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Theorem 3.5.1. Let hypotheses (i), (ii) be fulfilled. Then e‘: ,ic?n (3.5.1) ha.s
unique solution o: X — R of class C! on X and satisfying o' (0)=1. This
kolution is given by the formula

o(x) = lim s7"f"(x), (3.5.2)

n—aw

all ro. On the other hand, it is not generally true that if, for every r < oy
the C" solution of equation (3.4.1) depends on an arbitrary function, then
so does the C* solution (see Note 3.8.10).

Comments. Theorem 3.4.2 is the first one in this theory on differentiable
solutions. It has been proved with the aid of Banach’s Theorem (Kuczma
[7]). (For a use of topological methods in the theory of iterative functiona}
equations see Choczewski [7].) Fixed-point theorems, in general, cannot be
applied in the indeterminate case ([g(0)|( S(0)y =1) for C" solutions. The
results concerning this case are very scarce (see Choczewski [4], [6], Czerwik.
(5], [12]).

Linear equations have also been studied in the class of functions whose

rth derivative is either Lipschitzian (Jelonek [11) or absolutely continuous
(Sieczko [1)).

strictly increasing in X, and fulfils the condition
o'(x) =1+ 0(x%), x—0. (3.5.3)

oof. First observe that ¢(0) = 0 for any solution o: X - R of. (1). Further,
uation (3.5.1) has a C' solution ¢ in X such that ¢'(0) =1 if and only if

5 (3.54)
PN =5 o)

s a continuous solution ¢:X - R such that @(0)=1. Clearly,
x) = {3 o(t)dt. . )
S)incé‘of’(x) =5+ 0(x%), we have f(x)=sx+O(x'*?) and s/f (x)‘— 1+0(x°%)

x—0. We see that Theorem 3.1.13 applies to equation (3.5.4).
onsequently, a continuous solution ¢: X — R of (3.5.411) sucl} that @(0)=1
oes exist and is unique. Thus the same is true for the C solution o of (3.5.1)
X such that ¢’(0)=1. .
To prove (3.5.3) for this ¢ we proceed as follows. The formula

6'(x) =1 + x%p(x), xe X\{0}, $(0)=0,

nks C! solutions & of (1) satisfying (3.5.3) with §olutions ¢ belonging to
e class # (with Y = R; see (3.1.23)) of the equation

3.5 Special equations

In this section we are going to apply some results from the preceding sectiong
to the problem of uniqueness of solutions to the equations of Schroder, Abel’
and Julia. The first two of them have already been studied in Chapter 2, but’
in other function classes, and they are more thoroughly treated in Chapters
8 and 9. The reader is referred to the latter chapter for notes and further
applications of the Schréder and Abel equations. The Julia equation

. JPIRA 3.5.3)
i(f(x)) - f’(x)l(x) P(f(x)= a(x)o(x) + ﬁ(x)’ (
(Julia [1]) plays an important role in the theory of continuous iteration (see (/L ())Ps/f (%), xe X\ {0},
e.g. Ecalle [1], Dubuc [1]) but this aspect exceeds the scope of our book, - é(X)=={ -5 x=0,
In Chapter 8 Julia’s equation is used to determine conjugate and permutable S5

power series.

{(S/f'(x) — 1Y) xeX\{0},
ﬁ(x)::

0 , X = 0 .
3.5A. Schrider’s equation

Weaim at proving a uniqueness theorem for differentiable solutionso: X - R
of the equation ‘

Since |9(0)| > 1, from Theorem 3.1.11 we infer that equgtion (3.5.5) has a

E unique solution in the class #. The corresponding solution ¢ of (3.5.1) hls

. also unique. But 4 is of class C' in X and 6'(0)=1 so that ¢ = 0. Thus the

1 i 5.3).

= already determined ¢ has property (3.5 ) ' .

