the topics is also, by necessity, somewhat arbitrary. Obviously I
am talking more about the fields I know more about. In some cases, there are
obvious objective reasons for the choice. For instance, numerical methods are in
large part based on iteration; this immense field no longer can be counted as part
of iteration theory proper. Also, one-dimensional discrete dynamics is now a field
in its own right; while I devoted a part of [Targonski 81] to it, now I will only give
references. I can however promise the following. The “iterated list of references”,
that is, the union of the lists of references in the books and papers listed in this
paper united with the list of references itself, does contain a large part of what has
been done in iteration theory in recent years.

The following fields within iteration theory will be treated.

(1) Orbit theoretical iteration theory, that is, study of the structure imprinted
upon a set by a given self-mapping.
(2) Algebraic iteration theory.
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(3) [teration of formal power series.

(4) The Liedl transformation (Pilgerschritt transformation) as a method of
embedding a function in a one-parameter group of functions where the
parameter takes on all real values {continuous iteratiori group).

(5) “Aczél-Jabotinsky dynamics”. The three Aczeél-Jabotinsky equations can
be derived from the translation equation but not, in general, vice versa.
Thus “weak dynamical systems’ arise which have some but not all
properties of a true dynamical system satisfying the translation equation.

(6) The functional equations of Abel and of Schrider. Commuting functions.
Real iterates.

(7) Cellular automata. These automata, discovered by von Neumann and
Ulam and then half forgotten now have a renaissance, with many applica-
tions. Their iteration (cellular automata are discrete, autonomous semi-dy-
namical systems!) poses many problems; there are interesting results.

(8) Functional analysis. Tteration of a function can be discussed by (crudely
speaking) considering the linear operator of right composition with the
function. This leads to new insights and results.

(9) Phantom iterates. Since functions in general have no iterative roots (frac-
tional iterates) of every order (and thus no continuous time iterate)
“generalized embeddings™ have been sought for a long time. Since 1984,
the idea of phantom iterates offers one such approach.

(10) An Appendix briefly discusses various topics which are outside the main
fields outlined above but should be mentioned in our survey.

1. Orbit theory

In orbit theory we look solely at the structure imprinted on a set S by a
self-mapping /. There is no other (algebraic, topological, . . . ) structure on S, which
now is the union of (Kuratowski— Whyburn) orbits of f; for the simple properties
of orbits see e.g. [Targonski 81], [Targonski 84], chapters 1 and 2.

We can give a few examples of purely “orbit theoretical” results. We need the
notion of ultrastability ([Sklar 1969]). f is called ultrastable if f|f(s) is bijective.
Ultrastability is “almost as good as bijectivity’”, as the following result shows
(I Weitkdmper 85]): a mapping can be embedded in a Z-group if and only if it is
uitrastable.

Curiously, the perhaps best known unsolved problem in iteration theory appears
in a purely orbit theoretical context. It is the 3x + l-problem, also called the
Collatz problem, or the Ulam problem, or the Syracuse problem, or the Kakutani
problem; Hasse’s algorithm is also a usual term. We state the conjecture in the
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following simple form, following [Wagon 85]. Given the self-mapping f of N onto
itself

Fony = % (n even)
3n+1 (n odd)

one sees at once that (1, 4, 2) is a 3-cycle of f.

Conjecture: every splinter (iteration sequence) of | terminates in the cycle (1, 4, 2).
Much numerical work has gone into the problem, stochastical methods were used,
the question of decidability raised. For a survey see [Lagarias 85]. Interestingly, the
problem can be reformulated so as to involve chaos and fractals ([Agnes, Rasetti
88]). The problem was unsolved in 1991 ([Gale 91)).

2. Algebraic iteration theory

It seems clear, that many problems in “orbit theory” (cf. Section 1) could be
treated by algebraic methods. A good example is the case of iterative square roots
of self-mappings of arbitrary sets; the solution was given by [Isaacs 50]. Since the
set of all self-mappings of a set is a semigroup, finding square roots of elements in
a semigroup is a generalization of the Isaacs problem. This problem was solved in
[Snowden, Howie 82] for the case of finite sets. It would be interesting to see
whether the general solution of the iterative root problem in [Riggert 75], see also
{Targonski 81], Section 2.1, (roots of arbitrary order on an arbitrary set) could be
treated in the Snowden-Howie style.

