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§ 1. The object of the present paper is the functional equation

(1) olp@)] =g(z, (@),

where @(x) denotes the unknown function and g(z, y) is given. We shall
suppose regarding the function g(x,y) that:

(i) The function ¢ (x, y) is defined, continuous and strictly increasing
with respect to each variable in the closure 0 of the region (%)

{a<w<b,
z<y<plz).

(ii) g(a7a)=a: g(b,b)= b,g(z,2)>w for we(a,d), g(w,1)>Yy in Q.

(iit) ¢(z, f(2)) = (=) for we<a,b).

We admit also the case where one of the values ¢ and b is infinite
as well ag where f(z) = oco.

It follows from hypotheses (i)-(iii) that if the function B(x) is finite,
then it is continuous and strictly increasing in <a, b>, f(a) = a, f(b) = b.

In our preceding paper [1] we have proved that under suppositions
(i)-(iil) for every @, € (@, b) there exist infinitely many solutions of equa-
tion (1) that are continuous and strictly increasing in the interval {azq, b).
In the present paper we consider the possibility of the continuation of
these solutions to the left. The problem’is not trivial and there arise
some questions which we are not able to answer. These problems are
formulated at the end of this paper.

At first we shall prove

TeroreM L. If hypotheses (i)-(ill) are fulfilled and if p(x) is a con-
tinuous solution of equation (1) which is defined in an interval IC (a,b)
and passes through an inner point of the region £, then p(x) remains in 2
for all m el and is sirictly increasing.

(*) Throughout this paper we shall use Greek capital letters for sets of the plane
and Latin capital letters for points of the plane.
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Proof. We shall denote by I"and & respectively the sets of the points

of the curves
y = p(=), xela,bd,
y=a, zela,b).

We shall prove that the graph of the function @(2) may intersect the
curves I' and & only at the point A(a, a) or B(b,b). Hence it follows
that for @ ¢ I the graph of ¢(z) remains in Q. ‘

Let 2, € I and (x,, p()) ¢ Z. Consequently ¢(a,) = %,. Putting o =z,
in equation (1) we get @, = g(y, ), whence either z, = a, or x, =b.
Similarly, let us suppose that z,¢I and {9y (@) € I Consequently
o(2) = Blz,). Putting o =, in equation (1) we get p[B(@)] = (),
whence it follows that either B(z,) = a, or f(x) = b. But, since the
function A(w) is strictly increasing, it is possible only for @, = a or z, = b.

Now we shall prove that the function @(x) is single-valued. In fact,
let us suppose that there exist o, eI and ;I such that ¢(z,) = @ (@) = g,.
From equation (1) we have

9(@15 @) = 9 (@2, @) 5
whence, on account of the monotonity of the function g, follows z, = w,.
Thus the function ¢(z), being continuous and single-valued, is monotonie.
From the inequality g(z,y) > y it follows that it must be increasing.
This completes the proof.

In the paper [1] we have proved that for every point P(w, ) ¢ 2
there exist infinitely many functions ¢(») that are continuous and strictly
increasing in the interval (@, b>, and satisfy equation (1) and the con-
dition @(,) = ¥, From the above theorem it follows that taking all
possible continuous and strictly increasing: solutions. issuing from all
points of the region £ we obtain all continuous solutions of equation (1}
passing through Q.

§ 2. The question arises whether a-given solution @{x) of equation (1)
that is continuous and strictly increasing in an interval {z,, > C (a,d>
can be continued to the left even to the point 4. As we shall see, the
answer to this question is in general negative.

Let us write a(z)Zg(z,s) and denote by 4 the set of the points
of the curve

y=uqafr), zela,b).
The curve A divides the region £ into two subregions:

. {a<w<b
1

<y <a(w),
and
0. {a<w<b,

a(w) <y <p@).
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DeFINITION. For an arbitrary point P(x,y) e 2 we shall denote.
by R(P) and call the righi-hand correspondent of the point P the point
with the coordinates (v, g(z,y)). Similarly we shall denote by L(P) and
call the lefi-hand correspondent of the point P the point @ such that
R(Q) = P (if such exists).
~ LemumA. The function R(P) is defined for P e Q; moreover, R(Q) = ©,,
R(E) = 4, R(I')=&. The fmwta}on L(P) (inverse to R(P)) is defined for
P e 0,; moreover, L(A) = Z, L(E) =TI Both functwns, R(P) and L(P),
are continuous in their domain of definition.

