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Introduction

When a few years ago I wrote in an expository article on functional equations
(Kuczma [11}) ,,We must be aware, however, that in view of the very quick development of
this theory the situation here described can become inactual within a few months” I did
not think that these words would come true so soon. Now, starting to write the present
paper, I have realized that I can make use of that article but a little and a great deal must
be written anew. Similarly, the English edition of J. Aczél’s book (now already under the
press) will contain almost twice as much material as the first one (Aczél [19]).

But the theory of functional equations is relatively young. The first paper (if we do
not take into account a use of recurrences, which reaches as far back as Archimedes; cf.
Pincherle [1]) dealing with functional equations® (d’Alembert [1]) was written in 1747. Since
then a number of mathematicians (among them as eminent as e.g. Abel, Cauchy, Gauss,
Euler) would write single papers devoted to this or that particular functional equation.
Probably A. R. Schweitzer was the first who has made an attempt to treat the subject more
uniformly. He also planned to gather a bibliography of functional equations (Schweitzer [2]).
But the beginning of a theory of functional equations is connected with the work of an ex-
cellent specialist in this field, Hungarian mathematician J. Aczél. In his numerous papers
he treats whole classes of functional equations, gives general methods of solving functional
equations and criteria of the existence and uniqueness of solutions. He also indicates many
new applications of functional equations.

This young theory is now rapidly developing. The number of mathematical papers
dealing with functional equations is still increasing. In last years three monographs on fun-
ctional equations have been written (Aczél [19], Aczél-Golab [1], Gherménescu [18]; cf. also
the booklet Aczél [24]), which have gained a great popularity. J. Aczél’s book has recently
been translated into English, and a sudden death in 1962 has interrupted M. Gherminescu
the work on a French translation of his book. A book by J. Anastassiadis concerned with
defining Euler’s functions by functional equations (Anastassiadis {7]) will appear soon. Also
the author of the present paper is preparing a monograph on functional equations in a
single variable. Moreover every year we observe some new books on finite differences and
difference equations.

Another sign of the growing importance of functional equations is the fact that a
number of mathematicians have devoted themselves mainly or entirely to the research work
in this branch of the mathematics. Including also the mathematicians who have been led to
functional equations by their investigations in other subjects (like differential geometry,
iterations and analytic functions, differential equations, number theory, abstract algebra) and
who have not once contributed to functional equations, we would like to mention here the
names of J. Aczél, J. Anastassiadis, T. Angheluti, M. Bajraktarevi¢, I. N. Baker, L. Berg,
S. Bochner, D. Brydak, K. Chandrasekharan, B. Choczewski, B. Crstici, Z. Daroczy,
D. Z. Dokovié, 1. M, H. Etherington, V. Ganapathy Iyer, O. E. Gheorghiu. S. Golgb,
W. Hahn, M. Hosszt, M. Kucharzewski, M. Kuczma, S. Kurepa, L. Losonczi, W. Maier,
S. Mandelbrojt, M. A. McKiernan, D. S. Mitrinovié, P. J. Myrberg, R. Narasimhan, S. Pre§i¢,
F. Radd, A. Sade, B. Schweizer, 1. Stamate, G. Szekeres, M. Urabe, P. M. Vasié, E. Vincze
and A. Zajtz. This list, of course, does not claim to be complete. For a few last years
international conferences on functional equations have been held: in Balatonviligos (1961),
in Sarospatak (1963) and in Oberwolfach (1962 and 1963).

* Presented by D. S. Mitrinovié.
1 It was the equation @ (x+y)+¢ (x—y)=¢ (x) n ().
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Of course one may ask what is the reason of this interest taken in functional equa-
tions by the mathematicians of all the world. This may be connected with the fact that in
many branches of the mathematics analytical methods are already exhausted to some extent.
A use of elementary methods (to which belong also functional equations) often allows one
to obtain much deeper and more general results than it was possible with a use of classical
methods of mathematical analysis. On the other hand, more and more problems of physics
and technics requires making weak assumptions regarding the occurring functions. In such
a case differential equations are often replaced by functional equations.

The present article is an expository one. We quote here the most important results
of the theory of functional equations, however, omitting the proofs. For details the reader
is referred to the books by J. Aczél [19], [24] and M. Ghermanescu [18], as well as to the
research papers quoted in the end of this article. This bibliography contains a selection of
papers on functional equations and is by no means complete. We have aimed at including
most of the important papers of the recent period and a number of classical earlier items.
We have not included research papers on geometric objects (which are often handled by
methods of functional equations), as a bibliography concerning this subject may be found in
the book by J. Aczél and S. Golab [1] and in the article by M. Kucharzewski and M.
Kuczma [5]. Few exceptions are the papers where equations of a more general interest are
treated. Here and there we mention some unsolved problems. Others are to be found in
J. Aczél’s book (Aczél {19]) and in two collections of problems published recently by J. Aczél
[25] and D. S. Mitrinovié-D. Z. Pokovié¢ [10].

1. Definition of a functional equation

The first point one must agree upon when one starts to speak about a
theory of functional equations is the exact meaning of the notion ,,a functio-
nal equation‘. Originally it had contained all the equations in which unknown
functions occur and thus also differential, integral equations etc. But now the
expression ,,a functional equation‘ is usually used in a more restricted sense.
However, various authors give definitions of different comprehension (cf. e.g.
Aczél-Kiesewetter {1], Ghermainescu [2]). The below definition is a slightly
modified version of that from the monograph Aczél [19]. It is based on the
concept of a term, so we start with defining the latter.

Definition 1. A4 term is defined by the following conditions:
1° Independent variables are terms.

2° Ift,,...,t, are terms and f(x;,...,x,) is a p-place function (i.e. a
function of p variables) , then f(¢,,...,1,) also is a term.

3° There exist no other terms.
Then a functional equation may be defined as follows:

Definition 2. A functional equation is an equality t,=1, between
two terms ¢, and #, which contain at least one unknown function? and a finite
number of independent variables. This equality is to be satisfied identically
with respect to all the occurring variables in a certain set (of any sort).

The solution of a funciional equation may depend quite essentially on
the set in which the equation is postulated. E.g. if we require that equation
(23) be satisfied for all x,y €[—1,1], then ¢(x)=0 is the only solution
(Gofab-Losonczi [1], [2], Kiesewetter [3], cf. § 6).

One should also precisely state in what a function class the solution is
sought. The number and behaviour of solutions depends very strongly on
this class. It is one of the important differences between differential and fun-
ctional equations. In the case of the formers the function class in which the
. ? In the present article we shall use Greek letters to denote unknown functions and
Latin letters to denote variables and given functions.
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solution is sought is determined by differentiability conditions regarding the
unknown function.

The notion of a functional equation as defined above does not contain
differential, integral, operator equations and generally equations in which infini-
tesimal operations are performed. Thus differential equations with a lag have
also been excluded as well as equations occurring in the theory of dynamic
programming (Bellman [1]), in which there appear maxima of some expres-
sions. However, what is left is much enough to constitute a very large material
in which a further division and specialization must be done.

2. Classification of functional equations

The problem of a classification of functional equations is very difficult
and has not been solved till the present in a satisfactory manner. J. Aczél in
his monograph follows the pattern: one or more unknown functions of one or
more variables — altogether four types. Of course, this is a very rough classifica-
tion; nevertheless it turns out vseful.

Definition 3. A functional equation in which all the unknown fun-
ctions are one-place functions (functions of one variable) is called an ordinary
Sfunctional equation. A functional equation in which at least one of the uknown
functions is a more-place function is called a partial functional equation.

Let us note that several functions can be completely determined by a
single functional equation, contrary to the situation in differential equations.

A proposition of a classification of ordinary functional equations has
been described in the paper Kuczma [25]. This classification is based on the
notions of a rank® order and implication index.

The notion of the rank of a functional equation has been introduced
by W. Maier [1}.

Definition 4. The number of independent variables occurring in a
functional equation is called the rank of this equation.

The above definition can also be applied to partial functional equations
but in our opinion it is not appropriate as a base of a classification of par-
gial equations.

A definition of the order of a functional equation has been given in
papers Kuczma [11}, [25]. For some special types of functional equations the
order had previously been defined by M. Gherminescu [2], [18]. Before we
give here a precise definition we would like to call the reader’s attention to
some facts.

By suitable substitutions we may reduce a given functional equation to
a system of equations in which under the sign of the unknown function only
single variables (and not expressions built of variables) occur. So e.g. the
Cauchy equation (Cauchy [1])

H e(x+y)=eF+e(»

3 We follow here the terminology of the paper Choczewski [1]. In the English trans-
lation of the book Aczél [19] rank is called order, and what here is named order does
not occur at all. The original German words for rank, order and implication index are
Stufe, Ordnung and Schachtelungsexponent, respectively.
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may be written as
e (D=9 @)+ ),

I=X+y,
the d’Alembert equation

(2) Px+y+te(x—y)=2¢x) ¢(y)
may be written as
P@+e(=2¢) ¢,
U=X+y, Vv=X—7.
The equation (Golab-Schinzel [1])
(3) olx+ye@)]=9(x)e(y)

may be written as
(@) =9(x) 2(»),

z=x+y o(X).

Here the additional equation z=x+y ¢ (x) contains again the unknown func-
tion ¢ (x). In the case of the equation (Golgb [3], [4])

@ o ()= oy o ()]
the substitution must be made in two steps. The first leads to the system
?(2)=x" o (w),

_1 (M
z=2xy, W:J’+<P <_)a

xn

where one of the additional equations contains the unknown function and
moreover under the sign of the unknown function in this equation occurs not
a single variable but the expression m/x". Therefore a new substitution is
necessary, after which the system takes the form

(D) =x" 9 (W),
z=xy, w=y+e~1(1),
o m

[=—.
xn

Here the equation ¢=m/x" cannot be written in the same line as the preceding
two, since it is subordinate to those equations. It forms a second group of
additional equations. Similarly in the case of the equation (Babbage [1])

®) P(e(p(®)))=x

we have two groups of additional equations (each consisting of a single equation)
¢(2)=x,
z=¢(w),
w=¢(x).
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Definition 4. The smallest number of additional equations which are
necessary in order to reduce a functional equation to a from where under the
sign of the unknown function only single variables occur, is called the order
of this equation. :

So e.g. the Cauchy equation has order 1, the d’Alembert equation has
order 2. The order of equation (3) equals 1, order of equation (4) is 3 and
that of equation (5) is 2. The most general ordinary functional equation with
one unknown function, of order 1, has the form

(6) Flxy, oo X0 00, s 005, @ {f X1, o0y X0 0 (x1)s -+ -5 2 (X1} =0.
It may be reduced to the system
F[Xl, sy Xp, CP(Xl), K] cP(xp)’ CP(y)]:()s
Sxs oo X0 (X0 -y 2 ()=

The above definition of the order has some shortcomings (cf. Kuczma
[25]). It cannot be applied to partial functional equations. But even in the
case of ordinary functional equations some ambiguities can arise. They may
be caused by the requirement that the number of additional equations should
possibly be the smallest. It is often difficult to decide whether it really is. E.g.
the equation

U p(x+y)=e(x)+y

has apparently order 1:
?(2) =9 (x)+,

z=Xx+Y.
But in fact it is of order zero, since it may be written in the form
e(D=9 () +z—x,

where x and z are not connected by any relation. Similarly equation (6) has
order 1 provided the function F(x;, ..., X,, z3, ..., 2Z,, u) really depends on
each of the variables z;, ..., z,, u.

Roughly speaking, the implication index says how many times iterated
is the unknown function in the equation.

Definition 5. Suppose that a functional equation has been reduced
to a system of equations in the above described manner. The number of
groups of additional equations which contain the unknown function is called
the implication index of this equation.

One can unify the rank p, the order n and the implication index i of a
functional equation into one symbol [p, n, i] called the type of this equation.
So equations (1), (2), (3), (4), (5), (6), (7) have types [2, 1, 0], [2, 2, 0],
{2, 1, 11, [2, 3, 11, [1, 2, 2], {p, 1, 1}, [2, O, O], respectively.

Some theorems regarding the reduction of the rank have been proved by
J. Aczél and H. Kiesewetter [1]. From their results it follows that rank 2
plays a particular rdle in the theory of functional equations in the sense that
equations of a higher rank usually can be replaced by equivalent equations of
rank 2 (e.g. the families of solutions of equation (1) and of the equation
o+ - +x)=0(x)+ - - - +9(x,) are identical), while similar replacing an
equation of rank 2 by an equation of rank 1 is in general not possible. The
reduction of the order has been investigated by M. Kuczma [26].
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The above described -classification concernes only ordinary functional
equations. To ordinary as well as partial equations one can apply the notion
of the grade defined by A. R. Schweitzer [1] as 2j—p, where j is the smallest
number of variables on which depend the unknown functions (so j=1 for or-
dinary functional equations) and p is the rank. Still another approach to the
classification problem has been proposed by B. Schweizer and A. Sklar [2].

All these attempts, however, do not prove satisfactory. Two functional
equations with the same characteristics may differ by the structure of their
solutions. E.g. the Cauchy equation (1) and the Jensen equation (Jensen [1])

X+P\_ o™ +0(y)
(®) ¢(2) -

both have the same type [2, 1, 0] and the same grade 0. Nevertheless equa-
tion (1) has a one-parameter family of continuous solutions

) @ (x)=cx,
while equation (8) has a two-parameter family of continuous solutions
(10) ¢ (x)=ax+b.

Similarly the equations
olx, 9y, Dl=e¢le(x, ), 2] and ¢[x, ¢(y, D=0y, ¢(x, 2)]
have apparently the same form, while the solution of the former

o (x, )=/ If D)+ ()]

contains one arbitrary function, f (x), and the solution of the latter

o (X, Y) =g +f (]
contains two arbitrary functions, f (x) and g(x).
However, results of Z. Daréczy [1] (cf. § 5) show that there is not much
chance of finding criteria which would allow us to decide from the outer

look of a functional equation about the structure of its solutions. Here again
we see a deep difference between functional and differential equations.