An approach to “algebraization” of iteration could possibly be through unary
algebras with research results already in the nineteen-sixties. As starting point one
could take [Skornjakov 77] (with 41 references!) as well as [Chvalina, Matouskova
84] and [Blazkova, Chvalina 84].

Since orbits are equivalence classes of an equivalence relation (existence of a
common successor), recent work [Schleiermacher 93] in the direction of the Krasner
theorem on invariant relations ([Krasner 38]) could become a tool in orbit theory.

Following the pioneering work of Carlo Bourlet ([Bourlet 97,, 97,]) right
composition operators T :=@ o f (defined on suitable function spaces) have be-
come part of iteration theory. It is of interest also to consider (nonlinear) left
composition operators (4@ =z o ) and so on. An attempt to systematize all this is
in [Targonski 90]. Results on algebraic right composition operators are in
[Bottcher, Heidler 92].
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Last, but not least, linear mappings r — Ar (r € R*), where 4 is an n X r matrix,
pose nontrivial iteration problems for 7 > 1. There is of course a large amount of
work on this, some by people who did not know they were doing iteration theory
(seen from our point of view). A recent contribution (on square roots of uppertri-
angular matrices) is [Miller 91].

The orbit structure of any self-mapping of a set is invariant under conjugacy.
For work in the important field of conjugacy see e.g. [Schweizer, Sklar 88].

3. Iteration of formal power series

Research by L. Reich and his colleagues and collaborators in Graz continued
vigorously during the decade we are surveying.

[Reich, Schwaiger 80] introduced a linearization method for the solution of
certain functional equations, which later turned out to be important also in another
context, interpreted as a phantom iterate (see Section 9). In [Reich 85] the third
Aczél-Jabotinsky equation for formal power series in one variable is solved. The
relations between the three Aczél-Jabotinsky equations and their relations with the
translation equation (5.1) was clarified around that time (see Section 5} in [Reich
88, 89, 91], [Aczél, Gronau 88, 88,], [Gronau 91, 91,].

The relationship between families of commuting functions and iteration groups
have been investigated also in the context of formal power series ([Reich 88, 89]) see
Section 6.

As these examples show, formal power series occupy an important position in
iteration theory—many general problems are also treated in this context.

Results of the theory up to the end of 1980 have been surveyed in [Targonski
81], Section 6.2. A description of early results can be found in [Peschl, Reich 71].
An outline of the iteration theoretical aspects of formal power series (more
specifically of formal biholomorphic mappings) and some open problems are given
below. We closely follow L. Reich (personal communication).

Let C[[x]] be the ring of formal power series in the indeterminate
x ='(x,...,x,)over C, I' the group of automorphisms F of C[[x]] continuous in
the order topology, moreover Flc =id. The following are the central problems
leading to further development.

I. Does there exist, for a given F eI, a family (F,),.¢ in T' (“iteration of F”)
such that F, =F and F,o F, = F,  for every 1,5 C?

I1. Does there exist, for a given FeI and for a given reN a GeI (“r-th
iterative root of F’) such that g" = F where g” denotes the r-th iterate of g?
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(1) Building on results of S. Sternberg, N. Lewis and E. Peschl, L. Reich looked
for criteria ensuring the existence of analytic iterations for given F e " and
given choice A of logarithms of eigenvalues of the linear part of F. (F),.¢
is called analytic if the coefficients g, in r,(x) =), n\rg{)x" are entire
functions. The problem was solved by L. Reich and J. Schwaiger using the
normal forms under conjugation in I' in particular the smooth normal
forms for 1. The proofs also furnished the conmstruction of the iteration
groups and pointed to connections with autonomous differential systems
and differential equations with complex linearization, following P. Erdds
and E. Jabotinsky.

(2) Analogous results (using the normal forms mentioned above) were found
for the existence of iterative roots.

(3) From these criteria grew results on connection between existence of analytic
iterations and of “sufficiently many” iterative roots of an F eI (results of
L. Reich and A. R. Kréiuter; cf. (4) below).

(4) If one demands only continuity of the coefficients G, (““continuous itera-
tion”) then the method leads to the normal forms. F is analytically itcrable
if and only if it is continuously iterable. The continuous iterations of an
F eT are precisely the real-analytic iterations. (Results of L. Reich and W.
Bucher.)

