FRACTIONAL ITERATION NEAR A FIX POINT OF
MULTIPLIER 1

L. S. O. LIVERPOOL

1. Introduction

An analytic function f(z) is said to have a fix point { # co of multiplier 1, if
f©=¢ ') =1 The function then has an expansion,
[+ ]
f@={+@-0+ T aE=0"aui#0m>1 M
It has been shown (e.g. Baker [1]) that there is, for every complex 4, a unique formal
iterate,

L@ =l+@-0+ T 00 @0 tps i) = g, @
where the a,(1) are well defined polynomials in A determined by comparing coefficients
in the formal identity f, o f(z) = fof,(z). For positive integral values A = n the series
(2) is the same as that of the nth iterate of f(z) =f,(z) and by analogy the
f1(2) are in general called the fractional iterates. _

Without loss of generality, we choose our fix point at the origin. For simplicity,
we shall work with the case m = 1 when (1) and (2) reduce to

J@ =2+ e #0, )
f@ =2+ 3 a7 a,(h) = da, @

respectively.

We note that the series (4) does not necessarily have a positive radius of con-
vergence for each ; in fact it is shown in [1] that the values of A corresponding to a
positive radius of convergence either fill out the whole complex plane, or form a
discrete one- or two-dimensional lattice. When the values fill out the whole plane
we shall call fembeddable.

In [2] (¢f. also [3] and [7]) it was shown that if f(z) in (3) is meromorphic in the
plane, then it is not embeddable except in the case f(z) = z/(1 —a, z). The question was
raised as to whether this result extends to any f which is single-valued. Example 1
below shows that this result does not extend in full generality, while Theorem 1 gives
a new class of non-¢embeddable single-valued functions.

THEOREM 1. Let D be a domain bounded by a finite set of non-intersecting analytic
curves, denoted by 8. Suppose also that D is bounded and contains the origin. If the
function f (z) is regular and single-valued in D, with an expansion of the form (3) at the
origin, and if the curves 6 form a natural boundary for f, then f is not embeddable.
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Thus, for example,
f@) =3 X%,
n=0

which has the unit disc as a natural boundary, is not embeddable. The assumption
that the boundary ¢ of D is analytic is essential, as is shown by the

ExampLE 1. There exists a non-analytic Jordan curve y and a function f () such
that

(1) y lies in the disc |z] < 1 and the region D bounded by y and the circumference
|z| = 1 containsz = 0,

(ii) f has an expansion
@) =2+35,2", b, #0,

convergent in |z| > p for some p > 0,

(iii) D is the exact region of existence of the function f obtained by analytic con-
tinuation of the expansion in (ii) and f is single-valued,

(iv) fis embeddable.

One can, however, prove

THEOREM 2. Let D be a domain bounded by a finite number of non-intersecting
Jordan curves. Suppose also that D is bounded and contains the origin. If the function
f(2) is regular and single-valued in D, with an expansion of the form (3) at the origin,
if the curves & form a natural boundary for D and if the boundary values of f on § all lie
outside D, then f is non-embeddable.

A case where D is bounded by a discrete set is given by

THEOREM 3. If f(2) is single-valued and meromorphic in the whole complex plane
except for at most a countable number of essential singularities, each isolated from the
rest, and if near the origin f (z) has an expansion of the form (3), then f(z) is not embedd-
able, exceptin the case f (z) = z/(1 —a, 2).

Finally we turn our attention to the values of A which correspond to a positive
radius of convergence of f,;(z) and show that the case of the two-dimensional lattice,
mentioned above, cannot occur.

THEOREM 4. If the set of values of A corresponding to a positive radius of con-
vergence for f;(z) in (4) includes a two-dimensional lattice, then f (z) is embeddable.

Thus, if f is not embeddable, f, converges only for A = nl,, where 4, # 0 is some
fixed constant and n runs through the integers.

The proofs given here are taken from the author’s University of London Ph.D.
thesis [6]. Recently J. Ecalle [4] has announced in a note that he has found an
independent proof of Theorem 4.
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2. Preliminary results and notation
It is sometimes convenient to transfer the fix point to co. We shall employ the
substitutions z = k/t, z, =k/t,, choosing a, k = —1. Applying these to the trans-
formation z; = f(z) of (3) we get

to= 141+ 3 byt = g() )
with fix point at co and with b, satisfying
by = (a;*—a3)/a;” . 6
Similarly, (4) transforms to give
b=+l 3 61T =) )

where g,(¢) form the unique family of formal series (7) commuting with (5). The
series (4) is embeddable precisely when the series (7) converges for some ¢ # oo, for
every 1. We shall from now on assume g = g, convergent for [¢| < R.