3. Methods of the theory of functional equations

The lack of general methods in the theory of functional equations had
for long years been one of the causes that had discouraged mathematicians
from this theory. The works of C. Popovici [1] and M. Gherménescu [1], [2],
[5] changed the situation for the better. But the papers by J. Aczél [9], [15]
were a real progress. J. Aczél gave general methods of solving wide classes
of functional equations, as e.g.

(11) ?(x +)=Flo(x). 2O,
(12) 7 (57)=Fle (. 2 WL
(13) p(ax+by+0)=Fle (). 2 O,

(14) G[‘P(x""y)’ (P(X——y), Cp(x), (P(y)’ X, y]:()
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etc. He gave also criteria of the existence and uniqueness of solutions (cf. § 5).
Since then further general methods have been found by J. Aczél and his dis-
ciples; we must mention here the nice determinant method of E. Vincze [6].
For equations of rank 1 a number of general results have been established
by M. Gherminescu (cf. Ghermanescu [18]) and by the representatives of the
Krakow school: B. Choczewski, J. Kordylewski and M. Kuczma (cf. §§ 14— 22).

It would be impossible to describe all the methods used at solving par-
ticular functional equations. Very generally speaking, one may say that in the
case of equations of rank >2 the most frequently employed method is that
of a specialization of variables. So e.g. setting x=0 in (7) yields immediately
the solution ¢ (x)=x+c¢. In most cases, however, the solution cannot be ob-
tained in such a simple way and the process of a specialization must be
repeated several times in a rather ingenious manner.

The method of a specialization of variables cannot be used in the case
of equations of rank 1. This part of the theory requires a completely different
approach. To often employed methods belong: an extension of a function defined
on a certain set to a solution of the equation in question, deriving the form of the
solution (usually fulfilling some additional conditions) from the form of the
equation, applications of fixed-point theorems in function spaces. So e.g. it
is evident that any function defined on [1, 2) can be uniquely extended to a
solution of the equation

(15) <p(x+1)~<p(x):xi2, X (0, ).

Further, from (15) the formula
n—1 1

ex+m—o(x)= 3 -

o (x+k)?
can be derived, whence it follows that the function ¢ (x)= — Z 1 s the
=y (x+k)?
unique solution of equation (15) fulfilling the condition lim ¢ (x)=0. Lastly,

the only continuous solution ¢ (x)=x of the equation
cp(g):ch(x)—%x, XE[—1, +1],

can be obtained as the unique fixed point of the contraction map

1 x 3
T(9)= (2)+ L
of the space of continuous functions on [—1, +1] into itself. Of course, in
most cases the argument is more involved.

But a certain general method has been known and used for years. It
consists in reducing functional equations to differential equations (cf. e.g.
Aczél [3]). Its principles had been explained already by N. H. Abel [2], whose
reasoning has recently been given a new, precise form by H. Kiesewetter [1].
This method, although very general, has a serious defect: it yields only diffe-
rentiable (often even several times differentiable) solutions of the equation
considered. I. Fenyd [1] tries to overcome this dlfflculty The main idea of
his interesting paper can be described as follows.

The original functional equation is considered as an equation for dis-
tributions. As is well known, distributions always have derivatives of all orders.
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Thus the original equation can be reduced without difficulty to a differential
equation for distributions. This is solved and afterwards it can be proved that
the resulting distributions are functions.

Thist last step requires, however, some integrability assumptions. Now,
there are known theorems regarding the differentiability of integrable solutions
of certain functional equations (e.g. Kac [1], Aczél [22], [19]). Nevertheless
the method of I. Feny6 is more general and, moreover, it may be regarded
as a general method of solving distributional equations.

Finally, let us also mention that I. Carstoiu [I] has remarked that in-
tegral transforms can be applied to solving functional equations and A. Rényi
[1} gave a method of reducing functional equations to integral equations.

Nonetheless the situation in the theory of functional equations is still
far from that we observe in the theory of differential equations. But also
the variety of problems connected with functional equations is much greater.

4. The Cauchy equations

Undoubtly the most widely known functional equation is the Cauchy
equationt

(n e(x+y)=9(x)+9(»).

This equation finds applications almost in every branch of mathematics. It
plays an important part in the mechanics (Darboux [1], Schimmack {1]) and
in the projective geometry (Darboux [2]). A. Cauchy [1] proved that the ge-
neral continuous solution of equation (1) is given by formula (9). In ihe above
theorem the condition of the continuity of ¢ can be considerably weakened
(Sierpifiski [2], Kac [1], Alexiewicz-Orlicz [1], Gherméinescu [10], Kuczma [17]).
The most general result in this direction (Ostrowski [1], Kestelman [1]) is to
the effect that (9) is the only solution of equation (1) which is bounded from
one side on a set of a positive measure. The existence of discontinuous solu-
tions of equation (1) was proved (with a use of the axiom of choice) by
G. Hamel [1].

The case where equation (1) is satisfied not for all x, y has been in-
vestigated by J. Aczél [17] and S. Hartman [1]. The latter considered (1) in
connection with the following problem of P. Erdds. Suppose that a function
¢ (x) satisfies (1) for almost all pairs (x, y) of real numbers, is it true that
@ (x) is then equal almost everywhere to a function which satisfies (1) for all
x, y? This problem remains still unsolved, but S. Hartman proved that if
o (x) satisfies (1) for every x, y belonging to a linear set whose complement
has measure zero, then ¢ (x) satisfies (1) for all x and y.

The Cauchy equation is also connected with the so called difference
property. A function class Q is said to have the difference property (after de
Bruijn [1]), when every function f such that f(x+h)—f(x) €Q for each % can
be represented as a sum f=g- ¢, where g €Q and ¢ satisfies (1). For nume-
rous classes of functions the difference property has been proved by N. G.
de Bruijn [1}, [2], J. H. B. Kemperman [1] and F. W. Carroll [1].

4 Cauchy [1]. Before Cauchy equation (1) was trcated by A. M. Legendre (1791) and
" C. F. Gauss (1809).
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Concerning the Cauchy equation we would like to mention also the fol-
lowing problem?®. Is every solution ¢ (x) of equation (1) such that ¢ (l)=i2 ¢ (%)
X X

for all x40 necessarily of form (9)?
Related equations

(16) P (x+y)=0(x) 9 (»),
(17 o(xy) =e(x)+o(y),
(18) e(xy) =o(X)9(»),

are also called Cauchy equations. They can be easily reduced to equation (1).
Their general measurable solutions are®

(16") p(x)=e", (=0,
(17" e(x)=clog |x|, 9(x)=0,
(18" o (X)=[x°, o) =|x|"sgnx, ¢x)=1, ¢ (x)=0,

respectively. In the real domain ¢ (x)=Xx is the only nontrivial (¢ (x)#0) func-
tion that satisfies simultaneously equations (1) and (18) (Mineur [1]). In the

complex domain o (x) =x (x conjugate) is the other nontrivial solution of (1)
and (18) (Noether [1]).

The Cauchy equations find applications in the mathematics of finances
(Aczél [5]), in the probabili.y theory (Gauss and Poisson distributions; cf.
Csaszar [1]) and in many other topics. In the case where the arguments and/
or the values of the funcion ¢ lie in abstract sets equation (18) plays an
important part in algebra as the equation of isomorphisms, homomorphisms
etc. (cf. also §11; some generalizations are to be found also in Aczél [18], [217).

The Jensen equation (8) (Jensen [1]) has many properties analogous to
those of equation (1). Its general solution bounded from one side on a set
of a positive measure is given by (10). J. Aczél and 1. Fenyd [1] have ap-
plied equation (8) to define the centre of gravity of fields of forces. Further
applications of equation (8) are to be found in the papers Aczél [5], Bajrak-
tarevi¢ [2], [6].

5. Generalizations

Equation (11) may be regarded as a natural generalization of equation
(1). It has been dealt with by several authors (Montel [1], Alt [1], Dunford-
Hille [1], Thielman [1], Kuwagaki [1], Aczél [9], [13], [17] and others).
J. Acz€l has proved that equation (11) has a continuous and strictly monotonic
solution if and only if the function F(u,v) is continuous and strictly monotonic
with respect to each variable and fulfils the condition

F{F(u,v), wl=Flu, F(v, w)].

(In other words, a necessary and sufficient condition that equation (11) possess
in (—oo, +o00) a non-constant continuous solution taking values from an interval

5 oﬁ communication by Professor I. Halp:rin. (Note added in proofs: We have
been informed that this problem has recently been solved in the positive by W. B. Jurkat
and independently by S. Kurepa [14], [15]).

6 @ (x)=0 is the only solution of equation (17) if we admit also x=0.
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(a, b) is that the interval (a, b) form a continuous group with respect to the
operation uov=F(u,v)). If equation (11) has a continuous and strictly monotonic
solution ¢y(x), then the function

@ (%) = @ (¢X)
is its most general solution bounded from one side on a set of a positive
measure.

Similar facts can also be proved for equation (12), which may be regar-
ded as a generalization of the Jensen equation (Aczél [9], [15]). A necessary
and sufficiet condition of the existence of a continuous and strictly monotonic
solution o, (x) of equation (12) is that the function F(u, v) be continuous and
strictly monotonic with respect to each variable and fulfil the condition

F[F(u, v), w]=F[F(u, w), F(w,v)].

The function ¢ (x)=¢,(ax+b) is then the most general solution of equation (12)
bounded from one side on a set of a positive measure.

Equation (12) as well as the equation

¢ (x—y)=F[o(x), o (y)]
(Aczél [13]) can easily be reduced to equation (11).

Equation (11) is often called an addition formula. Depending on the form
of the function F(u, v) we speak about a polynomial, rational, algebraic etc.
addition formula. Linear functions and linear functions of the exponential
function are the only functions with a polynomial additivity. The functions

Ax+B Ae* + B
Cx+D Cet®+ D

are characterized by a rational additivity. Lastly, any analytic function with an
algebraic addition formula is a rational function of x, or a rational function
of €%, or a doubly periodic function (a rational function of the Weierstrassian
function p) (Aczél [19]).

Still more general equation (13), which contains equations (I1) and (12)
as particular cases, is studied in J. Aczél’s monograph [19]. The particular
equation

(19) plax+by+c)=Agpx)+Bo(y)+C (@#0, b#0, a+ b#0)

(Aczél [9], [15], Marcus [1], Dardczy [1]) possesses measurable and non-constant
solutions if and only if 4=a and B=5. The general measurable solution has
then the form ¢ (x)=px+q, where the constants p and ¢ depend on a, b, ¢
and C. On the other hand, a non-measurable solution of equation (19) may
exist also if az=A or b#B. Z. Darbczy [1] has proved that if the equation

plax+by)=A¢(x)+Bo(y)

has a non-constant solution and one of the numbers a and A is rational, then
necessarily = A (and analogously for » and B). But if one of the numbers a
and A is algebraic, then the other must also be algebraic and it must be a
root of the same minimal polynomial. In this case a non-constant solution (of
course non-measurable) can actually exist though a and 4 are not equal. This
surprising result shows, on one hand, once more the enormous difference
between functional and differential equations, and on the other hand the dif-
ficulty that must be overcome when one tries to deduce some facts about the
-structure of the family of solutions of a functional equation from its outer form.

¢ (x)=
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The equation
(20) ¢ Lf (x, M= Flo(x), 2 (M],

which contains all the equations discussed in the present section, is treated by
J. Aczél [15] (cf. also Mineur [1}). The equation

(P[f(xl’ L] Xp)]=(P(X1)+ T +(P(xp)
can be reduced (under suitable conditions) to the equation

elf (Y= () +9(»)

(Aczél-Kiesewetter [1]), which is a particular case of equation (20). Some
more general functional equations were studied by H. Kiesewetter [2].

6. Examples of ordinary functional equations

The system of functional equations

(21) © (_x +y) —_ (p(x)+ {[‘-IJ (")]2——[<P (x)]z} (P(y) q) (X+y) - \'P(x)ﬂ}_)'

1—o (x) () I—o(x) o(»

occurs in the optics and in the probability theory (Brownian motions). System
(21) was siudied by several authors (G. Stokes 1860, J. Stirling 1914, R. M.
Redheffer [1], J. Mycielski-S. Paszkowski [1]) under the supposition of
the measurability or boundedness of the functions ¢ and ¢. J. Aczél [17] gives
the general solution of system (21) bounded from one side on a set of a po-
sitive measure, making use of the theory of equation (11), to which system
(21) can be reduced.

The equation
y .

(22) ? (57 = Ve (e ),
which is a particular case of equation (12), was used by N. I. Lobadevski [1]
to deduce the formula of the parallelism angle. The general measurable solu-
tion of equation (22) is ¢ (x)=ae*/*.

A generalization of equation (22) to matrix-valued functions has been dealt
with by O. E. Gheorghiu and B. Crstici [1].

Similarly the equations ,
(23) 2 (@) +o(y)=0(y—y1—xF /1—p?),
(24) 2 () + o () =olxy+)xP—1)»—1),

appear in the non-euclidean geometry (in the problem of determining the
distance of two points; cf. Aczél-Varga [1], Aczél [15]). The general mea-
surable solutions of equations (23) and (24) considered in suitably restricted
sets? are the functions

p(x)=k arccosx and ¢(x)=k arccosh x,

respectively. Concerning (23), (24) and related equations cf. Aczél [15], [19],
Aczél-Varga [1], Gherminescu [14], Kiesewetter [3], Golab-Losonczi [1], [2].

E The only function that satisfies (23) for all x, y & [—1,1]1 is ¢ (x)=0.
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The problem of an axiomatic introduction of the multiplication of vec-
tors leads to the equation (Aczél [8], [15])

(25) ¢ (xX+y)+ox-—y)=20(x) cosy,
which may be easily reduced to the equation

1
(26) 7 () e (=4 o (x+ 7).