Proof. Let P(z,y) e2. Consequently

z<y<g@y) <gy,y)=a(y),

which proves that R(P)eQ;. On the other hand, let @(y,2) ¢ 2,. Let
us put 2; = 7 (y) and @, = y. The point (z, ) belongs to 2 for = e {zy, 7>
and according to (iii)

9(@1, ¥) =g(a:1, ﬂ(ml)) =p(z) =y,
9@y y) =90, 9) =a(y).

Since the function ¢ is strictly increasing with respect to z, the equation
b g(z,y) =2

has exactly one solution z,e {z;, 2>, which means tha;b Rz, v)) = Q-
Thus R(R) =

- If P(m,y)eu, then y =2 and g(z,y) = a(y), whence R(P)s/l.
I P(z,y) eI, then y = f(z) and g(z,y) =y; consequently R(P) e 5.
It is evident thafc for Q belonging to A resp. = there always exists P
belonging to £ resp. I' sueh that E(P)=¢.

Thus we have proved the first part of the lemma. The second part
(concerning the function L(P)) follows immediately from the first in
view of the fact that for P, # P,, R(P;) # R(P,). The continuity of
the functions R({P) and L(P) follows from the continuity of the function
g(z, y). This completes the proof.

" Now let @(z) be a solution of equation (1) defined in an interval
{&o, by and let & denote the set of the points of the graph of

(2) y =0, @ €Ty, b .

If a point P lies on @, then also R(P) lies on @. Consequently each point
of the set @ is a left-hand correspondent of a certain point of this set.
Thus in order to continue solution (2) of equation (1) to the left from
the point Py(wy, p(x,)) we form the set consisting of the left-hand cor-
respondents of the points of that part of the set & which is contained
between the points P, and R(P,) (this part will further be denoted by D).


GUEST


164 M. Kuczma

If only a part of the set P, is contained in £,, we can continue solution (2)
to the left only to a certain point. Let ¢ be the common point of the
gets @, and A. (Then L(Q) is the
point with the same abscissa as @,
but lying in the set & (cf. fig. 1).
Hence it follows that @ as well ag
L(Q) should belong to & L L(P,). Both
these points have the same abseis-
sae but different ordinates and thus
® o L(P,) may not be a graph of
any function. Thus as we see, if the
set @, has a common part with the
region £,, then it iy impossible to
continue solution (2) to the left as
far as to the point 4. We can only
continue it to a certain point Q,,
viz. to the point with the smallest
Fig. 1 abscissa among all points of the set
L(®,) (cf. fig. 1). '

§ 3. As we have seen, if P, e, and & CQ,, then solution (2) may
be continued to the left to the point L(P,). If such a continued solution
is still contained in £;, we can continue it further to the point L(P,) (2), ete.
But if during this procedure one of the points L"(P,) falls into the set
£,, then the possibility of the continuation of solution (2) becornes limited.
Namely it can be continued a little beyond the point L™(P,), but at any
rate it cannot reach the point 4. Thus the question arises whether among
all solutions of equation (1) that pass inside £ there exists a solution
defined in the whole interval {(a, b}.

Let us fix an arbitrary z,e¢ (e, b) and denote by 4, the set of the

points P(z,y) such that © = @), z, <y < a(m,). Let us further put
(3) Apin B L4~ 0), n=0,1,2,..

On account of the continuity of the function L the sets 4, are arcs
joining points on the curve I" with points on the axis & (cf. fig. 2). More-
over, all 4, are closed sets. Consequently also and R™4,) are closed.
Evidently

R"4.)C 4y, n=0,1,2,..