(5) The next question is this. What about iteration with no conditions whatso-
ever on the coefficients (“iterable F”). G. Mehring and C. Praagman
showed, independently, that F is analytically iterable if and only if it is
iterable. Using methods of algebraic geometry, C. Praagman even showed
the following. If F €T has iterative roots of all orders then F is analytically
iterable.

(6) In the case of one variable (# = 1) the theory of iterations, as sketched
above, and results on the set of solutions of the equation

do
(G ®)x) =——G(x)

(the Julia equation, a special case of the third Aczél-Jabotinsky equation)
play a decisive part in the explicit description of the families of commuting
automorphisms. For n > 2 this question is open.

(7) Another interesting problem seems to be the distribution of iterable (and of
not iterable) automorphisms in the neighbourhood of a given Fel.
“Neighbourhood” may be defined by the order topology or by the co-
efficient-wise topology. First results in this direction (for £ = id) were due to

S. Sternberg.
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So far the concise description of history and unsolved problems suggested by L.
Reich. Let me add that {Reich 92, 93,] are contributions concerning problem (7),
about the distribution of iterable functions.

Closing this section let me express my personal feeling that the linearization
method [Reich 71}, [Reich, Schwaiger 80] will play a continued important part in
Phantom Dynamics (cf. Section 9).

4. Liedl’s Pilgerschritt transformation

Embedding of functions in “time continuous’™ iteration (semi-) groups is one of
the central themes of iteration theory; it appears in several places also in the present
Survey.

There 1s an attempt to solve this problem which has been in the folklore of the
theory for many years. It can be explained in the language of the (Bourlet)
substitution operators. Assume f, the function to be embedded is a continuous
self-map of I, the closed unit interval. Consider the following bounded linear
operator A on C(I): Ap = @ o f. One may say “Now determine the linear operator
log 4, then you have the embedding of A: A’ =¢84, Applying this semigroup of
operators to x € C(I), we find A‘x = f*(x) and the embedding has been achieved”.

This sounds too good to be true and in fact it is not true. The scheme does not
work except in special cases. The first problem of course is with the existence of the
logarithm of a substitution operator. Trying to sweep the problem under the carpet,
we encounter divergence problems. Thus a method not using logarithms would be
of advantage. Even so, any embedding would have to have a built-in failure
mechanism for the case that the embedding does not exist and in general it does not
exist.

R. LiedI’s Pilgerschritt transformation is a “logarithm-free”” method. Introduced
in the nineteen-seventies, it is much more than a method of embedding. It has
become a field of research in its own right, branching out in various directions.
Work published before the end of 1980 was included in [Targonski 81], with the
appropriate references. Since 1980 much new work was done, new concepts
emerged and new results were found. We attempt an overview of some of these.

The Liedl] transformation (Pilgerschritt transformation) is a method for finding
one-parameter subgroups in topological groups. Given an element of the group in
the same connected component as the unit element, an arbitrary path between the
two is taken, and repeatedly subjected to the Liedl transformation. The resulting
sequence of paths may converge to—or even reach in finitely many steps—a
“homomorphic path”, that is, a one-parameter subgroup.
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One way of getting acquainted with Liedl’s idea and early work by him and his
co-workers, in English, is reading Chapter 4 in [Targonski 81]. The papers [Liedi,
Netzer, Reitberger 81, 82] are introductions (in German) to the theory and its
results at that stage.

The Pilgerschritt transform of a path A(#) (0 <¢ < 1) is given among others in
GL (n, R), for the case of a smooth path by

A = M(1), | (4.1)
where M is the unique solution of the mitial value problem

M) =tA'D)A')M(Ex) MO)=1I (4.2)
In full generality the definition of the transformation is

A ~+—111qi_.rn0 I(A4; =, t) (4.3)
where the Liedl product (Pilgerschritt product) IT is defined as

TU(4; 7, §) =[A(a%_ ) A@G, )" A(ad)Alag) "] (4.4)

Here n is a partition 0 =agy<a,<- - <a, =1 of the unit interval, |n|=
max g, ., —a, and a}:=a, + Ha, ., —a,) and f €[0, 1] is fixed. While [Netzer 82}
deals with the convergence of the sequence of iterated Pilgerschritt transforms,
[Netzer, Reitberger 82] investigates this problem for nilpotent Lie groups. In
[Forg-Rob 85] it is shown that the transform can be computed within the Lic-alge-
bra of the Lie group in question. Another part of the paper deals with the
Pilgerschritt transform in the group of vectors of formal power series.