Equation (26) was treated by S. Kaczmarz [1], who gave its general measu-
rable solution, however, using strong means of the theory of functions of a
real variable. J. Aczél [8], [15] finds the general measurable solution ¢ (x)=
=¢; €COS X+ ¢ sin x of equation (25) in a quite elementary way. Similar equation

ex+NF+e(x—N—20(x)=29x) (¥
has been dealt with by J. Aczél and E. Vincze [1].
The equation

@7) Ale()=0, xE(—ow,+w), hE(0,+),
where the difference operator A’; is defined inductively:

(28)  ALfE)=f+B)—f(x), AT F)=ALARF), k=1,2,3,...

characterizes the polynomials of degree < n among measurable functions
(Anghelutd [1], [2]; cf. also Kurepa [11], Gherminescu [3], [7]). The more

general equation
n+l

ZCicp(a,-x—l—biy)zo
i=0

was used by N. Ghirzoiasiu [1] in order to characterize conics.
Similarly, the equation (Ionescu [!], Stamate [2])

’ ¢ (%) o x+h @ (x+nh)
o(x+h ox+2h o(x+(m+1)h) B
(;;(x+nh) o(x+@n+1)h).-- o (x+2nh) ‘

characterizes the exponential polynomials of order<n among, say, continuous
functions. (In this connection cf. also Radé [4]).

In the information theory one meets the equation

(pl[ > 2 piako(—log: p; qk):l‘(P'l [ > po (_Ingpj):l + ml[ > a4k 0 (—log, qk)],
k=1

i=1k=1 i=1

n m
(- Za-1)
j=1 k=1

This and related equations have recently been dealt with by J. Aczél, Z. Da-
roczy, M. Bajraktarevi¢, T. W. Chaundy and J. B. McLeod in connection with
some problems in the theory of means, information theory (a characterization
of entropies) and statistical thermodynamics (Aczél-Daréczy (1], [2], Daroczy
- [3], Bajraktarevi¢ [10], Chaundy-McLeod [2]).
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A study of two operations

. i -
x+y:%x—};, X+ty=x+y—xy,

defined for real numbers, leads to the equation

@(X)+<P(y)~<P(X)<P(y)=<P( Xy )

1+ xy

which was treated by J. Aczél [16]. A generalization to matrix-valued fun-
ctions was solved by Q. E. Gheorghiu [6]. Operations defined for real numbers
were studied from a more general point of view by J. Aczél [1] (this problem
leads to equation (58)).

We shall mention here also the equation
(29) (=P ex)+gx+r(y), x,y#0,

solved under differentiability conditions by S. Golab and S. Lojasiewicz [1] and
in an elementary way by J. Aczél [17] (cf. also Vincze [6]). Equation (29),
which occurred in the paper by Golab and Lojasiewicz in connection with a
theorem concerning the value ® in the mean-value theorem, is a genera-
lization of a number of equations related to the theory of means, probability,
etc. Its general solution bounded on a set of a positive measure are the
functions

p(x)=alog |x[+bx+c,  (x)=axlog|x|+bx+c,
p(x)=alx!+bx+ec, ¢ (x)=a|x|9sgnx +bx+ c.

The equation
(3) elx+yoel=e(x) ()

is much more difficult than other equations discussed in the present section,
as it has a positive implication index. S. Golab and A. Schinzel [1] have
found continuous solutions of equation [3] and exhibited some discontinuous
(and non-measurable) ones, but the general solution of (3) is not known.
Measurable solutions of equation (3) have recently been investigated by C. Gh.
Popa [1], but the general measurable solution of (3) is not known either.
A similar, more general equation (related to some problems in the theory of
geometric objects)

o) =@ [yot ([ ]]

s (x) x™

where s(x)=1 or s(x)=sgn x, has been solved by S. Gotab [3], [4] under the
condition of a differentiability of ¢ (x).

7. Equations of the trigonometric functions

One of the important applications of functional equations is a functional
characterization of various functions. The Weierstrassian functions p and o,
Riemann’s ¢ function, Euler’s I' function, Lebesgue’s singular function, Gauss’
arithmetico-geometrical mean, cyclic functions, theta functions, polynomials,
rational, exponential and logarithmic functions, and many others can be cha-
. racterized by functional equations (Baghi-Chaterjee [1], Gherménescu [17], [22],
Siegel [1], Picard [1], Artin [1], Anastassiadis [7], Schmidt [1], Sierpinski [1],
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Mohr [1], Myrberg [1], Schmidt [3], Maier-Kritzel [I], Anghelutd [1], [2],
Ghermdnescu [3], [7], Kurepa [11], Kuczma [21], Herman [1], Kuczma [24],
[19]; cf. also §§ 18, 19 below). But probably the most extensively studied
problem of this sort is that of a functional characterization of the trigonometric
functions.

One of the oldest functional equations is equation (2). It was studied by
J. d’Alembert and S. D. Poisson under the supposition of the analyticity of
the function ¢(x). A. Cauchy [1] found the general continuous solution of
equation (2):
(30) @ (x)=cos ax, . p(x)=coshax, ¢ (x)=0.

Equation (2) finds an application in the problem of the composition of forces
(or, in a mathematical formulation, the addition of vec:ors), which is perhaps
the oldest problem solved with the aid of func ional equations. Equation (2)
appears also in non-euclidean mechanics and geometry (Schimmack [1], Picard
[1], Lalan [1], Straszewicz [1], Aczél [5], Maier [1]). O. E. Gheorghiu [3], [5]
considered some generalizations of (2) to matrix-valued functions. Equation (14),
which is a generalization of equation (2), is connected with the theory of ho-
mology groups. J. Aczél [9], [15] describes several methods of solving equa-
tion (14).

Since functions (30) are the continuous solutions of equation (2), the
latter as well as the equation

¢ (x+y) o (x—y)=[e )P—[e VI,
whose general continuous solution is given by
¢ (x)=ax, g¢(x)=csinax, o¢(x)=c sinhax

(Vietoris [1]), can be used to characterize the trigonometric and hyperbolic
functions.

But the most frequent characterization of the trigonometric functions is
that by the system of equations

1) [<p(x+y)=<p(x) 2 () —4 () ¥ (),

b+ =@ e+ ().

Th. Anghelutd [3] solved system (31) under the assumption of the continuity
of the functions ¢ and ¢. P. Montel [1] studied the more general system

[<P(x+y)=G['<P (), $(x) (s O],
b+ =Hle(x), b(x), 9(»), (W],

(also under continuity conditions). M. Ghermaénescu [4] proved that the general
real measurable solution of system (31) is given by

¢ (X)=e" cos bx, {(x)=e™ sinbx,

where a, b are arbitrary constants. He also proved that the general real, line-
arly measurable solution of the system of equations®

2 {x(x, 3 (1) =9 (9 8 0)—4 () ¥ ),
A6 ) YN =4 ) ¢ () +e () YO,

. 8 Because of the function A (x, y), the equations in systems (32) and (33) are in fact
partial functional equations.
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is given by

o ()= A (x)e™ cosbx, §(x)=A(x)e™ sinbx. A(x, y):f%"()y),
X+y

where A4(x) is an arbitrary measurable function and a, b are arbitrary constants.
The similar system

[l(x, Vo) =) o)+ kb (x) (),
A Y =4 (x) e (M) +e(x) (1) -—cd(x) $(»),

was dealt with by O. E. Gheorghiu-V. Mioc-B. Crstici [1].
The equation

(34) T(x ) -

(33)

T+ 0)
l—t(x) ()

may be reduced to system (32). The general measurable solution of equation
(34) is v (x)=tan bx.

All the real solutions of equations (31) have been determined by L. Vie-
toris [1], all the complex solutions of equations (31), (35) and of some more
general equations have been found by E. Vincze [5], [6]. In the complex
domain the continuous solutions of the system consisting of equations (31) and

[ COP+ [ PE=[e ()P, e(x+y)=<c(x) (), e(x)#0,

have been given by J. Aczél [17]. O. Hajek [1] found the solutions holomor-
phic in a neighbourhood of the origin to the equation

ex+y)=ao(x) e (¥ +bd(x) v (»)
as well as to the equation
e(x+y)=ad(x) e(N+be(x)¢(¥).
The system of equation
[cp(x+y)=<P(X) eMN+9 () (),
bx+»)=9(x) 2N+ ) v (»),
and (35) together with
e )P—[y ()P =[X)P, e(x+y)=c(x)e(y), e(x)#0,

(which characterize the hyperbolic functions) have also been treated by nume-
rous authors (e.g. Anghelutd [3], Vietoris [1], Aczél [17]; regarding the ample
bibliography of functional equations of the trigonometric and related functions
cf. Aczél [19], Vincze [3], [5]).

H. E. Vaughan {1] considers the single equation (cf. also Vincze [6])

(36) Px—n) =0 () ¢ (N +¢(x) b ().

He proves that O0<o(@)<1. If ¢(0)=0, then ¢(x)=0 and ¢(x)=0. If
0<9(0)=c<1, then equation (36) possesses exactly two solutions:

(35)

e(X)=c, Y(X)=)ec—c* and oX)=c, Y(X)=—)c—c?
Lastly, if ¢(0)=1 and o(x) or ¢ (x) is continuous at least at one point, then

¢ (xX)=cosax, ¢(x)=sinax.



16 Marek Kuczma

In particular, if functions ¢ (x) and 4 (x) satisfy equation (36) and llmwh) =1,
n—0

then ¢ (¥)=cosx, ¢(x)=sinx. But in the case where ¢ (0)=1 equation (36)

has also totally discontinuous solutions.

A number of analogous equations in abstract spaces (Hilbert spaces,
Banach spaces etc.) have been treated by S. Kurepa [2], [3], [5], [6], [7], {81,
[91, [10], [12], [13], [14], [15], [16], D. Z. Dokovi¢ [5], G. Maltese [1], F
Vajzovi¢ [1], M. Kuczma [17].

8. Ordinary functional equations with several unknown functions

One of the striking features of functional equations is the fact that,
contrary to differential equations, a single equation can determine more than
one function (e.g. equation (36)). Here first of all the Pexider equations
(Pexider {1])

37 «(x+ )=+ (),
(38) a(x+y)=B(x) v (),
(39) 2 (xp) =R () +v(»),
(40) x(xy)=Bx) ¥ (),

must be mentioned. Equations (37)—(40) are an immediate generalization of
the Cauchy equations, to which they can be easily reduced. The general solu-
tions of the Pexider equations are of the form

(37), (39) a(X)=9X)+a+b, BX)=9(Xx)+a v@)=¢(x)+b,
(387, (40" a (x) =ab ¢ (x), B(x)=ae(x), v {(xX)="b o (x),

where a, b are arbitrary constants and ¢ (x) is an arbitrary solution of the
corresponding Cauchy equation (1), (16), (17), (18), (Vincze [6], [8]). Taking
as ¢ (x) in formulae (37')-—(40") measurable solutions of the corresponding
Cauchy equation (formulae (9), (16"), (17), (18’)) one can obtain the general
measurable solution of equations (37)—(40).

Concerning further equations of this sort the reader is referred to Aczél
(191, [26], Hossza [11], Stamate [3], Vincze [6], [8].

E. Vincze [3], [6], considered the equation
(4D) e(x+P)=a(x) BN +yx)3(y)

for complex-valued functions ¢, o, B, v, 3 of a complex variable. In (41) the
variables are supposed to range over an additive group of complex numbers.
Equation (41) contains the equations of the trigonometric and hyperbohc func-
tions as well as the Pexider equations as particular cases.

The general solution of the equation
(42 ¢(x+y)=a(x)+B(N+Y(x) (),

~ which contains that considered by I. Stamate [1] as a particular case, was
given by Z. Dardczy [2], E. Vincze [6].
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The still more general equation
(43) PxIN= S U® w0
i=1 ’

containing both (41) and (42), was solved under differentiability conditions by
T. Levi-Civita {1} and via distribution theory by I. Fenyd [1]. The family of
continuous functions ¢ which satisfy equation (43) together with continuous
functions ¢;, y; coincides with the family of solutions of linear differential
equations of order n with constant coeficients (Radé [4]).

An akin system of functional equations

(44) axtN= S cpu®a), i=1..., n
Jo k=1

has recently been solved under differentiability conditions by W. Eichhorn [1].
System (44) may be regarded as a generalization of systems (31) and (35) as
well as of addition formulae of cyclic and circular functions (Schmidt [2], [3]).

In the case of equations (37)—(42), in order to obtain the general so-
lution, the authors reduce the equation in question to a suitable Cauchy
equation, whose general solution is well known (cf. §4). Then, in order to
obtain a solution of a rather simple form, it is enough to postulate e.g. the
measurability of the sought functions. But, since the Cauchy equations have
non-measurable solutions, the same is valid for equations (37)—(42) as well
as for the more general equation (43). To construct such a non-measurable
solution, one must use the axiom of choice.

The situation is different in the case of the equation
(45) S 4 () =0,
i=1

which is somewhat similar to equation (43), but is of order zero, whereas
(43) has order 1. Equation (45) can be solved in a quite elementary way
without any suppositions whatever about the sought functions ¢;, x; (Aczél [20]).

The more general equation
S 4i () i () - 4 () =0
i=1

has been solved without any suppositions about the sought functions ¢} by L.
Losonczi [1].

Some particular cases of equation (45) was previously dealt with by
D. S. Mitrinovi¢ 1], J. Aczél [17], O. E. Gheorghiu {4] and T. Popoviciu [1].

F. Radé [1] introduced the equation
0@ ox+h) o(x+2h)
Y bx+h)  Yx+2h)|=0
r®  xx+Eh) x(x+2h)

as a condition for the linear dependence of three functions. A more general
equation was dealt with by T. Popoviciu [1] (cf. also Kiesewetter [2], Vincze [6]).