We quote Lemmas 1-3 from [1].
Lemma 1. [1;p. 272). If g(2) is as in (5) and if D(K) =) %(a, K), where the

union is taken over all o in —nf4 < o € n/4, and where € (o, K) is the half plane
{t|Re (te™™) > K}, then for all sufficiently large K (> R), g,(t) is regular,

£&MeIK), n=12, ., ®
and
Reg,(t) >0 as n— o0 )
for all tin the closure D(K) of D(K). Moreover (9) holds locally uniformly in 9(K).
(¢f. [1; p. 273 (21))).
LemMA 2 [1; p. 273]. For all sufficiently large K the domain 2(K) of Lemma 1
has the following properties.

A(t) = lim {g,(¢)—n—>b, logn} (10)

(where b, is as defined in (6)) exists uniformly for t € 2(K). Moreover, A(t)is regular
and univalent in D(K) and A’(t) = 1 uniformly as t - «© in 2(K). Also

A{g, )} = A@)+n for te2(K). (i)
LemMA 3 [1; p. 279]. Let

f,.(z)=z+/10,,,+lz’”“+ Z a,,z",a,,,H#:O,m;l,

n=m+2

be a commuting family of formal power series. For p > 0, let Q, be the class of complex
A with |A| < p for which f;,(z) has positive radius of convergence. Then there exist
constants p > 0 and M > O such that

(i) f1(2) converges in |z} < p for all A€ Q,
and
(ii) 1f1(2)] < M uniformly for all |z| < p and all L€ 2,
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LEMMA 4. (Szekeres [7]). If the series
h=gao= 144+ X b1

in (7) has a positive radius of convergence for every A, i.e. g in (5) is embeddable, then
D(t) = A'(t) is regular in a full neighbourhood of t = 0o and has an expansion

D) =1- b—t‘ + i S, 17" (12)

which may be calculated from
D(g() = D()/ig')}- (13)
LemMma 5. (Baker [2]). If the series (3) is embeddable and if the f,(z) are single-
valued in their whole domain of existence, n=1,2,3, ..., then there exists p, <0

such that, for z in any annulus of the form 0 < p, < |z| < py < p, one has for all large
enough n

(1) f.(2) regular and
(i) f,(z) = 0 uniformly as n — 0.

3. Proof of Theorem 1
We first prove

LemMMA 6. Suppose D and f satisfy the assumptions of Theorem 1. Then (a) if
f+(2) is analytically continuable (with at most algebraic singularities) from its expansion

f@)=z+naz*+ ... (14)

at 0, along a pathy of D, so is fi(2) for all j < n, and f;(y) < D, j < n; (b} f,(2), n = 1,
is single-valued as far as continuable analytically from (14) by paths lying completely
in D.

Proof. The proof that follows is by induction.

Casen =2 :

Givenf(z) =z + a,z? +..., with (i), (i) and (iii) of Theorem I satisfied we consider
the analytic continuation of f,(z) from f,(z) = z+2a,2z%+ ..., at 0. If we can analy-
tically continue f,(z) along a path y in D, starting at 0, then f(y) < D; for otherwise
there exists pe D n y such that f (p) €, where ¢ is the boundary of D. We suppose p
to be the first such point on y starting from 0. Then

f @) = ff-1(2))s (15)

where f,(z) = z+2a,2*+..., and f_,(z) = —za,z*+ ... near 0. If we consider (15)
as z runs along f (y) from O to f(p), a suitable branch of f_ (z) traverses y from 0 to
p and at f(p) there is a branch of f_, (z) having at most an algebraic singularity such
that f_,(f(p)) = p. Thus in fact (15) gives a continuation of f(z) having at most an
algebraic singularity over its natural boundary at f (p). This is impossible and hence
S (y) = Dfor any path y in D on which f,(z) is regular.

Suppose now f,(z) can be analytically continued from 0 to z; by two paths y,,
72 in D. Then y, 09,71 is a path from 0 to 0 lying completely in D. As z traverses
this closed path f(z) traverses another closed path 7 = f(y,)of(y;)~" which lies
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completely in D (by the preceding argument). As w traces 9, f(w) is regular and
continues from the branch f(w) = w+a, w?+ ... at 0 to the same branch at the
end of the path. Thus f,(z) = f(f(z)) continues from the initial branch

f2(2) =z4+2a,2% + ...

atz = 0 back to the same branch at the end of the path as z traces y, 09,”'. Hence
continuation of f,(z) from O along y, or y, to z, yields identical results.