In [Forg-Rob, Netzer 85] the following problem is treated. Paths which are
already homomorphic are invariant under the Pilgerschritt transformation, that is,
fixed points. The decisive (and highly nontrivial) question is whether a given fixed
point is attractive or not. This problem is treated in subgroups of the group of
invertible matrices, using the method of product integration.

[Liedl 86] treats group valued power series.

[Forg-Rob 89] adds new results for the complex affine group.

[Liedl, Netzer 89] actually contains the material of two lectures at ECIT 87.
Liedl’s “short ruler’” method uses an idea from differential geometry to solve the
translation equation (with time-one condition), that is, achieve embedding. Netzer
uses product Taylor expansion (PTE), that is, “Taylor products” to achieve the
same goal. (For PTE and related topics see also [Cap 89]).
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[Cap 91], somewhat different in style and approach compared to the rest of this
Section, considers the Abel equation, an equation the author refers to as the (third)
(Aczél -) Jabotinsky equation (actually it is a special case, the Julia equation) and
the “inverse problem of ordinary differential equations”. This last problem is the
following. Given a time-one map of a time-continuous flow (it maps every point to
the point where it will be in one time unit.) The task is to reconstruct the flow (or
only its vector field). Thus we again have the embedding problem. This paper is an
interesting meeting point of several topics discussed in the present survey.

[Netzer, Liedl 91] introduces an ‘“improved version” of Liedl’s transform: the
fast Pilgerschritt transformation (FTP). The starting point is replacing the initial
value problem (4.2) by a “‘better one”. [Liedl, Netzer 91] is a more detailed paper
of 54 pages, also discussing FTP. See also [Netzer 92}, where a one-step Liedl
transformation is described: under certain conditions the homomorphic path is
reached 1n one step.

To conclude this section we note that the Lied] transformations may be used in
the construction of phantom iterates (see Section 9).

5. The Aczél-Jabotinsky equations. “Weak dynamics™

The translation equation
FIF(x,s), 1] = F(x,s + ) (5.1)

describes an autonomous semi-dynamical system if x is interpreted as a point in the
state space X (‘“‘phase space”) of some '‘system”, and the second variable of F
ranges over an additive semigroup of R. Customarily but by no means necessarily

F(x,0)=x (5.2)

is stipulated.
(For the general theory of (5.1) and a far-reaching generalization, the transfor-

mation equation, see the survey paper by Z. Moszner in this issue.)
The mapping

F(x, 1) =:f(x) (5.3)

is the “time-one map” of the semidynamical system.

If ¢ ranges over R, then F is bijective for every fixed ¢ and we have a dynamical
system. (Often a semidynamical system is called, somewhat sloppily, a dynamical
© system.)
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For example an iteration group f“(x) satisfies (5.1) if we put F(x, £) =f*(x).

The translation equation (5.1) requires no structure on X; a fairly general but
still very useful condition is that X be a Banach space. In our present context we
take x to be either a real number or a complex number. We present the idea
formulated for this case.

As shown in [Aczél 49 and elsewhere] (see also [Jabotinsky 55, 63]), three
equations can be derived from the Translation Equation under suitable differen-
tiability conditions. Introducing

oF(x, 1)

== (54)
we find the three Aczél-Jabotinsky equations

or_ o y

o Eax (5:52)

oF

58 F (5.5b)
and consequently

F _ . F (5.5¢)
g ax _-g . D¢

An avalanche of research was started by D. Gronau asking the following question
(see [Targonski 84], Gronau’s problem (3.3.11)): Can the translation equation be
deduced from the first or third Aczél-Jabotinsky equation? These questions and
related ones were answered in the negative in [Aczél, Gronau 88,, 88,]; see also
[Gronau 88, 91, 91,] and general solutions were given of (5.5a,b,c) individually, by
pairs and collectively. An attempt of a dynamical interpretation was made in
[Targonski 91] (see also [Aczél 91]). Results in this direction are given in [Gronau
91]. It may be of interest to find applications of what could be called “Aczél-Jabo-
tinsky dynamics”: time evolutions satisfying the first, (5.5a) or the third, (5.5¢c)
Aczél-Jabotinsky equations or both, with or without one or both conditions (5.2),
(5.3).