2 Publikacije Elektrotehnitkog fakulteta
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One is led to functional equations with several unknown functions? also
by the problem of a representation of functions of several variables as
superpositions of functions of a smaller number of variables. In this connec-
tion we mention here only the excellent recent papers by A. N. Kolmogorov
[2], [3], [4] and V. 1. Arnold [1}, [2], [3], [4], [5]. Further refernces may be
found in the monograph Aczél [19].

9. Matrix equations

Many of the partial functional equations may be wri‘ten in a simpler form
with a use of a vector or matrix notation. An important example of such an
equation (and rather a system of equations) is

(46) DX -Y)=D(X) D(Y),

where X, Y are nxn matrices, ® is an m x m matrix-function and the dot
denotes the multiplication of matrices.

Equation (46) plays an important part in the invariants theory (Perron
[1]), axiomatic definition of a determinant (Bergman [1], Géaspar [1], Kurepa
[17]) and in the theory of geometric objects (Aczél-Gotgb [1], Kucharzewski-
Kuczma [5]). It was solved for various values of m and n, under very strong
regularity suppositions regarding the function ®, by O. Perron [1], P. Reisch
[1] and I. Schur [1], [2], [3]. Measurable solutions of equation (46) as well as
of related equations

(47 DX - Y)=D(X)+D(Y),
(48) DX+ Y)=D(X) - ®(Y),
(49) DX+ Y)=0(X)+d(Y),

have recently been given by A. Kuwagaki [2] (cf. also Gheorghiu [2]). S. Kurepa
[4] has solved equations (46)—(49) for arbitrary m, n, without any regularity
suppositions. Instead, he assumes that @ fulfils the invariance condition

O (U-1-X-U)y=0 (X)

for all nxn matrices X and for all matrices U belonging to a certain class
(e.g. the class of unitary, orthogonal or non-singular matrices), which causes
that he has not obtained all the solutions. In fact S. Kurepa [4] has studied
the more general equations

(50) o - Y)=F[‘P'(X)-‘P'(Y), 0 X)+0 ()],
51 DX+ Y)=F[¥(X)- V() 8(X)+0(),
and has proved that (under suitable invariance conditions) a function @ (X)

satisfying equation (50) resp. (51) depends only on the determinant resp. trace
of the matrix X. ,
All the invertible solutions of equation (46) (m=n) have been found by
J. Dicudonné [1] and A. Zajtz [2]. The case where n>m has also been treated
by A. Zajtz, who reduced it to the case m=1.
Without any suppositions whatever equation (46) has been solved in the
case m=1, n=2 by S. Golab [2]. His result reads as follows:

9 These are ordinary (of a positive implication index) as well as partial functional
equations.
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The general solution of equation (46) (m=1, n=2) is of the form
D (X) = o (det X),

where o (u) is an arbitrary scalar-valued function of a single variable satisfying
equation (18).

S. Golgb’s theorem has been proved in the case m=1, #n arbiirary, by
M. Kucharzewski [1] and then also by M. Hosszu [7]. A. Zajtz [1] has proved
the following, still more general theorem:

If a scalar valued function © (X) of a matrix argument satisfies the equation
O (X-Y)=H[®(X), (V)]
where H (u, vy=H (v, u) is a symmetric function, then
O (X)=oe(det X),
where o (u) is a scalar-valued function of a scalar argument satisfying the equation

o (xy)=H[p(x), o (»)]

A. Zajtz has obtained this result as a consequence of a more general
one saying that a function © (X) (of a matrix argument and taking values in
an arbitrary set) such that

DX Y-Z)=0(X-Z-Y)

for arbitrary nxn matrices X, Y, Z, depends only on the determinant of X.

In the case m=n=2 cquation (46) has been solved without any supposi-
tions whatever by M. Kucharzewski and M. Kuczma [3]. The solution is given by

o (det X) 0

|
®X) I 0 - o(detX)

H.C.xcﬂl, ® (X) = A (det X),
where ¢ (1) is an arbitrary function (scalar-valued and of a scalar argument)
satisfying equation (18), C is an arbitrary non-singular 2 x 2 matrix, and A («)
is a matrix function of a scalar argument satisfying the equation®

(52) AG)=A ) A).

The general solution or general measurable solution of equation (52) for 2 x2
matrices A has been given by O. E. Gheorghiu [1], A. Balogh [1], M. Ku-
charzewski-M. Kuczma [1], (cf. also Ghermdnescu [6]). For 3 x 3 matrices A
equation (52) has been completely. solved by M. Kuczma and A. Zajtz [1].

In the theory of geometric objects an imporiant part is played by the
system consisting of equation (46) and the equation

(53) V(X-Y)=0(X) - V(Y)+ V¥ (X),

where ¥ is an m x 1 matrix-function. For m=1, n arbitrary the system of
equations (46), (53) has been solved by M. Kuczma [4], and for m=n=2 by
M. Kucharzewski and M. Kuczma [4]. A similar system has recently been
dealt with by J. Aczél [21] in connection with an algebraic problem.

Let us note, however, that the problem of finding a/l solutions of equation
(46) and of system (46), (53), without any suppositions whatever regarding the
Sfunctions ©, ¥, for arbitrary m and n, still remains unsolved.

) 1o Equation (52) is thus an ordinary functional equation (and rather a system of or-
dinary functional equations).

2
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10. The equation of translation

Functional equations are one of the main tools in the theory of geometric
objects (Aczél-Golab [1], Kucharzewski-Kuczma [5]). One of the principal pro-
blems in that theory, the classification problem, leads to the functional equation

(54) O [Q; To] =0 {Q[Q; T1); T}

Here Q denotes a quantity (or a system of quantities) called the components
of a geometric object and playing in (54) the r6le of variables. T, and T, are
systems of parameters characterizing transformations .7 ; and .7, of the coordi-
nates and T3 is the system of parameters characterizing the superposition of
the transformations .7, and .7 ,. The parameters T, and T, also play the rdle
of variables, while 73 are expressed in terms of 7; and T,. Equation (54) in
quite general case has not yet been solved.

Also further problems of the theory of geometric objects (equivalence of
objects, determination of concomitants and algebras of objects) can be reduced
to that of solving a suitable functional equation. Presenting these problems
and results would take too much place. The reader is referred to the book of
Aczé]l and Golgb [1] or to the expository article Kucharzewski-Kuczma [5],
which both contain also an extensive bibliography.

The same equation (54) may have also a namber of further interpretations
and consequently appears also in other domains. As the equation of one-para-
meter translation

(55) ¢ [e (x, u), VI=o (x, u+v)

it was treated, under various conditions, in the papers Aczél [4], Aczél-Kalmar-
Mikusinski [1], PreSi¢ [1], Hosszu [8], [10], [12]. In the case where ¢ and x are
n-dimensional vectors, equation (55) was discussed in the paper Aczél [11].
Also other interpretations of equation (55) are mentioned there: it is satisfied
by the integrals of the differential equation of the stationary motion, as well
as by the generating function of the chain reaction in the homogeneous case.
In the inhomogeneous case one obtains the equation

¢ [<P(x’ s, t)’ t, u]=<P (X, S, u),

which is also contained in the general form (54). For multi-parameter transfor-
mations equation (54) was considered by J. Aczél and M. Hosszlt [1].

In the one-dimensional case the genmeral continuous solution of equation
(55) has the form

(56) P (x, w)=g~* [ (x) +ul,

where g (x) is an arbitrary continuous and strictly increasing function (Aczél-
Kalmar-Mikusisiski [1]). This result has been generalized to the case where
the variables u, v in (55) are in an abelian group or groupoid by S. Presi¢
[1] and M. Hossza [8].

Equation (55) occurs also in the iteration theory. The natural iterates
of a function f(x) are defined by the relations

(57 ST =fx), )= 1S* ()]
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For integral values of u, v the function ¢ (x, u)=f*(x) satisfies equation (55).
So solutions of (55) may be regarded as an extension of the notion of an
iterate to arbitrary real iteration indices. Condition (57) leads then to

gt g (x) + 1=/ (%),
which means that the function g (x) in (56) must satisfy the Abel equation

glf®]=g(x)+1

(cf. § 16). The iteration theory was studied among others by E. Schréder [1],
M. Ward-F. B. Fuller [1], J. Hadamard [1], M. Topfer [1], M. Bajraktarevi¢
[3], S. Lojasiewicz [2], J. Aczé]l [10], M. K. Fort [1], G. Szekeres [1], [2], [3],
I. N. Baker [1], [2], [5], P. Erdos-E. Jabotinsky [1], H. Michel [1], L. Berg
21, [3], A. Lundberg [1], B. Muckenhoupt [1], M. Kuczma [18], [20], M.
A. McKiernan [3]. Cf. also §17.

11. Equations of algebraic structures

In the algebra the problem of determining the most general operations
fulfilling certain conditions leads to a number of important functional equations:

(58) ¢lex ¥), 2l=9 [x, (¥, 2)] (associativity),

(59) {(P b2 (. 9l=2le (), (x, 2)] (autodistributivity),
ele(x ¥, zl=¢[e(x, 2), o (¥, 2)]

(60) o lp(x, ), ¢ (u, V] =ele(x, u), o(y, v)] (bisymmetry),

(61) ¢ (X, y) =9 [CP (X, u)’ Y (y, u)] ’ (transitivity),

etc. These equations as well as various their generalizations have been dealt
with by many authors, starting with N. H. Abel [1], then in a series of papers
of A. R. Schweitzer, L. Brouwer, T. Farago, J. G. Mikusinski, S. Golgb,
B. Knaster, C. Ryll-Nardzewski, A. Kuwagaki, A. Sade, J. Aczél, and M.
Hosszi, to name but a few. Among more recent papers we mention here Maier
[1], Stein [1], Belousov [1], Radé [2], [3], Aczél [1], [17], Aczél-Belousov-
Hosszu [1], Hosszu [1], [2], [3], [4], [6], [12], Ghermédnescu [20], Sade [1], [2]. A
detailed discussion of those results would be impossible. The reader is referred
to the monograph Aczél [19], where also a more accurate bibliography can be
found. A treatment of equations of this kind constitutes a great part of J.
Aczél’s book. Here, as an example, we shall quote only a result of M. Hosszu [2].

A continuous function ¢ (x, y), strictly monotonic with respect to y, satisfies
equation (61) if and only if there exists a continuous and strictly monotonic

function f(z) such that
¢ (X, »)=fSD)—FM]
The solutions of equations (58)—(60) are given (under suitable assump-

tions) by:
¢ (x5, ) =SS+ ()]

for the equation of associativity and

¢ (6 )=f1(1—9q) f()+q9f ()]

“for the equations of bisymmetry and autodistributivity.



22 Marek Kuczma

Many of the papers mentioned above discuss generalizations of equa-
tions (58)—(61) in which several unknown funcitions occur. E.g. J. Aczél, V.
D. Belousov and M. Hosszt [1] treat the equations

¢la(x, »), 2] =b[x, B(y, 2)]
(a generalization of (58)) and

(P[OC(.X, y)s B(u' v)]:"!)[Y(xa u), S(y’ V)]

(a generalizaiion of (60)), of which the first contains 4 and the second 6
unknown functions.

The most general pair of binary operations ¢ (x, y), ¢ (x,¥), of which
the first is associative (i.e. satisfies (58)) and the second is distributive with
respect to the first:

‘JJ [CP (x’ y), Z] =9 [4’ (x’ Z)’ ‘I" (yr Z)]

(so @(x,y) and ¢(x,y) generalize the ordinary addition and multiplication)
is given by

PEN=TT @+ D) Y= (x) g

provided ¢ (x, y) is continuous and strictly increasing and ¢ (x, y) is bounded
from below.

These and similar equations occur in the axiomatic foundations of the
probability theory (Aczél [12], [23]). The equation of associativity has been used
by B. Schweizer and A. Sklar [1] in their investigations of the triangle ine-
qualities in statistical metric spaces.

The functional equation of associativity for n-place functions has been
investigated by E. Vincze [1], [4], M. Hosszu {15].

12. Further examples of partial functional equations

Much simpler than the equations discussed in the preceding section is
the Sinzow equation (Sinzow [1])

(62) cp(x,y)+cp(y, Z)S(p(x’Z),

whose general solution is given by

o (x, ) =f (N)—f (%),

where f(x) is an arbitrary function. Equation (62) has been studied by several
authors (in particular, S. Gotgb [1] and P. Rossier [1] have applied the Sinzow
equation in the non-euclidean geometry).

The equation '
s, w)y=11(s, ) - 11 (¢, u),

where II is an n x» matrix, may be regarded as a generalization of equation
(62). This and similar equations find applications in the probability theory
(Fréchet [1], Aczél [7], [10], [15], [L7]).

. Functional equations occur also in the theory of means (cf. e.g. Kolmo-
gorov [1], Aczél [14], [17], Aczél-Daré6czy [2], Hossza [4], Bajraktarevié [2],
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[6]1, [10]). E. Rufener [1] applies the theory of quasiarithmetic means to survival
functions. M. Hosszi and E. Vincze [2] apply the theory of means to a problem
from the probability theory. Some problems of the statistical thermodynamics
lead to functional equations (Chaundy-McLeod [1], [2]).