We shall show that R™(4,) is a descending sequence of sets. In fact, we
have by (3)

R(An11) = A0~ 2,C 4y,

(*) I*(P), R*(P) denote the n-th iteration of the function L(P) resp. R(P).

e ©
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whence
R"dpy1) = R*[R (4n41)]C B™(4y) .

Consequently the set
Aa) <= () B'(4s)
n=

is non-empty as a product of a descending sequence of closed sets.
Sinee z, has been arbitrary, the each point « e (a,b) there corresponds

-a non-empty set of points 4 (z). This is the set of points with the abscissa z

guch that all functions L" are
for these points defined. Evi-
dently if P(x,y)e 4(x), then
R(P)eA(y). For each ze(a,bd)
we shall denote by V, the set
of the ordinates of the points
of the set A(x) (i.e. the pro-
jection of the set A(x) on the
y-axis).

In [1] we have described
the construction of inecreasing
solutions of equation (1) issuing
(to the right) from a point
Py(x,, ¥o). Namely, we may join
the points P, and R(P,) by an
arbitrary increasing curve with Fig. 2
an equation ¥ = @(z), and then
relation (1) will uniquely determine the function g(z) satisfying equation
(1) in the whole interval {#,, b). As we gee from the above considera-
tions, if we define the function ¢(z) in the interval {(z,, y,> in such
a manner that

(4) pl@) eV, for @elwy, Yo,

then the solution thus obtained will be continuable to the left even to
the point A. Taking all possible increasing functions ¢(z) defined in the
interval <z, y,> and fulfilling condition (4) we obtain all solutions of
equation (1) that are defined and increasing in the whole interval <{a, b)
and pass through the region £ (3).

Thus we have the following

TeEorREM I1. If the hypotheses (i)-(iil) are fulfilled, then equation (1)
possesses o solution that is defined and increasing in the whole interval
{a, by and passes inside the region Q.

M —— -

&

(%) Of course, all these solutions pass inside the set .
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We are not able, however, to prove the existence of a continuous
solution defined in the whole interval {a, b>. Also we cannot say anything
about the number of solutions that are defined in the whole interval
{a,by. It is our conjecture that under hypotheses (i)-(ili) equation (1)
possesses exactly one solution defined in the whole interval <{a, b), i.e. that
each of the sets 4(») contains exactly one point. It can easily be shown
that if the solution defined in the whole interval {a, b) is unique, then
it is continuous and strictly increasing.
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On the continuous dependence of solutions of some
functional equations on given functions. II

by J. KoRDYLEWSKI and M. Kvuczma (Krak6w)

In the first part of this paper [2] we have proved (under suitable’
assumptions) continuous dependence on given functions for solutions
of the functional equation

@ plf@)]+ng(a) =F(a),
where 1 = +1. Presently we shall deal with a more general equation
2) p@) = H(=, ¢[f(@)]),

where ¢(z) denotes the unknown function and f(z) and H(z, y) are given.
Making use of the results obtained we shall prove a theorem about con-
tinuous dependence for solutions of equation (1) stronger than those
proved in [2]. Although equation (1) is a particular case of equation (2),
the hypotheses which we assume concerning equation (2) are not fulfilled
in the case of equation (1). Thus the theorems proved in [2] do not follow
from the results of the present paper. ’

IL. Equation ¢(2) = H(z, p[f(x)])

§ 1. We assume the following hypotheses regarding the functions
f(z) and H(z,y): i

(i) The function f(x) is defined, continuous and strictly increasing
in an interval {a, b> and f(z) >z for z <(a,b), f(b) =b.

(ii) The function H(z,y) is continuous and has the continuous
derivative 2H/oy # 0 in a region £ normal with respect to the z-axis.

(ill) Q5= 0, Q, = ['yq for @ e {a, b>, where £, denotes the z-section
of the region £:

Q= {y: (x,y) e},

and I, denotes the set of values of the function H(z,y) for y « 2, (*).

() In the case f(a) # a it is enough to postulate only Q_ cT’,(z), instead of the

relation Q = I}m.
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