: Since ¢'(0)= 1, ¢ is strictly increasing in a neighbourhood of the origin,

" and by (3.5.1) it is so in X. o .
The last thing to be proved is formula (3.5.2). Iterating (3.5.1) we obtain

by induction

a(f(x)) = so(x) (3.5.1)
(Crum [1], Szekeres [1]). We assume that
(i) X=[0,a/,0<a< 0,
(i) f: X = X is of class C! in X, 0< f(x)<x, f’(x);é_O in X\ {0} and

f'(x)=s+0(x%), x-0,6>0,0<s<]. o(x)=s""o(f"(x)) = (s " ") (f"(x))/f"(x))

for xe X\{0} and neN. Hence (3.5.2) follows as lim,. , f"(x)=0 and
¢’(0) = 1.For x=0 (3.5.2) is trivial. W

)2 3

Remark 35.1. If feC*(X) and f "(0) =s, then this asymptotic relation is
certainly fulfilled.

|12



124 Regularity of solutions of linear equations

3.5B. Julia’s equation
We start by presenting some results by M. C. Zdun [3] on solutlons of the
Julia equation
A(f(x)) = f'(x)A(x) (3.5.6)
belonging to the following function class:
2:={p: X - R, ¢ is continuous on X and differentiable at x = 0}.

To this end assume that

(iii) /3 X — X is convex or concave and of class C! on X, 0 < f(x) < x and
f'(x)#0 in X\{0}.

. In the sequel we write
s:= f'(0).

By (iii) we have 0 <s < 1.

Theorem 3.5.2. Let hypotheses (i), (iii) be fulfilled. Then the solutions Ae 9
of equation (3.5.6) are the following.

(1) O<s< 1. Al the solutions are given by

) =c Tim L&) (3.5.7)

e (S (%)
where ce R is an arbitrary constant (a parameter).
(2) s=1. The solution depends on an arbitrary function and 2'(0)=0 for

every solution A.
(3) s=0. The only solution is A=0.

Proof. If s < 1, then A(0) =0 for every solution A of (3.5.6). If s =1, then f
must be concave, and so are all f", neN. Hence (f")(x) < f"(x)/x and
im,. (/") (x)=0in X\{0}. From (3.5.6) we get

l(f"(x))=”I:[ SN = (f"Y(x)Mx),  neN,
i=0

whence A(0) =0 for every continuous solution 4 of (3.5.6). Thus Ae2 is a
solution of (3.5.6) if and only if the function ¢(x) = A(x)/x (¢(0)= A'(0)) is
a continuous solution of the equation

o(f(x) =gx)o(x), _ (3.5.8)

where g(x)=xf"(x)/f(x) for xe X\{0} and g(0):=1. Then the function
g: X — R is continuous in X and g =21 or g £ 1 according as f is convex or
concave. Therefore the sequence (G,) defined by (3.1.4) is increasing or
decreasing according as f is convex or concave.

DAY
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If f is convex, then from the relation

T F0di= 1)~ £2(x)

S(x)
we get the estimation

O = FONS (SN S 00— [2(x) £ (x = f(x)f " (x),

whence by induction

i - (f &) ¢ TSNS 70— 170 S (e = £(x) Tl (e
i=0
for xe X\ {0}, neN. By the equality
X
G (x) =
W=7 b
this may be rewritten as
S70) _x(1 = )/ ()
G+ < < G,(x). 5.
) s —re) S o B89

If f is concave, then the inequalities in (3.5.9) are reversed.
Assume that 0<s<1. Since the function x> f(x)/x, xe X\ {0} is
monotonic and approaches s as x — 0, we get from (3.5.9)

1 =G,y i(x) S h(x) (3.5.10)

for the case where f is convex; and (3.5.10) with the inequalities reversed if
S is concave. Here we have put

oy < (L= 5%/ (x)

s(x — f(x))
so thatlim,_,, h(x) = 1. Thus we have by (3.5.10), in view of the monotonicity
of the sequence (G,),

|Gt p(X) = Gox)| = Go(x)|G,p(f"(x)) — 1] < max(h(x), 1)|h(f"(x)) — 1]
for n,peN, xeX. This implies (Theorem 1.2.4) that the sequence (G,)
converges a.u. in X to a continuous function vanishing nowhere on X. By

Theorem 3.1.2 equation (3.5.8) has in X a unique one-parameter family of
continuous solutions:

(p(x)=c/1im G,,(x):E lim (f"(x)/(f"Y(x)), x#0; e0)=c. (3.5.11)

This proves part (1) of the theorem.