Investigations of invariants also are connected with functional equations
(cf. e.g. Jabotinsky [1], Perron [1], Kurepa [1]). We shall mention here a
theorem from the paper Aczél-Golab-Kuczma-Siwek [1] to the effect that
a homographic invariant of four points of the projective line must be a fun-
ction of the anharmonic ratio of these points. So the anharmonic ratio can
be defined with the aid of the functional equation

1 b +b axg+b +b
@(?ﬁ-, all, ThID, T ):‘D(xl, Xp, Xy, Xg)-

H
cxy+d  exg+d cxg+d cexg+d

R. M. Redheffer {2] considered a function w(x,y) satisfying the diffe-
rential equation
0
=AW 25 ) e, 3)+ () [ x T
and certain related functions v(x,y) and o(x, y). These functions satisfy the
system of functional equations
B(x)—p(yz)

=exp[—v(xy)+v(x,2)+v(», 2],
B (x,)
l*lu'(xi y) w(y’ z):exp [ V(x’ y)_"v(x’ Z) —i»v(y, Z)]a

QEEAZOEN _exp [y (x,3) +v (x. 2)—v (3, 2],
®(y,2)

which is connected with a class of problems occurring in the theory of
electromagnetism.

The equation of homogeneous functions
(63) ¢ (tx, 1y) = t* o (x, y)

was solved already by L. Euler 1755 (cf. Aczél [19]). Since then a number
of people have studied various generalizations of equation (63). So e.g. V.
Alaci [1], [2], [3] has considered (under differentiablity conditions) the
equations .

(64) e x, by, bs()2]1=Y (O o (x,,2)
and
elx+d (@), y+da (), z+Us(D=Y @) ¢ (x, y, 2).

Particular cases of equation (64)
(65) o (x,1y,12)=9(x,¥,2), o (1x,19,2) =Y () ¢ (%, y, 2), ¢ (tx, p, 1) =19 (X, Y, 2),

have been dealt with by E. Vincze [2] in connection with an economic problem.
The solution of system (65) is given by

o (x, 9, z):i.yy_t).(i.ﬁ)“,

Xq Xo Z
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were X,, Vg, Zp and o« are constants which must be determined from the
experimental data. Similar, more general equations, have been studied by
J. Aczél [17] and M. Hosszu-E. Vincze [1]. The quite general equation

(P[fl(xlw"axns tls""tp)""’fn(xla” - Xp, fl,...,tp)]
=Flo(, .., %), tiyevns by
has recently been investigated by S. Topa [1].

13. Cyclic equations

There is an important class of functional equations which can be specia-
lized to equations of rank p>2 as well as to those of rank 1. These are
equations of the form e.g. (cf. Mitrinovi¢-Pokovié¢ {11])

n—1
(66) S A4 ¢ (Pix)= B(v),
i=0

where x=(x;, ..., x,) and P is an operator of period n, i.e. P"=P. In the
case p=1 (66) is an equation with an »n-periodic argument of the sort
treated by M. Gherminescu [8], [11] (cf. § 20). In the case 4;(x)=1, B(x)=0,
the most general solution of equation (66) is (cf. Aczél-Ghermianscu-Hosszu [1])

¢ (x)=F(x)—F(Px),

where F(x) is an arbitrary function. Here the values of ¢ may lie in an arbi-
trary module (an additive abelian group) in which the following condition is
fulfilled:

(An) every equation nf=o has a unique solution £.
The case where the iterates P’ of the operator P form a finite group of
order n has been treated by S. B. Presi¢ [4], [5] (cf. also Mitrinovi¢ [8]).

An important case is that of a cyclic operator. The cyclic operator C,
is defined by
CoF(xyy ooy Xp)=F (x5, ..., Xp, X9).

Here F need not depend on all the variables x, ..., x,. E.g. C3F(x;, X5) =
= F(x,, X3). The operator C, is, of course, n-periodic. :
The equation

(67) SCile(x, ..., x)=0, p<n,
i=1

(which may be regarded as a particular case of (66)), where the values of ¢
lie in a module in which condition (4, is fulfilled for every m <n, has been
solved by Aczél-Gherminescu-Hosszu [1]. (More general linear cyclic equations
have been dealt with in Hossz [9]). In the case where n>2p-—1 it is enough
to assume that (_4,) is fulfilled. The solution has then the form

P(Xps oo s X)=F(Xy, ooy Xp )~ F(xa, .. ., X),

where F is an arbitrary function. If we drop the condition (4,), then the
solution of (67) is (Pokovi¢ [6])

OWXgs o X)) =F(xy, oo, X)) —Fxa, .. 0, X,) 46,
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where 0 is an arbitrary solution of the eqration n0=0. The case p<n<2p—1
is much more difficult. If (4,) is fulfilled for m <n, then the solution of
equation (67) is

G os )= Go (s - s %pd)—Go(Kgn o s %)
2p=m/2]
> MG, o Xy Xp—prtts - - s Xp)
k=1
~_Gk (xp—k+1, e Xpy Xy e ey xzp—n—k)]s

where G, are arbitrary functions. In the general case (without _/-conditions)
the solution is not known.

A somewhat more general equation

3

C;71¢i(xl’ c ey xp):0
i=1

I

is solved under the assumption that n>2p—1 in Pokovi¢ [6]. Some particu-
lar cases of this equation have been solved by D. S. Mitrinovi¢ [5], [7] in the
more difficult case where p<n<2p—1.

In the above examples the variables have been only permuted. But one
can also apply some operations of another sort. Such is e.g. the equation
(Mitrinovié-Pokovi¢ [1])

n+1
i—1
(68) Z Cil+l (P(xh Xos ooy Xp—yq, Xp© xn+1)=05
i=1

where x; belong to a semigroup 5 with a unity, o denotes the operation in &
and the values of ¢ lie in a module fulfilling condition (.4 ,+,). Equation (68)
is fulfilled by

(69) (P(xla sty x,,)=g1(x1, Xgs o oo Xpep © xn)—gl(xz’ Xgs oo s Xp© x1)+
[(n+1)/2]
+ Z [g]-(xl,...,X,,“jox,,_ﬁ,l,...,x,,)—
j=2
—8i(Xjqgs ooy Xy X1y o o5 X ® X)),

where g; are arbitrary functions. D. S. Mitrinovi¢ and D. Z. Pokovié conjec-
ture that for odd n function (69) is the general solution of equation (68) (Mitri-
novié-Dokovi¢ [10]). This conjecture has been proved for n=1, 3, 5, 7
(Pokovi¢ [1], [5]). For even n (69) is not the general solution of (68).

Similar equations

m-+n
i-1
2 Criin <Pi(x1+ o Xy Xyt F X)) =0,
i=1
mIEP i
Z Cm-!—'l~f-pcp(xl+ """ T Xps X2t o T Xpppns Xtner+ 0 0 0 +xm+n+p)=0»
i=1

have been solved under the supposition of the continuity of the functions ¢ by
S. Pregi¢-D. Z. Pokovi¢ [1] and D. Z. Pokovi¢ [2], respectively.
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The equation
n
Z @(xitee- FXitk,~1s Xivkgt o0 T Xipn—) =0
i1

(where x,;, ,==x;) is connected with a cyclic matrix (Mitrinovié-Pokovi¢ [8], [9]).
Another example of a cyclic equation is
(70) S [C" @ (X0 Xa, Xg)—Cr ' (1 Xa, X)—Cp @310 X, X3 X)) = 0,
i=1
where the variables x; belong to a set £ endowed with two inner operations o
and \/, with an element e such that x\Ve=e\Vx=¢ and xoce=eo° x=x for
every x< E, and the values of ¢ lie in a module fulfilling (4,). Under these
hypotheses the general solution of equation (70) is given by

(71 P (X10 Xp) = F (x1)— F (xy),

where F is an arbitrary function, provided that n>5. In the case where n=4,
in order to prove that (71) is the general solution of equation (70) one must
assume additionally that the operation \/ is associative, or commutative, or it
has a unity u (cf. Mitrinovi¢-Dokovi¢ [3], [5], [10], where also some gene-
ralizations are considered). It is an open piroblem whether this additional
hypothesis is in fact necessary.

In the theory of cyclic functional equations a rdle is played by the
operator

S;vtt—’l”.’xnf(tl, ] tn~1)Z(~l)n_1f(x1’ Xgs o ooy xn—l)—f(xz’ X35 o0 xn)+

n—1
+ Z (—DF+E f(xy, Xay ooy X+ X1 Xsns - os Xneygs Xn)
K=1

(Mitrinovi¢-Dokovi¢ {2], [4], [7], [10]). D. S. Mitrinovi¢ and D. Z. Pokovié
[4] have proved that the general differentiable solution of the equation

(72) Sy g, oo, 1) =0
is given by

O(Xts ooy X)) =Sp21 T T F (fyy oy b)),
where F(xy, ..., X,_4) Is an arbiirary differentiable function.

For n=2, 3, 4 the above result had previously been proved by S. Ku-
repa [1]. J. Erdos [1] proved that the function

(73) @ (X1, Xp) = S F(t)=F(xy + x9)—F (x)—F (x3)

(with an arbitrary continuous F) is the general continuous solution of the
equation

(79) Sav @ (ty, t) = (X1. X5)—@ (Xg, X3) + @ (X1 + Xg, Xg)— (X1, Xp+ X3) = 0.

He has also proved (cf. Mitrinovié-Pokovi¢ [10] and also Hosszi [13})
that the general solution of equation (74) has the form

© (X1, Xp) = F (%1 + Xp) — F (x1)— F (xp) + G (x1, Xp),
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where F(x) is an arbitrary function and G (xq, x,) is an arbitrary function
satisfying the conditions

G(x3, x3)= —G (X3, X1), G (x1+ Xq, X3) =G (xq, X3) + G (X3, X3)

(the second of the above relations is the Cauchy equation (1), x; being a
parameter). For arbitrary n the problem of determining the general or general
continuous solution of equation (72) is still open.

Equations of the form

(75) @ (X1 1 X5, Xg)+ 9 (g + X3, X))+ @ (Xg+ Xp, Xp) =0,
(76) @ (Xg, X1)— @ (Xa, X3) + @ (X3, X1+ X)—¢ (X1, Xg+ X3) =0,
an @ (X1, X)— ¢ (Xg, X3) + @ (X3, X1+ Xa)—® (X1, X3 + x3) =0,

as well as related equations, were studied by D. Z. Pokovi¢ [3], [4].
D. S. Mitrinovié-D. Z. DPokovi¢ [6] and M. Hosszi [14] (cf. also Gher-
minescu [3]). The general solution of equation (76) ist given by

© (X1, Xp) = F (X1 + X)) — F (x))— F (x2) + 2 G (x;) + G (xp),

where F(x) is an arbitrary function and G (x) is an arbitrary solution of the
Cauchy equation (1). Equation (75) can also be reduced to the Cauchy equa-
tion. The general continuous solution of the more general equation

@ (X1 0 Xg, Xg)+ ¢ (Xg © X3, X))+ @ (X3 ° X1, X5) =0,

where x o y=g-'{g (x)+g(»)] (g, an arbitrary continuous and strictly mono-
tonic function) is an associative operation, is given by

@ (X1, Xp) =[g (x1) + 2 g (x2)] F(g(x1)+g(x3),

where F(x) is an arbitrary continuous function (Pokovi¢ [3]).

It is an interesting fact that, although equations (74), (76) and (77) are
apparently quite similar, the general solution of (77) is of the form (73)
(with an arbitrary F), while the general solutions of (74) and (76) contain
solutions of the Cauchy equation (cf. Mitrinovi¢-Dokovié [6]).

All the equations discussed in the present section have been linear. An
example of a non-linear cyclic equation is provided by

(78) @ (X1, X)) (X3, X +¢ (xl{ X3) ¢ (x4, X3) + @ (1, Xg) ¢ (X2, X3)=0

(equation (78) is cyclic in the variables x,, x;, x,), whose general solution
has the form

181 (x1) &1 (x2) ‘

@ (X1, Xg) =

L g5 (x1) &2 (Xz)‘,

where g,, g, are arbitrary functions (Mitrinovi¢-Presi¢ [1], [2]). More general
equations whose solution is given by

gi(x) ... g1(xy,) !

P, s X)) = |
18 () -+ &n () |

(81, ..., 8. — arbitrary functions) have been exhibited by L. Carlitz [1] (for
n=3) and P. Vasi¢ [1], [2] (arbitrary #). Numerous further gencralizations of



28 Marek Kuczma

equation (78) were considered by D. S. Mitrinovi¢, S. B. Pre§i¢ and P. Vasié
(Mitrinovi¢-Presi¢ [1], Mitrinovi¢-Pre§i¢-Vasié [1], [2]. Mitrinovi¢-Vasié [1], [2],
Vasié [3], [4]).

Equation (78) and its generalizations are related to so called paracyclic
equations introduced by D. S. Mitrinovi¢ [2]. These are equations in which
some groups of variables are permuted independently. Let Q,(x) = Q,(xy, ..., x,) =
=(x, ..., X,), p<n. Equations of the form

2 o(Ci ' Qp (1) Co 7' Qp, (k). -, G Qp (1) =0,

where x;=(Xjy, ..., X;), j=1, ..., k, are called paracyclic equations of the first
kind. Equations

SHe (€ 0y (k) G 0y (i), 0 €70, (1)
i=1

+0(Cr ' Qp, (), C ' Qp (X, Ca' Qp @) F - - F

+9(C Q@ (). Cr ' Qp (k) - Ch O, (E)}=0

are called paracyclic equations of the second kind. Paracyclic equations of the
first and of the second kind have been considered by D. S. Mitrinovi¢ 2]
and [6], respectively, under the assumption that the values of ¢ lie in a module
in which condition .4, is fulfilled for every m. The method developped by him
is applicable also to some other functional equations with several unknown
functions (cf. Mitrinovié [3], [4]).

A number of cyclic functional equations have been discussed also by M.
Gherméanescu (cf. Gherminescu [18], chapter 7). Equations with more invol-
ved cyclic operators have been studied by H. Kiesewetter {2] and W. Maier-
G. Wautzler [1].

Equations of the form
(79 D=1 9 (s ooy Ximg, Xigy o5 X) =0
i=1

occur in the theory of homology groups (cf. Hosszu [9]). In the case n=3
(79) becomes the Sinzow equation (62).