General inductive step. Assume the statements of the lemma have been established
for 2 € n <« m. We shall prove that they then hold for n = m.

We suppose that f,(z) is continuable from 0 along y in D and that g is the first
point of y (starting from 0) at which the analytic continuation of f,,_, breaks down.
The part of y between 0 and g is denoted by y’. By the induction hypothesis, f; is
regular on ¥’ and fi(y') = D, j < m—1, and further, since f,, f,-, are regular on y'
it is easy to see from f, = f(f,-,) that f,_,(y) = D. Lett, 2<t< m—1, be the
smallest positive integer such that the continuation of f, from 0 along y breaks down
atq. Thus f,_,(y") = D and since f,.,(g) € D would imply that f, can be continued
along y over g, it follows that f,_,(g)€4d.

We show next that f,,_ ,(z) tends uniformly to § asz — g on y’. For if such is not
the case there is a sequence z;€y’, j = 1, 2, ..., such that z; — g while w; = f,,_,(z))
tends to a limit re D. Since f (w) is regular at w = » we have

Jukz)) = f(fu-1@)) = f W) > f(r) = ful@) = p,

say. If we denote by f_,(w) the branch(es) of the inverse of f(z) obtained by inverting
the Taylor series w—p = f(2)—p =f'(r)(z—r)+ ..., so that f_,(p) = r, then f_,(W)
is regular in a neighbourhood of p except for at worst a branch point at p, and
F(z) = f-,(f(2)) is regular in a neighbourhood of g (except for at worst a branch
point) and one of its branches will agree near z; with f,,.,. Thus F(z) yields an
(algebraic) continuation of f,,_; along y" over g and by the induction hypothesis this
continuation is in fact single-valued. This contradicts the definition of g.

Now recollect that f,_,(y") = D, f,_,(q) = (say) s€é and that f,_, is regular atg.
It follows from the mapping properties of analytic functions that there is a disc M of
centre g (which we may assume so small as to lie in the region of regularity of f, and
fi-1), an arc o of § containing s, and an arc ¢, in D with the following properties:
g, passes through g and is analytic except perhaps at g; f,_; maps o, bijectively on to
o; 0, divides M into two components one of which, say N, contains ' n M and is
mapped homeomorphically by f,_, to a neighbourhood of ¢ in D. For a point ¢”
of oy nearq (i.e. on the boundary of N) we may modify y to y” inside N so that " ends
in g instead of g. Now f,, and f,_, are regular on y” (including ¢") while '

J-: V" — (@)} = D.

Thus f, can be continued along y"—(g"). However, since f;_,(¢")ef,.(6)) = 6 = b,
it can be seen that f, cannot be continued overg” along y”. It follows thatf,,_, cannot
be continued over q” along 9", for the induction hypothesis would then yield the
continuability overg” of f,.

Thus we may replace g by ¢”, y by y” in the above arguments and find in particular
that f,_,(?") = D. For any of the paths y”, the path § = f,_{y"—(g")} is a path in
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D along which f,-,,, and therefore, by the induction hypothesis, f,,-, also are
continuable. Since y” may be taken to be a curve approaching ¢” in g, from inside N
in an arbitrary manner, § may be taken to be an arbitrary approach curve to ¢ from
inside D. Since f,,— (2) = f,-{ f;- 1(2)) approaches  asz — q” in y" we see that f,,_,(w)
approaches 6 as w — ¢ from inside D. The boundary values of f,_, on the arc o
must be on one of the connected components of J, i.c. on an analytic curve. By the
Schwarz reflection principle f,_, is therefore continuable across ¢3f;-(g) and so
Ju=-1(2) = f._{f;-1(2)} is continuable along the arc y' over g. This contradicts the
assumptions and so we have proved that all f;, j < m, can be continued along 7.

We have also to show that f;(y) = D for j < m. It has just been shown that
Jfm-1 can be continued along y; so by the induction hypothesis f;(y) = D forj < m—1.
In particular, f = f,,-,(y) € D. Now f is a path in D which starts at 0 and f; can be
continued on f§ since f,, can be continued on y. Thus f,_,(y) = f (f) < D, by the
case n = 2.