The second Aczél-Jabotinsky equation (5.5b) is equivalent to the translation
equation (5.1) if the initial value problem “(5.1b) with (5.2)” is well posed.

Time evolutions of this kind could emerge for example in biology, or in
economics, but perhaps even in physics.
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For formal power series the problem was solved in [Reich 91]; see also [Reich
85, 88, 891.

6. Iteration sequences. Groups and semigroups of iterates

Throughout this survey we emphasize new directions of research as well as
generalizations. This section, however, is about “hard core, classical” tteration.
Typically real functions of one variable are treated, but functions in R”, even in
topological spaces make their appearance. Of course, new ideas and techniques
emerge, but the flavour of research is the traditional one.

The first thing to read, of course, is chapter 1, Iteration, of the important book
[Kuczma, Choczewski, Ger 90]. Also relevant to our topic in this section are the
results about the Schroder and Abel equation, to be found in various sections of the
book.

We note that there are two families of functions easy to embed in a group.

For f(x) = Ax (0 <4 < 1) we have f'(x) = A'x, and for g(x) =x + ¢ (c #0) we
have g'(x) =x +ct. For functions conjugate to a lincar transformation
f(x) =@ [Ap(x)] or to a translation g(x) = ~'[Y(x) + ¢] we find the embedding
f1(x) =@ '[L'e(x)] (“Schrdder form™) or g‘(x) =¥ '[¥(x) + ct] (*‘Abel form™).
Then existence of bijective solutions

ol f(x)] = Le(x) (Schréder equation) (6.1)
or
Ylg(x)] = ¥(x) +c (Abel equation) (6.2)

in a suitable domain implies embeddability. Thus the Schroder equation and the
Abel equation (as well as the seldom occurring Bottcher equation g[A(x)] = (x)%)
are closely linked to the problem of embedding (‘“‘continuous iteration” in an older
and ambiguous terminology).

We also note that different elements of the same iteration group commute:
floff=f*t1=f"t3= f*o f5 The following question arises. Under what conditions
are two commuting bijections “iterates of each other”, that 1s, elements of the same
iteration group? The question is even more profitably posed for maximal sets of
commuting functions. The study of such families is interesting for its own sake.

All this has been known for a long time. In this section we also quote some new
results in this general direction. We cite a few recent papers.
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In [Zdun 85], homeomorphisms of the circle are embedded in a time-continuous
flow, that is, in a real-parameter group of homeomorphisms.

In [Zdun 89] older results ([Zdun 79], [Smajdor 85]) are generalized: if f/ is an
iteration semigroup on a compact metric space and ¢ — f‘(x) is measurable then it
is continuous. This is the main result.

In [Zdun 90], quasi-continuous iteration groups and semigroups of real func-
tions are characterized. These are semigroups f’(x) such that f*(x) is a continuous
function of ¢, while no such condition is imposed with respect to x.

[Zdun 91] gives the structure of iteration groups of continuous functions such
that the group elements with the exception of the identity mapping have no fixed
points. In the representation of the group the “Schréder form” and a generalization
of the “Abel form™ appear.

In [Zdun 85,] the representation for regular iteration semigroups
fi{x) =hm,_,, f~"[A'f"(x)] appears. It may be interesting to look at this formula
under conditions as general as possible. There is a strange formal similarity to the
scattering operator in quantum theory.

C’ iteration groups are discussed in [Zdun 89,].

In [Zdun 91,], continuous iteration groups of fixed point free mappings in R”
are treated. The principal result is that these groups can be represented in the Abel
form.

[Zdun 88] treats a case where, under appropriate conditions, two commuting
functions are—as defined earlier in this Section—“iterates of each other”. [Zdun
89,] deals with simultaneous Abel equations, again leading to commuting functions
and representation in the ““Abel form™ of an iterative group appearing in this
context.

For systems of Abel equations and related topics see also [Neuman 82, 89].

[Zdun 92] discusses continuous, strictly increasing, commmuting self-mappings of
an open set. Relations between the iteration sequences of the two functions are
established.

[Smajdor 89, 92] are recent additions to work of the author on the iteration of
set-valued functions.

For the characterization of Zdun flows see [Sklar 87], and for the non-embedab-
bility of the baker’s transformation [Schweizer, Sklar 90].

