

ANNALES POLONICI MATHEMATICI IX (1961)

On monotonic solutions of a functional equation (1)

by M. Kuczma (Kraków)

The object of the present paper is the functional equation

(1)
$$\varphi[\varphi(x)] = g(x, \varphi(x)),$$

where $\varphi(x)$ is the unknown function and g(x,y) is given. In the case where the function g(x,y) does not depend on x equation (1) has been solved in my paper [1]. The purpose of the present note is to prove that under suitable conditions equation (1) possesses infinitely many solutions that are continuous and strictly increasing in a certain interval.

We shall assume the following hypotheses regarding the function g(x,y):

- (i) g(x, x) > x in an interval $\langle x_0, b \rangle$, g(b, b) = b.
- (ii) g(x,y) is continuous and strictly increasing with respect to each variable in the closure \overline{T} of the set

$$T: \quad x_0 \leqslant x < b, \ x < y < \beta(x),$$

where the function $\beta(x)$ fulfils the conditions

(2)
$$g(x, y) > y$$
 for $y \in \langle x, \beta(x) \rangle$, $g(x, \beta(x)) = \beta(x)$,
$$x \in \langle x_0, b \rangle$$
 (1).

From the monotonity of the function g(x, y) it follows that the function $\beta(x)$ is increasing and

(3)
$$\beta(x) \leqslant b \quad \text{for} \quad x \in \langle x_0, b \rangle.$$

The result of this paper is given by the following

THEOREM. Under hypotheses (i), (ii) equation (1) possesses infinitely many solutions that are continuous and strictly increasing in the interval $\langle x_0, b \rangle$.

Proof. Let x_1 be an arbitrary point from the interval $(x_0, \beta(x_0))$

⁽¹⁾ We admit also the case $b=\infty$ as well as $\beta(x)\equiv\infty$. Continuity is then understood as the existence of a suitable (infinite) limit.

and let the sequence x_n be defined for n > 1 by the formula

$$(4) x_{n+2} = g(x_n, x_{n+1}).$$

We shall show that

(5)
$$(x_n, x_{n+1}) \in T$$
 for $n = 0, 1, 2, ...$

For n=0 it is evident. Let us suppose that (5) holds true for a certain $n \ge 0$. On account of (2) and of the monotonity of the function g(x, y) we have

(6)
$$y < g(x, y) < \beta(x)$$
 for $y \in \langle x, \beta(x) \rangle$.

Consequently, by (3) and (5)

$$x_0 < x_{n+1} < x_{n+2} < \beta(x_n) \leqslant \beta(x_{n+2}) \leqslant b$$

which proves that $(x_{n+1}, x_{n+2}) \in T$.

Thus the sequence x_n is strictly increasing and then convergent:

$$x_n \to \overline{x}$$
.

Passing to a limit in relation (4) we obtain $\overline{x} = g(\overline{x}, \overline{x})$, whence it follows that $\overline{x} = b$.

Now let $\varphi_0(x)$ be an arbitrary function continuous and strictly increasing in the interval $\langle x_0, x_1 \rangle$ and fulfilling the conditions

$$\varphi_0(x_0) = x_1, \quad \varphi_0(x_1) = x_2,$$
 $\langle x, \varphi_0(x) \rangle \epsilon T \quad \text{for} \quad x \epsilon(x_0, x_1).$

We put

(7)
$$\varphi_{n+1}(x) \stackrel{\text{df}}{=} g(\varphi_n^{-1}(x), x) \quad \text{for} \quad x \in \langle x_{n+1}, x_{n+2} \rangle.$$

We shall prove that for every n the function $\varphi_n(x)$ is continuous and strictly increasing in the interval $\langle x_n, x_{n+1} \rangle$ and

(8)
$$\varphi_n(x_n) = x_{n+1}, \quad \varphi_n(x_{n+1}) = x_{n+2},$$

(9)
$$(x, \varphi_n(x)) \in T$$
 for $x \in (x_n, x_{n+1})$.

For n=0 it is so by the hypothesis. Let us suppose it true for a certain $n \ge 0$. Then the function $\varphi_n(x)$ is invertible in the interval $\langle x_{n+1}, x_{n+2} \rangle$ and

$$\varphi_n^{-1}(x) \in \langle x_n, x_{n+1} \rangle$$
 for $x \in \langle x_{n+1}, x_{n+2} \rangle$.

From (8) and (9) it follows that

$$(\varphi_n^{-1}(x), x) \in T$$
 for $x \in \langle x_{n+1}, x_{n+2} \rangle$.

Thus the function $\varphi_{n+1}(x)$ is, by formula (7), defined for $x \in \langle x_{n+1}, x_{n+2} \rangle$. Its continuity and monotonity follow from the continuity and monotonity of the functions g(x, y) and $\varphi_n(x)$. Further,

$$(10) x_0 < x_{n+1} \leqslant x \leqslant x_{n+2} < b.$$

Moreover, according to (9),

$$x = \varphi_n[\varphi_n^{-1}(x)] < \beta[\varphi_n^{-1}(x)],$$

whence by (6) and (7)

(11)
$$x < \varphi_{n+1}(x) < \beta [\varphi_n^{-1}(x)] \leqslant \beta(x).$$

From relations (10) and (11) it follows that

$$(x, \varphi_{n+1}(x)) \epsilon T$$
 for $x \epsilon \langle x_{n+1}, x_{n+2} \rangle$.

Furthermore, by (8)

$$\varphi_{n+1}(x_{n+1}) = g[\varphi_n^{-1}(x_{n+1}), x_{n+1}] = g(x_n, x_{n+1}) = x_{n+2},$$

$$\varphi_{n+1}(x_{n+2}) = g[\varphi_n^{-1}(x_{n+2}), x_{n+2}] = g(x_{n+1}, x_{n+2}) = x_{n+3}.$$

Now if we put

(12)
$$\varphi(x) = \begin{cases} \varphi_n(x) & \text{for } x \in \langle x_n, x_{n+1} \rangle, & n = 0, 1, 2, \dots, \\ b & \text{for } x = b, \end{cases}$$

then, as it can easily be verified, the function $\varphi(x)$ is defined, continuous and strictly increasing in the interval $\langle x_0, b \rangle$. We shall show that it satisfies equation (1).

Let us take an arbitrary $x \in \langle x_0, b \rangle$. There exists an n such that $x \in \langle x_n, x_{n+1} \rangle$. Thus $\varphi(x) \in \langle x_{n+1}, x_{n+2} \rangle$. We have by (12) and (7)

$$\varphi(x) = \varphi_n(x)$$
.

$$\varphi[\varphi(x)] = \varphi_{n+1}[\varphi_n(x)] = g(\varphi_n^{-1}[\varphi_n(x)], \varphi_n(x)) = g(x, \varphi_n(x)) = g(x, \varphi(x)).$$

From the relation g(b, b) = b it follows immediately that also for x = b the function $\varphi(x)$ satisfies equation (1).

Since the value x_1 and the function $\varphi_0(x)$ can be chosen in infinitely many ways we obtain thus infinitely many solutions.

Remark. Equation (1) is a particular case of the equation

(13)
$$\varphi[f(x,\varphi(x))] = g(x,\varphi(x)).$$

However, if the function f(x, y) is invertible with respect to y, equation (13) can be reduced to equation (1) by the substitution

$$\psi(x) = f(x, \varphi(x)).$$

Reference

[1] M. Kuczma, On some functional equations containing iterations of the unknown function, Ann. Polon. Math. (in press).

Reçu par la Rédaction le 15. 3. 1960