Suppose finally that f(z) can be continued analytically from f, (z) = z+ma,z*+...
at 0 by two paths y, and y, each leading to z; € D. Then y, 07,7 ! is a path from
0 to 0 lying completely in D. Now f,,., can be continued on y, and y, to z, and is
single-valued; so f,,_, can be continued round y, 0y, ! and leads back to its initial
branch at 0; further, f,,_,(y, 0y,~') = D. Hence £, (z) = f{f,-1(z)} can be continued
round y, 0y, ! and leads back to its initial branch at 0, since f is single-valued; i.e.
continuation of f,, along y, or y, leads to the same result at z,.

The induction is now complete and the lJemma established.

Proof of Theorem 1. We consider D and f (z) which satisfy the assumptions
of Theorem 1 and suppose f (z) to be embeddable. We move our fix point to infinity,
applying the usual transformation z = kft, z; = k/t;, we get corresponding to f (z)

() =t+1+ 3 bt
k=1 (15)

while to f,(z) corresponds
g.(0) = t+n+k§l O (16)

with the usual properties, Then g(t) is embeddable; also by Lemma 6 all g,(¢) are
single-valued as far as analytically continuable from an expansion about infinity within
the image of D under z— ¢t = kz™! and so within a certain fixed neighbourhood
|t] 2 T of oo (independent of n).

We now consider 2(K) as defined in Lemma 1 and choose K(= T) so large that
Lemma 2 holds and such that A’(¢) is regular in |¢| > K (¢f. Lemma 4). By choosing X
large enough we may suppose A'(¢) to be uniformly close to 1 in 2(K). Then w = A(r)
maps 2 (k) univalently and conformally to a region C of the w plane lying to the right
of a curve which approaches oo in directions argw = + 3n/4. C contains a half-plane
Rew < B. We now take Ry > K, Rp < R, < R,. Let R; <r <R, and y be the
segment ¢ > r of the real axis, f the semi-circle t = re®, 0 <0 < n. Now A'(r) is
regular on fuy and A(f) may be continued regularly along fuy to ¢ = —r with
the values of A(f) being bounded. For large enough n, A(f)+n lies in Rew > B,
while, for all positive n, te y = D(k) implies A(t)+n = A(g, ())& F. Thus A(Buy)+n
is a curve in C.
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Consider now h(t) = A_,{A(t)+n} on fuy. Ony, A(t) = g,(t) while as  describes
Buy, A(t)+n describes A(fuy)+n in C and the inverse of the univalent map
A 9(k) — C gives a regular continuation A(?) of g,(¢) along fto —r. Moreover, for
t=re® 0 <0 <mandR, <r< R, g,(¢)lies in a compact subset of @ (k). Similarly
considering a path f'+7, B =re® 0> 0> —n, we conclude that we can get a
regular continuation of g,(¢) along f’ to —r. Now since g,(¢) is single-valued as far
as continuable within |¢| > T and we have chosen R, > T, the upper and lower
continuations yield identical results, for g,(?).

Thus for large enough n g,(z) is regular in the annulus R, < ¢ < R, and it maps
the annulus to a compact subset of 2(K) and further by Lemma 1, g,(1) = o as n
tends to infinity, locally uniformly in 2(K) and hence uniformly in R; <t < R,.
Now by Lemma 6, if g,(¢) is regular for all n > Ny, say, in any annulus in the neigh-
bourhood of infinity, then so is it for all n < N,. Hence for all n, there exists R, so
that, for [¢t| > R,,

g.(t) is regular for all n, an

g.(2) = oo uniformly as n — co. (18)

Transferring our fix point to the origin once more, we see that there exists a p, > 0,
such that in some |z] < p,

f»(2) is regular for all n, and (19)
J+(2) = Ouniformly asn — 0. (20)

Now, considering our expansion f(z) =z+a,2>+... near 0, we claim that
{f:(2)} cannot form a normal family in any |z| < p,. If it could, there would exist a
subsequence { f,,(z)} uniformly convergent in |z] < p < po; that is, £, (z) = f(z) = 0
by (20).

This implies that f*, (0) — O contradicting the fact that f*, (0) = 1. Hence f(z)
cannot be embeddable. '

4. Proof of Theorems 2 and 3

The proof of Theorem 2 follows that of Theorem 1 except thit Lemma 6 is
replaced by

Lemma 7. If D and f satisfy the assumptions of Theorem 2 then the assertions
(a) and (b) of Lemma 6 hold.

The proof is contained in [6] and will not be given here.