7. Cellular Automata

Cellular automata were introduced by J. von Neumann and S. Ulam; see the
volume [von Neumann 66]. The matter lay dormant for a long time (the posthu-
mous volume cited contains ideas of von Neumann from various times). During the
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past twenty-odd years, furious research activity sprang up, and now cellular
automata is a large and rapidly growing field. For an overview of the field at one
stage see [Farmer et al. 85).

A cellular automaton is a countable set (the “grid”; think for instance of a
rectangular grid in the plane); each grid point is occupied by one of finitely many
symbols (think for instance of 0, 1). Every grid point has a finite neighbourhood,
consisting of grid points not necessarily neighbours in the ordinary geometrical
sense; the neighbourhood may include the point itself. At every time impulse, every
grid point gets a new symbol (possibly the old one) as a function of the *“local
configuration”, that is, the way the neighbourhood is occupied by symbols; this is
the local transition function.

A useful property is that every grid point should have the “same” neighbour-
hood and the same local transition function. These properties are expressed as
“shift invariance”. If we try to survey all possible or all useful “grids”, questions of
algebraic topology arise.

The local transition function is not everything, of course. Since all grid points
get a new symbol at the “time impulse”, the global configuration (a map of the
countable set of grid points to the finite set of symbols) also changes. The map from
the set of all configurations (the configuration space) to itself is the global transition
function.

The problem arises of characterizing those global transition functions which are
induced by a local transition function. In [Ferber 91] the following is shown.
Introducing an appropriate metric on the configuration space, a self-mapping of the
configuration space is the global transition function of a cellular automaton if and
only if it is continuous.

It is a striking feature of cellular automata that a very simple local transition
rule may give rise to very complicated and interesting global behaviour. The
perhaps most famous example is John Horton Conway’s “game of life” automaton
(see [Gardner 70]).

Why is all this relevant to iteration theory?

From the definition it is clear that a cellular automaton is an autonomous
discrete-time semidynamical system. The behaviour of such a system is given by the
iteration of a continuous self-mapping of a configuration space. All results of
iteration theory—starting with the orbit theoretical results—apply to the time
evolution of cellular automata. We give a few examples: fractional iterates of celtular
automata can be discussed; see [Ferber et al. 91]. The results on limit sets of
continuous mappings [Graw 82, 84] can be applied to the time evolution of cellular
automata (see [Langenberg 92]). Orbit theoretical results may be also applied
([Ferber 88]). A suitably modified version of the notion of orbit entropy ([Burkart
82]) can be used to study the behaviour of cellular automata (Langenberg 92]).
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The number and scope of applications in computing, gas dynamics (to name
only two fields) and so on, is breathtaking. Iteration theory has insights, results and
methods which are (unfortunately) still largely unknown to outsiders. The challenge
to iteration theory is clear.

8. Functional analysis

In [Bourlet 97, 97,] the linear operator Fo:=¢ o f was introduced. Bourlet’s
idea turned out to be a most fruitful one. The ramifications of this approach have
been discussed in [Targonski 67, 81] and are outside the scope of this survey.
However, work on the generators and co-generators of substitution semigroups
continued until 1987; see [Targonski, Zdun 85, 87].

It seems that at the present time—and for some time to come— the most useful
application of functional analysis to iteration theory will be the method of general-
ized embeddings (in particular, generalized iterative roots) we call phantom iterates
(phantom dynamical systems). This will be discussed in Section 9.

9. Phantom iterates

As is well known, the functional equation g” = £ (f, g are self-mappings of a set)
has in general no solution;—in other words, the iterative root (fractional iterate)
/" does not exist. To give a simple example: if / has exactly one 2-cycle (x # y,
f(x) =y, f(¥) =x), then f has no iterative square root. Then there exists no
embedding f* for f: f*o f" = f**!, fl =4 t >0, since the choice ¢ =1 would yield a
(non-existing) square root. Thus the idea of generalized embedding arose quite
naturally. Saying it quite simply: the trouble is that there are too many or too few
orbits of a given type. (In our above example, extending the domain by two points
forming a 2-cycle would help, uniess there are additional obstacles.) In a similar
sense, removing the offending 2-cycle would also help; but, in the presence of a
topology, there now would be two holes in the domain. So, extension of domain is
the better solution, and this idea was in fact carried out; see [Peschl, Reich 71],
[Reich, Schwaiger 80], [Mira, Miillenbach 83].