If s=1, then f must be concave and it follows from (3.5.9) (inequalities
reversed!) that lim, ., G,(x) =0 a.u. in X\ {0}. By Theorem 3.1.3 equation
(3.5.8) has in X a continuous solution depending on an arbitrary function
and every such solution vanishes at the origin (Corollary 3.1.1). This gives
the conclusion of part (2).

)25



126 Regularity of solutions of linear equations

Finally, let s =0 and suppose equation (3.5.1) has a nontrivial solution
Ae 2. The function f must be convex and so it follows by (3.5.9) that the
sequence (G,) is bounded away from zero in X. Thus necessarily case (A)
occurs for equation (3.5.8). Through (3.5.11) we come to formula (3.5.7) for
our 1, with a ¢ # 0. Moreover, A(x) #0 in X\ {0}, by the argument we have
used in the proof of Theorem 3.1.4. Since f'of"> f"*!/f" the
sequence {(f")/f") is increasing and we get from (3.5.7) the inequality
0< (f"Y(X)/f"(x) < c/A(x) for xe X\ {0}, whence

cdt >J U0 g, _1og L)

s M0 e ) g "

as n — o0, which is impossible. Thus A1=0. W

The following theorem shows a connection between the equations of Julia
and Schroder.

Theorem 3.5.3. Let hypotheses (i) and (iii) with 0<s<1 be fulfilled. Let

d: X = R be a nontrivial convex or concave solution of equation (3.5.1) and
let 1€ be a solution of equation (3.5.6). Then o is of class C' in X\ {0}
{and even in X if lim, .o o’(x) < o), and the functions A and o are related by
the formula
: A(x) = A'(0)o(x)/o’(x) in X\ {0}. (3.5.12)

Proof. The solutions A and ¢ exist in virtue of Theorems 3.5.2 and 2.4.4.
The case of 4 =0 is obvious, so assume A'(0) £ 0. Then A(x) # 0 in X\ {0} (see
the proof of part (1) of Theorem 3.5.2) and A'(0)/A(x) = lim, .. . ((/") (x)/f "(x))
a.u. in X\ {0}. By integrating this relation we have for arbitrary x, x, from

X\ {0}

N L [ (1
YO i T 8 ey l°g<c “‘”)

(see formula (2.4.18)), whence

o(x) =cexp[l’(0) ) (l(t))'ldt:l. | (3.5.13)

X0

It follows from (3.5.13) that o is of class C! in X\ {0} and that (3.5.12) holds.
Since o is convex or concave, there exists ¢'(0) =lim,_, ¢'(x). If this limit
is finite, then o is of class C' in X. W :

Finally, with the aid of Theorem 3.3.4 we shall prove the following theorem
which is implicitly contained in a result by G. Szekeres [1].

Theorem 3.5.4. Make the assumptions (i) and (ii), but with the asymptotic
relation replaced by '

f(x)=1—=bm+1)x"+0(x"*?%), x-0, (3.5.14)
J21¢

3.5 Special equations 1

where b, m, 6 are some positive constants. Then equation (3.5.6) has a uniq
one-parameter family of continuous solutions A: X — R such that

Ax)=x"*"Yc+0(x)), x—0,ceR, (3.5.1
where T =min(m, 8). They are given by the formula _
Ax) = ¢ lim [(f"G)" /(7Y (x)]. (351

Proof. Let us put
Ax)=x"*1p(x). (3.5.1
To each solution 4: X — R of equation (3.5.6) having the properties stat
in the theorem there corresponds a continuous solution ¢: X — R such th
o(x) = c+ a(x), x - 0, of equation (3.5.8) where
gxy=x""1f')(f(x)™"1,  xeX\{0},  g(0)=1,

and conversely. The two solutions are linked by (3.5.17).