14. The equation of invariant curves

Suppose that we are given a transformation on the plane

(80) X'=f(x, ), y=g(x ¥
and suppose that a curve
y=0¢(x)

is transformed by (80) into itself. Then the function ¢ must satisfy the func-
tional equation

(1) eLf(x, e D=8 (%, 9 (x)),

“which is therefore called the equation of invariant curves.
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Equation (81) is the most general equation of type {l, 1, 1], solved with
respect to ¢ [f] (cf. in particular formula (6) for p=1). It was studied by
several authors as e.g. H. Poincaré, J. Hadamard, S. Lattés, and in recent times
by P. Montel [2] (where also more details and references may be found) and M.
Urabe [3]. All these authors made rather strong regularity suppositions. Recently
D. Brydak has investigated continuous solutions of equation (81) under the as-
sumption that the functions f and g are continuous and strictly monotonic with
respect to each variable. All these investigations, however, have a local character
(the invariant curves are studied in a neighbourhood of a fixed point of trans-
formation (80)).

In the case where the function f(x, y) is invertible with respect to the
second variable, equation (81; can be reduced to the simpler form

(82) ?le(x)] =g x, ¢(x)).

Equation (82) has been studied by M. Kuczma [9] and M. K. Fort [2] under
the hipotheses that the function g (x, y) is defined, continuous and strictly
increasing with respect to each variable in the set
Qia<x<b, x<y<h(x),

and moreover g (a, a)=a, g(b, b)=>b, g(x, x)>x for x E(a, b), g(x, y)>y in
int Q, g(x, h(x))y=h(x) for x € [a, b]. Then every continuous solution of (82)
must be strictly increasing. The consiruction of all continuous solutions of (82)
is described in Kuczma [9]. Not all these solutions are defined in the whole
of [a, b], but there exists a continuous and strictly increasing solution of equa-
tion (82) (in general not unique) defined in the whole [a, b] (Fort [2]). It is
an open problem what requirements would ensure the uniqueness of a solution
of (82). .

Equation (82) has also been dealt with by P. E. Lush [1] under quite
different conditions (involving differentiability of g).

For the still simpler equation

elp()]=gle (0]

the general solution and the general continuous solution have been given by
M. Kuczma [14]. The equation

¢ [e ()] +e (x)=F(x)
has recently been studied by M. Bajraktarevi¢ [11].
By a geometrical problem one is led to the functional equation

(83) o x+e@)]=9 (),

which is a particular case of (81). K. Kuratowski [1] has proved that the only
solutions of equation (83) with the Darboux property are the functions ¢ (x)=const
(cf. also Wagner [1]). The general continuous solution of the more general

equation
¢ [f(x 0 (x))]=9(x)

has been found by D. Brydak [1] under the assumption that the function f (x, y)
is continuous and strictly monotonic with respect to each variable.

Equation (81), as well as most of its particular cases, is fairly difficult.
The general solution is not known even for equation (83) (cf. Wagner [1]).
It would be very interesting to build a complete theory of continuous solutions
of equation (81), which, as for the present, does not exist either.
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15. Type [1, 1, 0]

The situation becomes much simpler when the function f(x, y) in (81)
does not depend on y. Then we obtain the functional equation

(84) o [f (D=8, ¢ (),

which has implication index zero.

Equation (84) (which is much easier than (81)) has been extensively
studied by many authors and its theory is well developped. M. Kuczma [8],
[27] has given its general solution. In the particular case of the equation of
automorphic functions (cf. Ghermdinescu [18])

(85) ¢ [f()]=¢(x)

the general solution has been given also by S. Presi¢ [2] (cf. also Gherménescu
[18], Kuczma [27]).

J. Kordylewski-M. Kuczma [1] and M. Kuczma [5], [7] have studied
equaiion (84) under the following conditions:

() The function f (x) is continuous and strictly increasing in an interval
[a, b], f(@=a, f(B)=b, f(x)>x in (a, b).

(IT) The function g (x, y) is continuous and invertible with respect to y
in a region Q.

(IIT) Q, is a non-degenerated interval and I'y=Q, for x € (a, b), where
Q.={y:(x,y)€Q} is the x-section of the region Q, and T, is the set of
values of the function g (x, y) for y € Q,.

Under hypotheses (I)—(111) equation (84) has an infinity of continuous
solutions in the open interval (a, b). These solutions may be arbitrarily prescribed
on a certain interval.

The value d assumed by a solution of (84) at x=5 must be a root of
the equation d=g (b, d). If the point (b, d) belongs to Q and g (x, y) fulfils in
a neighbourhood of (b, d) a Lipschitz condition

(86) (g (x, y)—g (%, ¥2) | <% | y1— s,
where
(87) 9<1,

then equation (84) has an infinity of solutions which are continuous in (a, b]
and fulfil the condition

(88) ¢ (b)=d.

On the other hand, if instead of (86) and (87) the opposite inequalities hold,
then equation (84) has a unique solution o (x) continuous in (a, b] and fulfilling
(88). This solution can be obtained as the limit of a sequence of successive
approximations. :

J. Kordylewski [2] has obtained similar results in the case where the
function f(x) is decreasing. The continuous dependence of the continuous
solutions of equations (84), (90) and (92) on given functions has been proved
(under suitable assumptions) by J. Kordylewski and M. Kuczma {4]. The
uniqueness of periodic continuous solutions of equation (84) has been proved
by M. Kuczma and K. Szymiczek [1].
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A number of analogous results concerning equation (84) have been obtai-
ned by M. Bajraktarevi¢ [4], [5]. Some analogies existing between equations of
the form (84) and differential equations have been pointed out by C. Popovici
[11, M. Gherminescu [1], [2] and K. L. Cooke [I].

The linear equation

(39 ¢ S ()] =g (x) o (x)+F(x)

has been investigated by J. Kordylewski-M. Kuczma [3], also in the case
where ¢(x) is a complex-valued function of a rcal variable. The existence of
complex-valued solutions of some non-linear equations can be shown under
less restrictive hypotheses than (III) (cf. Kuczma-Vopénka [1]).

Real-valued continuous solutions of the equation

(90) ¢ /()] + 9 (x)=F(x),

(which we obtain setting in (89) g(x)=—1) have been treated by M. Kuczma
[2] and M. Bajraktarevi¢ [7] under the assumption that f(x) fulfils (I) and F(x) is
continuous in [a, b]. Then, according to the general result concerning equation
(84), equation (90) has an infinity of continuous solutions in (a, b), but a
solution continuous in (a, b] need not exist. If it does exist, it is unique and
is given by

oD 2 ()= F)+ 3 {FI(—F o))
k=0

where the iterates f*(x) are defined by (57). M. Bajraktarevi¢ [7] has proved
that the continuous solution (91) of (90) in (a, b] exists e.g. if F[f(x)]—F(x)
has a constant sing in a neighbourhood of & (in other words, if F(x) is se-
mimonotonic {f} — cf. Kuczma [6]), or if the function G(x)=F(x)—F(b)
fulfils the condition

0<6G@<An*, GLIRNGM<1+— for XEa,, a.),

where w= +1 or —1, 4 and « are positive constants and a,,=f(a,), 4, < (a, b)
Similar, but stronger conditions of the existence of the continuous solution in
(a, b] of the equation

(92) ¢ [f(X)]—9 (x)=F(x)

(the solution, if it does exist, is unique up to an additive constant and is given

by <p(x):c~—§: Fif* (x)]) are to be found in Bielecki-Kisynski [1] and Kor-

k=0
dylewski-Kuczma [4] (cf. also McKiernan {1]).

Differentiable solutions of equation (84) have been investigated by B
Choczewski [2], [3]. If hypotheses (I)—(111) are fulfilled and moreover the fun-
ctions f(x) and g(x,y) are of class C' (1<r< o0), f'(x)>0 in (a, b), then
equation (84) has an infinity of solutions of class C” in (a, b). These solutions
may be prescribed arbitrarily on a certain interval'L. If moreover

93) o 5.

—_— <1
L @r

1 For the Abel equation (100) this theorem had previously been proved by U. T.
Bodewadt [1].
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and r-th derivatives of the function g(x, y) satisfy some further conditions, then
equation (84) has an infinity of solutions which are of class C" in (a, b] and
Sfulfil suitable initial conditions

94 e)=d, ¢ (B)=dy, ..., 9" (b)=d,.

On the other hand, if instead of (93) the comverse inequality is fulfilled, then
equation (84) has a unique solution which is of class C' in (a, b] and fulfils
conditions (94).

For the linear equation (89) (where ¢ may assume values in a Banach
space) a corresponding result has been obtained by M. Kuczma [13].

Let us notice, however, that we know very little about the ,,indeterminate
case’”’ where

(95) \Z—i (®, d)“:[f’ ®,  r>0.

In the case of equation (89) relation (95) with r=0 means that |g(®)|=1. In
such a case only equations (90) and (92) were studied more in detail (cf.
however the recent paper by B. Choczewski and M. Kuczma [1]). For r=1
the corresponding case was treated for the Schréder equation (99) (cf. Kuczma
[20]). But a great variety of problems are still left open.

In the complex domain equation (84) has been dealt with by A. H. Read
[1]. He proved that if the function f(x) (complex-valued of a complex variable)
is regular in a neighbourhood of a point b such that f (b)=b, 0<|f'(b)|<]1,
and if the function g(x, y) (complex-valued of two complex variables) is regular
in a neighbourhood of a point (b, d), where d fulfils d=g (b, d), and if

1—3%(17, d)[>tf'(b)!,

then equation (84) has a unique solution ¢ (x) regular in a neighbourhood of b
and fulfilling (88).

Sen-ichiro Tanaka [1] was concerned with the case f(x)=x+1 of (84),
also in the complex domain. Equations (85) and (89) on the complex plane
have been studied by P. J. Myrberg [4], [5].

The homogeneous linear equation
(96) eLf (X)]=g ) ¢ )

was treated by V. Ganapathy Iyer [1], [2], [4], [5], esentially under the con-
dition that one of the occurring functions is a polynomial. V. Ganapathy Iyer
was concerned with entire solutions of equation (96) on the complex plane.
The particular cases f(x)=x+a, f(x)=ax and f(x)=x* are treated in detail.
Especially the equation

¢ (ax) =g (x) ¢ (x)

has attracted the attention of several authors (Ganapathy Iyer [2], Schweizer
1], Vaida [1], Vilcovici-Vaida [1]).

Systems of equations of form (84)

(97) <Pi[f(x)]=gi(x9 (PI(X),..., CP,,(X)), i=l"-~>na
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have been studied to a much lesser extent (cf. Bajraktarevi¢ [5], Majcher [1]).
Such a system can be reduced to a single equation of order n. In the linear
case system (97) can be written as the matrix equation

(9%) DLf(N)] =G (x) O (x)+ F(x),

where G is an nxn matrix and ® and F are nx 1 matrices. Equation (98)
(where x is a point in an m-dimensional space) have been considered by M.
Gherminescu [13] from a rather general point of view (without discussing the
regularity of solutions).

16. The Schrider equation and related equations

There are some particular cases of equation (84) that are of a great
importance and have been studied very extensively. Here we mention the
Schroder equation

(99) ¢[f()]=s¢ (),

the Abel equation

(100) e[f(D]=9¢x)+1,
the Bottcher equation

(101) ¢ [f ()] =T[e (0],
and the Poincaré equation

(102) ¢ (sx)=Fo ()]

(cf. Schroder [1], Abel [1], Picard [1]). These equations were thoroughly in-
vestigated in he years 1919-—1924 by P. Fatou, G. Julia and others (some
references may be found in Kuczma [20]).

The Schroder equation is perhaps the most important one. The remai-
ning equations can be reduced (under suitable assumptions) to (99): equation
(100) by putting ¢ (x)=s*®, equation (101) by putting ¢ (x)=log ¢ (x), equa-
tion (102) by putting ¢ (x)=9~!(x). These equations are mainly connected
with the iteration theory, but they arise also in numerous other questions,
like the investigations of the invariants of the local transformations of the real
line (equation (99); cf. Sternberg [1], Kuczma [20]), or the investigations of
the distribution of zeros of solutions of some differential equations (equation
(100); cf. Barvinek [1]).

G. Koenigs [1] (cf. also Kneser [1], Jabotinsky [1]) proved that if the
Junction f(x) (complex-valued of a complex variable) is analytic in a neighbour-
hood of 0, f(0)=0, f'(0)=s, 0<|s|<1, then equation (99) has a unique so-
lution ¢ (x) which is analytic in a neighbourhood of 0 and such that ¢’ (0)=1.
This solution is given by

(103) ¢ (%) = lim s=" f" (x),

where f"(x) are iterates of f(x) (cf.(57)).

H. Kneser [1] showed that instead of analyticity of f(x) it is enough to

assume that
' Fx)=sx+0(x|'*+9), 0<s<l, §>0, x—0,

3 Publikacije Elektrotehnitkog fakulteta
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(where f(x) may be a real-valued function of a real variable as well). Then
of course, function (103) need not be analytic, not even of class C! or siric-
tly monotonic in a neighbourhood of 0, although the derivative ¢’ (0) still
exists and equals 1. Since the existence of ¢—! is very important in many
applications, the following theorem due to G. Szekeres [1] is more useful.

It the function f(x) is of class C* and strictly increasing in an interval
[0,a), 0<f(x)<<x in (0,a) and if

(104 f(=s+0(%), 3>0, 0<s<l, x—0,

then the Schréder equation has a unique solution ¢ (x) which is of class C! and
strictly increasing in [0,a) and such that ¢ (0)=1. This solution is given by
formula (103).

Condition (104) is not superfluous. If it is not fulfilled, then (99) can
happen to have an infinity of solutions of class C! in [0,a) (these solutions
may be prescribed arbitrarily on a certain interval), or none except for the
trivial one ¢ (x)=0. For a complete discussion of C' solutions of the Schro-
der equation cf. Kuczma [20].