Our approach is different. Formulated for the “maximal” problem, the problem
of embedding, it can be crudely formulated as follows. Even if no embedding f*
exists, the Bourlet substitution operator A¢:=¢ -/ may be embeddable in a
one-parameter semigroup of operators 4, then A’ serves as a (weaker) version of
the non-existing f*. This is the phantom iterate, described intuitively and impre-
cisely. The idea was hinted at but not followed through in [Targonski 81], and
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introduced (under the temporary name of “weak iterate™) in {Targonski 84]. Here
the setting is quite general, but only the problem of iterative roots is addressed. The
semigroup of all self-mappings of a set is isomorphically immersed in a larger
semigroup, so that the equation g” = f has a solution in the larger semigroup. This
approach was demonstrated on the case of self-mappings of a finite set, represented
by “mapping matrices” with 0, 1 entries. If the r-th root of such a mapping is not
itself a mapping matrix, it is still (in later terminology) a phantom root. This
approach was followed up and elaborated in [Bartels 91].

Phantom iterates were formally introduced, rigorously defined and investigated
in [Targonski 84,]. The notion is introduced in a general form and then applied to
certain continuous self-maps of the closed unit interval. A class of such functions
was given which have non-trivial phantom square roots. This result was generalized
in [Krause §8], [Bartels 91] and [Targonski 93].

Phantom iterates have been also established for formal power series. As already
mentioned, a construction in [Reich, Schwaiger 80] can be used as phantom iterate,
once one has the notion (Reich—Schwaiger phantom). For a thorough discussion,
see [Schwaiger 89]; see also [Schwaiger 91].

Phantom roots of cellular automata were treated in [Ferber et al. 91], sections
2.3,24,4.1,42, 43,

A direction in which so far nothing has been done is phantom roots of
mappings from N to itself. As we saw, the finite case has been extensively dealt
with, and there are also results on continuous self-mappings of [0, 1]; but N> N is
terra incognita.

We conciude this section by describing a fairly general case of phantom iterates
in the language of dynamics.

Consider the discrete autonomous semidynamical system (X, /). Here X is a
compact topological space, the state space of some system, while f, the “next state
function”, is a continuous self-mapping of X. We are looking for a phantom
embedding of f. Consider now @, the family of all real-valued continuous functions
on X. (We could take complex valued functions on X, in the general case the
functions could take values in any Banach algebra. Multiplication is defined
pointwise). We interpret every ¢ as some special kind of measurement on X, so that
@(x) 1s some real number partly characterizing the particular state x € X of the
system. Introduce now the linear operator A :=¢ o f on @, considered as a Banach
space, and assume that an embedding of A exists in a semigroup A’, where ¢ >0 is
interpreted as time. Consider now the case that, for a particular ¢ (for instance
t=3), /" does not exist, thus the state f(x) does not exist. On the other hand,
(A4'9)(x) is a numerical measurement of the non-existing state f*(x). For all ¢ € ®
such a measurement can be carrried out and thus the non-existing state gains a kind
of “phantom existence”, hence the name.
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Staying with the case f =1, it has been shown in [Targonski 84,] that for certain
J and some restriction on @, the fantom is the sum of two substitutions:
(4'2)(x) = pla(x)] + p[A(x)].

In this case (and in its generalizations) the system behaves as if it were in several
states at the same time, and the individual measurement values have to be added to
obtain the measurement values on the phantom states. An analogy with quantum
mechanics is apparent; physicists have been quick to acknowledge this.

As already hinted at in Section 3, Liedl’s transformation can be used to find a
phantom embedding for invertible f ([ Targonski 94]).

Appendix

In this Appendix, we briefly refer to fields which belong to iteration theory, but
for reasons historical and/or practical, could not be included in this survey of
research.

. Numerical methods. A large part of this field is based on iteration. As an
important example we cite [Deslauriers, Dubuc 91]. This field is immense and is
now closely linked to computer science. An attempt to include iterative numerical
methods in iteration theory would be like including the elephant in the Small
Mammals House of a zoo.

Still, we mention one problem. It was noticed some time ago that by discretizing
a continuous-variable problem (for instance, initial value problem) for computation
purposes, chaos may appear in the solution which is not present in the rigorous
solution of the original problem. Thus approximation may qualitatively falsify the
solution. This phenomenon has been called “ghost dynamics™ ([Ushiki 86}).