Proof of Theorem 3. The case when f is meromorphic in the plane has been dealt
with in {2] and covers the rational case in particular. We may therefore assume that
f has an essential singularity at, say, a. If T(z) = —az/(z—a), then

g=TofoT 2)=z+a,z*+ ...,
has an essential singularity at co. Moreover, f is embeddable in a family
fl = Z+Aazzz+ ceny

if and only if g is embeddable in a family g, = Tof,0 T™! =z+la,z%+.... Clearly
g is single-valued and has essential singularities at points T (z') wherez’ are the essential
singularities of f.
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The iterates g, are single-valued and regular except at the countable set of points
formed by

n—1

U &-nls):

m=0
where s belongs to the set of singularities (including poles) of g, Once g, has an
essential singularity or pole at z’, then so does g, for n > k.

Suppose g is embeddable; then Lemma 5 shows that there exists p, such that for
any 0 < p, < |z| < p; < py and all large enough n, g, is regular in p,; < |z| € p,.
Hence all g, areregularin 0 < |z| < py. The lemma also states that g,(z) — 0 uniformly
in p, < |z| < p, and hence on |z| < p;, by the maximum modulus theorem. But this
implies g,'(0) — 0 which contradicts g’,(0) = 1. Hence the theorem is proved.

5. Examples

Construction of Example 1. Let é be the circumference |z| = 1, A the domain |z] < 1.
Let w= A(z) = }/z+a,z+a,z*+... map A univalently onto the exterior of an
everywhere non-analytic Jordan curve I (4 is the Abel function of our group;
cf. {1).) If ais large enough, a > d say, where d = diameter of I, then I', ' —a, T'+a
are disjoint. So I" + a lie in the exterior of I'. Let the image of I'—a in A under
w = A(z) be y [y will be a non-analytic curve with 0 outside it] and D be the region
between y and 6. Consider now

f@)=A_,{A(2)+a} =z+b,2*+...,nearz = 0.

In fact _
A ay AZ
A_l(w)=z=—}17- + w3 +...,
and
a , & ,
f@) = A-—l(A(Z)+a) =Z—Tz + -A_z-z + ...
(By construction, a is non-zero and so b, = —afl # 0.)

Now f(2) is defined in D and univalent there. We can continue f (z) along any
curve in D surrounding y. Moreover, as z tends to the analytic curve § from within
D, A(z)+a— I'+a and f(z) - non-analytic A_ ,(I'+&). Also as z tends to the non-
analytic curve y in A, A(z)+a — I' and f(z) — analytic 6. Hence f is not continuable
over J or y. Further, fis embeddable in the family of iterates

f.(2) = A_,(A(2)+ pa) = z--“f-zu

which has f,(z) = f(z) and a positive radius of convergence for each u. Such a family
satisfies f,0f = fof, = f,+, and is thus the unique family associated with f. We
note that the assumptions of Theorem 1 are violated in that the boundary of D is not
wholly analytic.

As an illustration of Theorem 2 we discuss

Example 2. Let 6 be any Jordan curve whose interior, D, is a region containing
the origin and let A, u be the minimum and maximum distances of & from the origin,
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respectively. Now consider f(z) = ao+4a,z+ ..., analytic in D such that a¢ # 0-and

f(z) is not continuable across 6. We suppose further that w = f(z) has boundary

values all in jw| > 8 > 0, say, on 8. Then g(z) = z+ kz* f (2) is also analytic in D, with

natural boundary e. For suitable choice of k, the boundary values of g on d satisfy
lg(2)} > kA*8—p > 2p

and are therefore outside D. Also g =z+kagz*+ka,z°+ ..., kay® # 0; so, by
Theorem 2, g(z) is non-embeddable.

6. Proof of Theorem 4

Given f (z) of the form (3), convergent in some neighbourhood of 0, we assume
that the set of A for which the corresponding fractional iterates f, in (4) have positive
radius of convergence contains a two-dimensional lattice L. We select a fixed 4 # 0
in Lsuchthat$n < 0 = argd < 3m.

Making the transformation z = kt ™%, z, = kt™!, z; = kt;7}, where a, k = —1,
shifts the fixed point to co and replaces z, = f (z) by

t, = g(t) = t+l+§:b,,t"‘ )
and z; = f3(z) by
f= &) = :+A+$b,.(z)r", )

convergent in a neighbourhood of oo.