G. Szekeres [1] has proved also a number of results concerning real
solutions of the Schroder equation in the case where f'(0)=1 or f'(0)=0,
and the complex solutions of the Schrdder equation in an angular domain.
M. Kuczma [20] (cf. also Kuczma [19], [23]) has proved that if the function
f(x) is convex or concave and strictly increasing in (0,a), 0<f(x)<<x in (0, a),
f(0)=0, f7(0)=s'2, O<s<1, then equation (99) has a unique one-parameter
Jfamily of convex/concave solutions in (0, a). These solutions are given by

(105) ¢ (x) = ¢ lim f" (x)/f" (),

where d is an arbitrarily chosen point from (0,a) and c is an arbitrary
constant.

Limit (105) is more general than (103), but is identical with (103)
whenever the latter exists. Functions (105), if they exist, are called the prin-
cipal solutions of the Schrdder equation (Szekeres [1], Kuczma [20]). They are
characterized among all the continuous, strictly increasing solutions of (99)
(such solutions may be prescribed arbitrarily on a certain interval; cf. Walker
[1], Szekeres [1], Kuczma [20]) by the best behaviour near zero. The principal
solutions of the Schrdder equation are unique up to a multiplicative constant.

The Schroder equation for functions of several variables and various
generalizations have been treated among others by N. Pastides [1], P. Montel
[2], M. Kuczma {20], M. Urabe [1]—[4].

The Abel equation (100) is perhaps less general than (99). R. Tamb
Lyche [1] proved that (100) has a solution in a set E if and only if

(106) fE(x)#x for k=1,2,3,..., and xE E.

If (106) is fulfilled in an interval E, then the Abel equation has an infinity
of solutions in E (they may be prescribed arbitrarily on a certain interval)
having the same regularity as f(x) (Bodewadt [1]; cf. the preceding section).
Therefore in order to obtain a uniqueness of solutions one must, instead of
assuming analytic conditions at a fixed point of f(x), make some assumptions

12 f7(0) denotes the right-sided derivative of f(x) at 0, which necessarily exists, since
f(x) is convex or concave,
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concerning the asymptotic behaviour of ¢ (x) (cf. Szekeres [1], {2], [3]). So G.
Szekeres [3] has proved that there is a unique function @,(x), normalized to
Sulfil o, (1)=0, which satisfies the equation

(107) Po(e"—1)=9p,(x) + 1, x>0,
and the condition
(108) (=Dt @ (x)>0 for k=1,2,..., and x>0

(in other words, ¢,(x) is totally monotonic; here ¢,*)(x) denotes the k-th de-
rivative of ¢,(x)). He also showed that for every L-function f(x) there exists
a solution ¢ (x) of equation (100), unique up to an additive constant, such that

(109) O, const as x — oo
G0 (%)

Here L-functions are Hardy’s logarithmico-exponential functions, i.e. members
of the smallest set H which contains the constant functions f(x)=const, the
identity function f(x)=x and is closed under the rational operations and the
application of exp () and log | |.

As we see, the function ¢,(x) plays here an exceptional rdle. G. Szekeres
proposes to accept ¢, (x) as a new standard order of infinity. Seven place tables of

0o (x) and @o(x) have been supplied by K. W. Morris-G. Szekeres [1].

Equations (101) and (102) have a more narrow field of applications and
therefore they have attracted less attention. A generalization of equation (102)
has been dealt with by N. Pastidés [2].

17. Iterations

A one parameter family of functions f“(x), defined in a neighbourhood
of x=0, is called an iteration group of the function f(x)=f1(x) provided that

(110) ST @] =" ()

holds for every pair of u,vE (—w, +) in a suitable neighbourhood of 0.
(110) is the equation of translation (cf. § 10). Consequently (compare formula (56))

(111) F) =97 e (x)+ul,
where @ (x) is an invertible solution of the Abel equation (100) (cf. among

others Ward-Fuller [1], Bajraktarevi¢ [3], Bodewadt [1], Michel [1]). Alterna-
tively f“(x) may be defined as

(112) S =97 (" ¢ (%)),

where ¢ (x) is an invertible solution of the Schrdder equation (99).

Since invertible solutions of equations (99) or (100) are not unique, an
iteration group of a function is not unique either. A detailed discussion of
this question in the real case is to be found in Michel [1].

If 7 (0)=s, 0<<s<<1, then an iteration group f“(x) of f(x) is called
regular whenever

lim 72 _
x—0 X

s for every u.

3*



36 Marek Kuczma

The regular iteration group, if it exists, is unique. In fact, if (112) defines the
regular iteration group of f(x), then ¢ (x) must be the principal solution of
the Schroder equation. The converse is not true, for the principal solution of
equation (99) need not be invertible. But if ¢(x) is an invertible principal
solution of equation (99), then the iteration group defined by (112) is regular
(Szekeres [1], Kuczma [20], Lundberg [1]). Therefore condition (104), or a
convexity or concavity of a function f(x) (fulfilling further conditions as in
§ 16) is a sufficient condition for the existence of the regular iteration group
of f(x) (Szekeres [1], Kuczma [20], Lundberg [1], Fort {1]).

Similar notions can be defined also if f'(0)=0 or f'(0)=1 (Szekeres
{11, 2], [3], Michel [1], Lundberg [1]). Sometimes it is convenient to consider
iteration groups of a function in a neighbourhood of the infinity; then relation
(110) is postulated for x sufficiently large. If f(x)=a5[g (9o (x))] (wWhere ¢,
is the solution of equation (107) fulfilling (108)) and g (x) = x + w(x), lim K(-x—)—_-O,

x—>w X

then the iteration group /™ (x) =y 1 [g" (pe(x))] of f(x), where g¥ (x) =x + w" (x)
is an iteration group of g(x), is called regular whenever lim W)y, Now, if

X—> 00 w(x
equation (100) has a solution o (x) fulfilling (109),'* then f(x) has a unique
regular iteration group, which is given by (111). In particular, every L-function
possesses a unique regular iteration group (Szekeres [3)).

If f(x) is analytic in a neighbourhood of the origin
f@)=ax+ayx*+ - - -,
then the coefficients of the expansion of f*(x)
(113) SUX)=byy x+bx*+ - - -

may be easily calculated. This goes back as far as J. G. Tralles 1814 and
C. G. J. Jacobi 1825. The convergence of series (113), however, is a very
delicate matter. If 0<|a, |< 1, then series (113) converge and provide an ite-
ration group of f(x) analytic in x and u (Jabotinsky [1]). The case a,=1 has
been investigated by G. Szekeres [1], P. Erdos-E. Jabotinsky [1], B. Mucken-
houpt [1] and I. N. Baker [5]. The latter has proved that the set of u’s for
which series (113) has a positive radius of convergence may consist of the
whole complex plane, or of a one or two dimensional lattice of points. In
particular, for f(x)=¢*—1 series (113) has a positive radius of convergence
if and only if u is an integer (Baker [2]).
Iterates of complex orders u have been treated by H. Tépfer [1].

M. A. McKiernan {2] proved that the curves given on the complex
plane by z=f"(z), u € (—, + o), yield the solution of a variational problem.

Closely related to the iteration theory is that of commutable functions.
Functions f (x) and ¢ (x) are called commutable (or permutable) if

(114) o [f ()1=S e 0]

If f(x) is given, (114) is a particular case of equation (84).

Commutable functions and related classes of functions have been studied
by many authors (Baker [2], [4], [5], Berg [2], Block-Thielman [1], Fort [1],
Ganapathy Iyer [3], Hadamard [1], Hallstrém [1], [2], [3], Hossza [10], [12],

13 Such a solution is unique up to an additive constant.
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Jacobsthal [1], Kuczma [18], [20], Nikolaus [1], Ritt [1]). In particular there
are some theorems to the effect that, under suitable conditions, the only
functions commuting with a given f (x) are the regular iterates of f (x) (Hada-
mard [1], Berg [2], Fort [1], Kuczma [18], [20]).

We end this section with a mention of the following problem (which, as
far as we know, has been raised by J. R. Isbell). Suppose that f, (x) and f; (x)
are commuting continuous mappings of [0, 1] onto itself. Do they have a
common fixed point (i.e. does there exist an x,< [0, 1], such that f; (x,)=
=f3 (Xp) =x,)? In spite of its apparent simplicity, this problem turns out very
difficult and remains still unsolved except in certain special cases.

18. Further particular cases of type [1, 1, 0]

The problem of Goursat for the differential equation

0%z
=G (x,
ox oy (x, »)

(115)

leads to functional equation (92) (Bielecki-Kisynaski [1]). Theorems concerning
the existence and uniqueness of a solution of the problem of Goursat for
equation (115) follow directly from the corresponding theorems for equation (92).
The problem of Goursat for more complicated differential equations than (115)
leads to some functional equations of higher orders (Majcher [2]).

The equation
1
7 2x)= Lo () + ]

finds an application in the statics (Pompeiu [1]). N. Gersevanov [1] showed
that some particular examples of equation (84) can be used in the hydro-
mechanics. The equation.

P+ e (x)=x

has been used by H. Steinhaus [1] in investigations of the convergence of a
certain power series.

P. J. Myrberg [3] has studied the non-linear equation
¢ (kx)=[e )P +p

in the complex domain. The equation

¢ () e (M]P+2x=0
has occurred in connection with a combinatorial problem in non-associative
algebras (Etherington [1], [2]). The similar equation

o (X)—[e DF=h(x)
has been treated by I. N. Baker [3] and J. Lambek-L. Moser [1] in connection
with a problem in the number theory.

Also a number of further equations occur in the number theory (e.g.
Berg [1], Maier-Kritzel [1]). Perhaps the most important one is the Riemann
equation

(116) i r(%) o) =r 2 r(‘%‘) o (1—x)
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and its various generalizations. Of the modern work in this connection we
mention here Apostol-Sklar [1], Bochner [1], Bochner-Chandrasekharan [1],
Chandrasekharan-Mandelbrojt [1], Chandrasekharan-Narasimhan [1], [2], [3],
Kahane-Mandelbrojt [1], Mandelbrojt [1], [2], Siegel [1].

M. Gherminescu [12] considered functions satisfying simultaneously two
equations

e[fi()]=8g.(0) (%), o[fa(x)]=8(x) ¢ (X

as a generalization of doubly periodic functions. W. Sierpinski (1], has proved
that the Lebesgue’s singular function may be characterized as the only conti-
nuous solution of the simultaneous functional equations

X 1 x+1 1 x+2 1 1

— = X)y B B — )=+ — s XEO,I.
<P<3> , ¢ @(3> <P<3) ;o tye™ [0, 1]
M. Kuczma [19] has characterized the exponential and logarithmic functions as
the differentiable or convex solutions of the equations

¢2x)=[p (P and o (xH)=2¢(x),

respectively. G. de Rham [1], [2], [3] has shown that many continuous and
nowhere differentiable functions can be elegantly obtained as solutions of some
particular functional equations of form (84).

J. G. Mikusinski [1] has obseived that ¢ (x)=cos x is the only analytic
solution of the equation

(117) ¢(2x)=2[pX)P-1,

fulfilling the condition ¢ (0)=1, ¢ (0)=—1. H. G. Forder [1] has proved that
the functions cos kx and cosh kx are the only realsolutions of (117) which are
non-constant, continuous, even and twice differentiable at x=0. The latter
condition cannot be weakened. If we assume only that ¢ (x) is once differen-
tiable at zero, then even the additional hypothesis of convexity does not guarantee
that ¢ (x)=cosh kx (Cooper [1]). The function ¢ (x)=cosx may be characteri-
zed, however, as the only continuous solution of equation (117) which is periodic
with period 2= and fulfils the condition
3
p(x)>0 for x& (—g, g), e (x)<0 for x& (-725, 7”),

(Kuczma [22]). (The latter condition is rather disagreeable and it would be
desirable to find weaker conditions that would characterize the cosine among
the solutions of equation (117)). Similarly L. Dubikajtis [1] has proved that
o (x)=sinx is the only continuous solution of the equation

o (%-—~2x)+2 [p (D=1
which is odd, periodic with period 2 = and positive in (0, %) . The uniqueness of

continuous periodic solutions of the more general equation (84) has been esta-
blished (under suitable conditions) by M. Kuczma and K. Szymiczek [1].

The existence and uniqueness of periodic solutions of the equation

9 (x)—¢ (2 x) = F(x)
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has been proved by Z. Ciesielski [1]. Periodic and almost periodic solutions
of difference equations have been investigated by A. Halanay [1]. Periodic so-
Iutions of some equations of form (92) are of a great importance in the study
of some classical problems of Poincaré and Denjoy (the restricted three body
problem, mappings of a circle or of an annulus onto itself; cf. Arnold [6],
Moser [1]).

19. Monotonic and convex solutions

Euler’s function I' (x) satisfies the functional equation

(118) F(x+1)=xT(x), x>0,
and the condition
(119) r{a=1.

But equation (118) possesses also other solutions-fulfilling condition (119).
Therefore, in order to characterize Euler’s function with the aid of relations
(118) and (119) one must set further requirements.

In the year 1931 E. Artin [1] proved that Euler’s function is the only
logarithmically convex* function satisfying equation (118) and condition (119).

Alternatively, we can characterize Euler’s function as the only solution of (118)
x 1
and (119) which is asymptotically equal to (i> (E) /2as well as by similar
e X

conditions (Anastassiadis [3], [6]). Also in the complex domain the function
I'(x) can be defined by (118), (119) and some additional conditions (N6rlund
[1], Picard [1], Schmidt [1]).

Artin’s theorem has been generalized by W. Krull [1] (cf. also Kuczma
[1], Dinghas [1]) as follows.