1. Dynamics in one or two dimensions. This important and rapidly growing field
also belongs to the “hard core” of iteration theory and should be included in a
survey such as this. In [Targonski 81] it was still possible to give a reasonably
complete account of the field up to the time the manuscript went to the publisher.
Since then, the field has grown so rapidly that I did not keep up entirely and can
no longer attempt in good faith a survey,

Anyone interested in this field is well advised to look first at the book [Alseda,
Llibre, Misiurewicz 92]. In the list of references one finds at least eight more books
on the subject, starting with [Collet, Eckmann 80}, and a large number of papers by
R. L. Adler, Ll. Alseda, P. Blanchard, L. Block, R. Bowen, U. Burkart, A.
Chenciner, P. Collet, J.-P. Eckmann, J. Franks, J. Guckenheimer, I. Gumowski, M.
Hénon, M. R. Herman, P. Holmes, L. Jonker, P. E. Kloeden, A. G. Konheim,
O. E. Lanford III, A. Lasota, T.-Y. Li, J, Llibre, E. N. Lorenz, A. M. McAndrew,
J. Milnor, C. Mira, M. Misiurewicz, P. Mumbrua, Z. Nitecki, A. N. Sharkovsky,
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C. Sim6, S. Smale, J. Smital, P. Stefan, P. D. Straffin, F. Takens, W. Thurston and
many others.

All this is, of course, mainly in one dimension, but the key “key words” already
appear: periodicity, chaos, topological entropy, strange attractors. For two dimen-
sions, an introduction is provided by [Whitley 83].

For recent work applying symbolic dynamics, see [ Lampreia, Sousa Ramos 91].

I11. Compiex iteration. This field would have to have a place of honour in any
history of iteration theory because of the great discoveries of the XIX and early XX
century. Here we hint mostly at work emerging during the past one or two decades.
Complex iteration provides a particularly elegant way of dealing with certain
dynamical systems in the plane. It is truly amazing what a variety of iterative
behaviour can be seen even for the function z? + a as the parameter « is varied.
Notions as Fatou set, Julia set, Mandelbrot set (not, of course, confined to complex
iteration) arise here. For an introduction to this field see e.g. [Blanchard 84],
[Douady, Hubbard 84/85]. J. Ecalle’s theory of resurgent functions is an important
contribution [Ecalle 81, 85].

IV. Fractal sets. These sets occur not only in iteration theory, but arise
naturally as limit sets of splinters, boundaries of certain sets and so on. Such sets
have been named “fractals” and extensively discussed by B. Mandelbrot (see
[Mandelbrot 82]). .

Fractals turn up also in connection with functional equations ([Dubuc 85]).

The notion of fractal seems to be related to C. Mira’s concept of “frontiére
floue” (“vague boundary”) see [Mira 79).

Also for application of fractals to computer graphics see [Barnsley 88].

For a survey of work of the Toulouse group up to 1987, see [Thibault 89).

Fractals, in particular the sets of limit points of iterative sequences in the plane
can be very beautiful. This was discovered by I. Gumowski and C. Mira, who
named this phenomenon “chaos esthétique’’ and showed an exhibition of attractive
pictures in Toulouse, at the 1973 iteration conference. Others soon discovered
commercial chances and now it is possible to buy posters and sets of slides showing
fractal sets.

The beauty of the images can be enhanced by using different colours for the
various constituents of the fractals. For a volume with such pictures see [Peitgen,
Richter 86].

V. Experimental mathematics. This plays a part in iteration theory as in other
parts of mathematics. It became feasible when high speed computing and also
computer graphics became available. The “experimental results’ can be used to find
conjectures which then may be proved using the conventional methods of mathe-
matics. Or, graphics may be used as “experimental proof” of statements. This is the
extreme case. In general, the situation is that both “conventional’” and “experimen-
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tal” methods are used in a certain approach to dynamics which has an engineering
flavour and which is close to applications. For an introduction see [Gumowski,
Mira 80, 90,]; see also numerous papers by C. Mira and his collaborators and

students.

Concluding remark

Iteration can be considered as a field of research bordering on functional
equations as well as on dynamics. This survey was prepared for publication in
Aequationes Mathematicae. In order to keep the paper reasonably short, in this
particular situation 1 leaned towards functional equations. Dynamics was empha-
sized less than it would have been in a more balanced treatment.
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