We choose K so large that the assertions of Lemmas | and 2 hold in the set 2(K)
defined in Lemma 1. Since é7 < 0 = arg A < 3n while the boundaries of D(K) run
to oo in the directions arg? = + 3= and since by (7) g, ~ ¢+ 4 for large ¢, there
exists a half-plane H: Re{rexp(—3in)} > M for a suitably large M, such that
H < 9(K)and g;(H) < H. It follows that for t € H and the function A(¢) of Lemma 2,

A{g,(D} = lim {g(8:(8))—n~b, logn}
= lim {g,(g.(+))—n—b, logn}

by (10) and (7), and the fact that g,(g,) = g.(g.)-
Differentiating (21) and using g,(H) = H, we have in H

A'@) = A'(g;.(t)) &:(t)

N=1
= A'{gn:(1)} "1__1 8. {8.(0}. (22)
Now in (7) 4 = |Ale”® and the transformations 7, = #; A™!, T = tA™" change (7)
into ©
1 = T4+ 146, A T S b 1 = A (23)
P

The results of Lemmas 1 and 2 may then be applied to A(z), so that there is a K’
such that in the domain 2(K’) we have 4,(t) = 2(K’), h,(r) = oo liken+b, A" logn
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and so on. This means that for ¢ in the domain 2’ = A2(K'), g,:(1)€ 2’ and
gna(t) = . Moreover, there is a function A,() such that

A,(t) = lim {g,;(©)—ni—b; 21" logn} in 2', (24)

while
Ay{gn(t)} = A, ()+nldin D', (25)

Further, A, is regular and univalent in 2’ and 4,'(¢) = 1 as ¢t = o in D’. Differentiat-
ing (25) and letting n - co0 we have therefore

40 = ] gilea®),  te2" 26)

Noting that g;(Hn2') c HN D' we see that for teHN D' <« D', gy, (1) = ©
as N — oo and the values gy,(t)eH = 2 so that A'{gy.(#)} —» 1 and so (22) implies
that

A() = ﬁo glgn®), teHND. @)

Since H n %' is a non-empty sector, A,(t) is an analytic continuation of A’(t) by
(26) and (27) into a region of the form 2’ = 19(K’).

By repeating the above arguments with the pair (g,, g;) replaced successively by
(81, 8-1), (8-1,8-2), (g-,, 1) we see that the functions A'(f), 4,'(t)

43'(1) =TT -0}

A5’ (1) = Ijg'—a{g—u(‘)}

and A’(¢) are regular in domains 2(K), A2(K'), —2(K"), —22(K'"), 2(K) res-
pectively, each neighbouring pair of which overlap, and the corresponding functions
are identical in the regions of overlapping. Thus A'(f) may be contained analytically
in a punctured neighbourhood of oo and is single-valued in this neighbourhood,
Since A’() —» 1 as t — oo the point at oo is a removable singularity of A'(¢).

Thus there exists A'(¢) regular at co and satisfying (¢f. (11))

A'{g)}g' () =4 (28)
where
git) =t+14bt7 1+ ... (29)
Since A4,'(c0) = 1, calculation of (28), (29) gives
A =1-by 1t~ et 2+ §3 17", (30)

Now in fact the converse of Lemma 4 holds, i.e. we can conclude from the existence
of A’(¢) that g (and hence f) is embeddable. This has been proved independently by
Erdds and Jabotinsky [5; p. 361-76] and by Baker [1; p. 289-290]. Indeed, set

A@®) =1-b, lOgt—ct"l—é._c"_tl—n o1
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With w = t(1+v) and for arbitrary constant A, put
Aw) = A(t)+4; (32)
this gives
v—b,t  log(14v)—ct 2(1+v) ' +... = A" =172+, (33)
which is satisfied for £=! = 0, v = 0. Taking log (1+v) = v—3v®+ ..., both sides of
(33) are analytic near ™! = 0, v = 0 and the derivative of the left-hand side for v is

latt™! =0, v=0. Thus there is a solution v = At ™! +... regular at t = o0, which
corresponds to the solution

W= hy(t) = t+A+3d, ™" (34)
1

of (32). The functions A,(t) exist for each 4, and satisfy (32) for large ¢ and a suitable
determination of the logarithm. Hence, by differentiation,

A'{hy()} 1y (1) = A (D). (33)

But comparison of coefficients shows that to given A’ there is a unique series (34)
beginning w = t+ A+ ... which satisfies (35). It follows from (28) that £,(t) = g(1),
and to given 4, p that (for large ¢)

A'Th (A (DN By {h, (DY 1) (1) = A{B (D} A/ (1) = A'(1),
so that
hadhu ()} = haru(t) = Bl (D)}
Thus h(t) are the commuting family of iterates 4,(¢) = g,(¢) associated with
g(t) = g,(¢) so g(¢) (and consequently also f(z)) is embeddable.
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