If the function F(x) is concave in (0, oo) and fulfils the condition
lim {F(k+1)—F(k)} =0, then there exists exactly one convex function ¢ (x)

fv;l}?sfying for x>0 the equation

(120 ¢ (x+1)—o(x)=F(x)
and the condition

(121) @)=,

This function is given by

0 () =y—F@)+xF(1)— 5 {F(k+x)—F (k) +x[F(k+ 1)—F®)}.
k=1

A further generalization has been given by M. Kuczma [21] (cf. also
Krull [1]), who proved that if the function F(x) is concave of order n>0 and

fulfils the condition® lim A} F(x)=0, then there exists exactly one function

X—>00

14 T.e. its logarithm is a convex function.

15 The operator A',‘, is defined by relation (28). A function f(x) is called concave of

order n if its divided difference (cf. Norlund [1]), of order » is non-positive or, what am-

~ mounts to the same, if f(x) is measurable and AZ‘LI f(x)<0 in the interval considered (and
analogically for functions convex of order n).
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@ (x) which is convex of order n and satisfies equation (120) and condition (121).
(The formula for this solution is rather complicated). As a consequence he
derived the following characterization of polynomials: A function ¢ (x), convex
of order n, satisfies the equation Ai'“thp(x):O if and only if o(x) is a poly-
nomial of degree<n. In other words, the polynomials of degree<n are chara-
cterized among measurable functions by the relations

AT o) =0, AT'e(x)>0, XxE(—o, +x), hE(, + ).

This improves a result of Th. Angheluta (cf. §6, in particular relation (27)).

For equation (92), which is a generalization of (120), a theorem on the

uniqueness of convex solutions has been proved by M. Kuczma [3]. He also

proved that if the function f(x) fulfils hypothesis ()'® and the function F(x)

is monotonic in (a, b) and lim F(x)=0, then there exists exactly one monotonic
x—b

Sfunction ¢ (x) satisfying equation (92) and the condition ¢ (xg)=Yy,, X, € (a, b).
This function is given by '

2 () =Yo— 5 AFUF* I —FLF* ol
k=1

where the iterates f¥*(x) are defined by (57) (Kuczma [12], [10], [20]). Some
theorems concerning monotonic solutions have been proved for equation (90)
by M. Kuczma [6], [7], for the more general equation

eLf ()]—p 9 (x)=F(x)
(p—a constant) by D. Brydak-J. Kordylewski [1], and for the equation in
general form (84) by M. Bajraktarevi¢ [4].

Some functions related to I'(x) also can be characterized by functional
equations and conditions of convexity or monotonicity (Anastassiadis [7]). So
e.g. A. Mayer [1] has proved that the function

w573 r5)

is the only convex solution of the equation

1
x(I)(x)'

O(x+1)=

J. Anastassiadis [1] has proved that in the above theorem the condition of
convexity may be replaced by weaker conditions (semi-convexity or semi-
monotonicity). He also proved (Anastassiades [2], [4]) that the only logarith-
mically convex or monotonic solution of the equation

(D(x+1)=;—i;(l)(x), x>0,

(y—a fixed parameter) fulfilling the condition (I>(1)=i is the function
¥y

Frorey

®(x)=B(x, y)= Tty

16 This refers to §15. Here a and b may be infinite as well.
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Theorems of Mayer and Anastassiadis have been generalized by M.
Bajraktarevi¢c [1], M. Kuczma [6], [7], [10] and by J. Anastassiadis himself
(Anastassiadis [5]).

Let us notice that the function I' (x) satisfies also the equation

X

(122) resyr{d—x)=

. ’
SInm x

but it is not so useful as (118) for a characterization of this function.

20. Equations of higher orders

The theory of functional equations of higher orders (of rank 1 and
implication index zero) is not so well developped as that of equation (84).
Such equations have the form

(123) F(x, 9(x), o [f1 ()], ..., 2 /2 ()] =0.

A way to obtain the general solution of equation (123) has been indicated
by S. B. Presi¢ [3].

Some theorems concerning equation (123), analogous to theorems on conti-
nuous solutions of equation (84), have been proved by M. Bajraktarevi¢ [5],
B. Choczewski [1], J. Kordylewski [1], J. Kordylewski-M. Kuczma [2], G.
Majcher [1]. In particular B. Choczewski [1] considered the equations

(124) o) =Hx, ¢[f1(0)], ..., e[fn (DD,

(125) e [fn)]=GC(x, 0(x) ¢ [S1(D], ..., e [foma (D],

where the functions f;(x) fulfil conditions (I) of § 15 and moreover f, (x)<
<fi ()< fuor (X)<fr(x) for j=2,..., n—2, and the functions G and H are

continuous in

Q=[a, b] x {(«, B)}",

a<lH<B, a<G<B in Q. Let d be a number fulfilling H (b, d,..., d)=d,
Gb.d,.... dy~d, a<d<. If there exist numbers a,>0 such that 0<'S a;< 1
and =
(126) oy = H GV < S ay)

holds in a neighbourhood of (b, d), then equation (124) has a unique solution
9 (x) continuous in (a, b] and fulfilling (88). If, on the other hand, (126) holds
with G instead of H, then equation (125) has an infinity of solutions continuous
in (a, b] and fulfilling (88) (these solutions may be arbitrarily prescribed on a
certain interval). But we know very little about the behaviour of continuous
solutions of equation (123) in the case where none of the corresponding
functions H and G fulfils condition (126).

The particular case where f, (x)=f%(x) are iterates of a function f (x)
and the function F(x, y,,..., ¥,) is linear with respect y,,..., »y,, has more
often been dealt with. Equation (123) has then the form

(127 LN+ 4, () @[+ - - - + 4, (%) ¢ (X) =B (x).
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Equations of form (127) have been studied by C. Popovici [1], M. Gherménescu
(51, I81, [9], [11], [13], [15], [21] (cf. also Gherminescu [18]) J. Kordylewski-
M. Kuczma [3], M. Bajraktarevi¢ [8], G. Majcher [1], D. S. Mitrinovié¢ [8].
In particular, M. Ghermanescu [5] has proved that the general solution of equation
(127) depends on at most n arbitrary automorphic functions'. In the case where the
coefficients A; are constant and the.function f (x) fulfils hypothesis (I) of § 15, the
theory of continuous solutions of equation (127) may be regarded as complete
(Kordylewski-Kuczma [3], Bajraktarevi¢ [8]). Differentiable solutions of equa-
tion (127) have been dealt with by G. Majcher [1]. The important case where
the function f (x) fulfils the relation

(128) S () =x

(for n=1 (128) is fulfilled e.g. in the case of equations (116) and (122)) has
been investigated by M. Ghermanescu [8], [11] and D. S. Mitrinovié [8] (cf. also
Aczél-Gherminescu-Hosszd [1]). A somewhat more general linear equation has
recently been considered by S. B. Presi¢ [4], [5].

Integral equations with two variable limits of integration

(X)—2 f K(x,s)¢(s)ds=0
S
can be reduced to a system of integral equations with constant limits of
integration and of functional equations of form (127) (Gherminescu [16], [19]).
E. Vincze [7) has proved that the only complex-valued, non-constant
solution o. the equation

(129) o (X)=¢ (ax) ¢ (bx), a>0, b>0, a+b*=1,

twice differentiable at x=0 is ¢ (x)=e™. Equation (129) occurs in the pro-
bability theory.
The regular solution of the equation'®

e@x, d4p)—4o(x, N=a{eRx, —2»P+b{e(2x, —2y))°

yields an example of an entire function ¢ (x) (whose values as well as arguments
are couples of complex numbers) which maps homeomorphically the whole space
of two complex variables onto its proper part (Bochner-Martin [1]).

Further particular cases of equation (123), where ¢ is a more-place
function, have been solved by M. Gherminescu [18], D. S. Mitrinovié-D. Z.
Bokovi¢ [12], D. S. Mitrinovié¢-P. M. Vasi¢ [3], M. Kuczma [28].

21. Finite differences

A large class of equations of form (123) has gained a particular popu-
larity. We are speaking here about difference equations. These are equations
of form (123) where f,(x)=x-+kh, where h>0 is a constant. Difference equa-
tions find many applications in problems of approximate solutions of partial
differential equations (cf. e.g. LadyZenskaya [1]). They find also numerous

17 These are functions satisfying equation (85).
18 This equation can be written as

o[/ (P—alo[f(M}~b{o[f (P} —40(n)=0,
" where p=(x,y) and f(p)=(2x, —2y), so it is an equation of form (123).
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applications directly in physics (e.g. Derfler [1], Okabe [1], Williams [1];
cf. also Ghermdnescu [7], Halanay [1]), as well as in other branches of
science (Lush [1], Goldberg [1]). The theory of difference equations is well
developped nowadays and has several times been exposed in books. It would
be impossible to present it here, even superficially. The interested readers are
referred to the classical work of Norlund [1] or to modern monographs like
Goldberg [1] or Levy-Lessman [1].

We would like, however, to mention here a particular class of difference
equations, viz. recurrent formulae (cf. Montel [2]). Theorems concerning the
convergence of a sequence defined by the recurrent formula

(130) a,+.,=G(a,, a, (v..., Q. pn—1)
can be derived from the limit properties of solutions of the functional equation

e(x+m)=G(p(x), e(x+1),..., e(x+n—1)).

In the case where the function G is linear a detailed discussion of the depen-
dence of the convergence of a sequence a, defined by relation (130) upon a
choice of the initial terms a,,..., a,_, has been given by M. Kucharzewski-
M. Kuczma [2]. For arbitrary functions G theorems guaranteeing the con-
vergence of the sequence a, independently of a choice of the initial terms
have been proved by J. Aczél [2], [6] and A. G. Azpeitia [1], [2]. The
latter proved the following, fairly general theorem.

If a sequence of (complex-valued) functions G, (z,, z,,...,2,-,) conver-
ges uniformly to G(zy, zy,..., z,—4) for 2y, zy,..., z,—; belonging to a
convex domain D on the complex plane, and if for every k=0 the point
Wy =Gy (24, Zy,..., 2,—y) always belongs to the convex hull R, of the points

Zgs Zys--., Zn— and is different from the extreme points of R, (except when

Zy=2Zy=...=2,.,; then also w,=z,), then the sequence a, defined by
av+n:Gv(av9 Ay i1y o v av+n—1)

converges independently of how the initial terms a,, ..., a,_, have been

chosen in D.

It is an interesting fact that from properties of recurrent sequences one
can obtain some theorems on roots of algebraic equations (Aczél [2], Kuchar-
zewski-Kuczma [2]).

The existence and uniqueness of monotonic sequences generated by some
simple recurrence formulae have been investigated by M. Kuczma [16] and
D. Brydak-J. Kordylewski [1].

Closely connected with difference equations are g-difference equations or
geometrical difference equations. These are equations of form (123) where
fr(x)=¢*x, q being a constant, 0 < |g|< 1. Analytical theory of linear
g-difference equations has been built by W. J. Trjitzinsky [1]. In modern times
g-difference equations have been extensively studied by W. Hahn (cf. e.g.
Hahn [1]—[5]).

22. Iterated equations

Only a few types of functional equations with a positive implication
index have been wider studied. Perhaps the most important one is the Babbage
equation (Babbage [1])

(131 " (xX) =x
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(9" denotes the n-th iterate of ¢), which has been treated by many authors.
E. Vincze [1] has proved that if n is odd, then the only monotonic solution of
(131) is @ (x)=x; if n is even, then every monotonic solution of (131) must
be an involutory functior (i.e. it must fulfil ¢?(x)=x). On the other hand,
every continuous solution of equation (131) must be strictly monotonic.

The equation
(132) 9" (X) = g(x)

is an immediate generalization of the Babbage equation. The general solution
of equation (132) in a set £ such that g(E)=F has been constructed by
S. Lojasiewicz [1] (cf. also Isaacs [1], Haidukov [1]). Continuous solutions of
(132) have been investigated by M. Kuczma [15] and P. I. Haidukov [1]
under ithe assumption that the function g(x) is continuous and strictly mono-
tonic. It would be very desirable to find the general continuous solution of
equation (132) without assuming a monotonicity of g(x). In the complex
domain equation (132) was treated by P. J. Myrberg [2] in the case where
g(x) is a rational function.

The equation
(133) e"()=gle"(¥)], m<n,

may be reduced to (132) (Kuczma [14]). In the case where g(x)=x the
general continuous solution of equation (133) has been given by G. M. Ewing-
W. R. Utz [1].

The special case of (132)
(134) ¢ (x) =g (x)

is of a particular interest. It is an open question under what conditions on
g (x) equation (134) (or, more generally, equation (132)) has a convex solution
and whether such a solution is unique. This problem may be put into a more
general form: vnder what conditions on g(x) there exists an iteration group
g%(x) such that g“(x) is convex for ¥ >0 and concave for u<<0? Is such a
group unique?

In the complex domain equation (134) with an entire function g (x) was
treated by W. J. Thron [1] and I. N. Baker [1], [2]. Especially the case
g(x)=¢e""1 has attracted attention of several authors (e.g. Thron [1], Osser-
man [1], Baker [2]). I. N. Baker [2] showed that there can exist no solution
of the equation ¢2(x)=e*~1 analytic at x=0.

Similarly the equation

(135) ¢ (x) ="

is of interest. A treatment of this equation in the real case is especially diffi-

cult, since e has no real fixed-points (i.e. equation e*=x has no real solu-

tions). H. Kneser [1] succeeded in obtaining a solution of equation (135)

which is real and analytic on the real axis. This solution is not single-valued

(Baker [1]) and, as pointed out by G. Szekeres [3], there is no uniqueness

attached to the solution. G. Szekeres [3] proposes another approach to this
1

problem; he obtains a solution of (135) as the member g2(x) of the regular
iteration group g“(x) of g(x)=e* (cf. § 17).

Some other equations with implication index equal n were considered by
J. Heinhold [1] and M. Bajraktarevi¢ [9].
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