To solve equation (3.5.8) with our g, note that relation (3.5.14) impli

f(x)=x—bx"*! 4 O(xm*+1*9), (3.5.1:
Consequently, by the definition of g, _
gx)=1+0(x"*7), x—0.

By Theorem 3.3.4 (see also Theorem 3.1.2) equation (3.5.8) has a uniq:
one-parameter family of continuous solutions ¢: X — R. They are given by

n—1
e(x)=clim [T (g(f'0)) ™" = ¢ lim [x™" 1/ (x))"* /(Y (x)]

n—-o i=0 n—cw

and they have the property ¢(x)=c + O(x), x = 0. The functions 4 defin
by (3.5.17) fulfil the conditions of the theorem. W

3.5C. Abel’s equation
The equation is of the form
a(f(x))=oa(x)+ 1. (3.5.1¢

Clearly, equation (3.5.19) cannot have a solution defined at the fixed poi
of f. Therefore now 0¢ X. We then replace hypothesis (i) by

i) X=(0,a[,0<a§oo.

We aim at showing that if 0 < s < 1 in (ii) then some solutions of equatio
(3.5.19) can be obtained via Theorem 3.5.1 with the aid of differentiab
solutions of a Schréder equation.

Theorem 3.5.5. Assume (') and (ii). Then equation (3.5.19) has a uniqt
one-parameter family (with an additive parameter) of solutions o.: X — R whic

(27



128 Regularity of solutions of linear equations

fulfil the condition
a(x) = log x/log 5 + ¢(x)
wherelim, .o @(x)exists and is finite. These solutions are given by the formula
a(x) =log o(x)/log s +c, ceR, (3.5.20)

where 6: X U {0} > R is a C' solution of the Schroder equation (3.5.1) in
X U {0} such that ¢'(0)=1.

Proof. We can extend f onto X u {0} by putting f(0) = 0. By Theorem 3.5.1
equation (3.5.1) has a unique C! solution ¢: X u {0} —» R fulfilling the
condition ¢'(0) = 1. It is easily seen that o given by (3.5.20) with ¢ =0 has
all the required properties.

Now let &: X - R be another solution of equation (3.5.19) satisfying
a(x) = log x/log s + @(x), where @ approaches a finite limit as x — 0. Then
the function w(x)=&(x) — a(x) = @(x) — @{x) satisfies the equation w( f(x)) =
w(x) and has a finite limit at zero, whence w = const. Thus the solution « is
unique up to an additive constant. W

Differentiating both sides of (3.5.19) we get
& (fENS (%) =a'(x).
Thus the Julia equation is related also to that of Abel. In the case where
s =1 we have the following theorem (Szekeres [1]).

Theorem 3.5.6. Assume (i') and (ii) but with the asymptotic relation replaced
by (3.5.14). Then equation (3.5.19) has a unique one-parameter family of
solutions o: X — R which are of class C' in X and fulfil the condition

a'(x)=x"""to(x), (3.5.21)
where lim, o @(x) exists and is finite. These solutions are strictly decreasing
in X, and are given by the formula (of Lévy; see Remark 9.1.2)

a(x)=c+ lim "fH(x) utl ():0) ,
n—'eof (xo)—f (Xo)

where x,€ X is arbitrarily fixed and c is an arbitrary constant (a parameter).
Moreover

(3.5.22)

(x)=—b"'x""T 1+ O(x "1, x -0, (3.5.23)

where T = min(m, d).

Proof. This will be sketched only. Fix an x,€ X and put

* dt )

oz(x)=rj — (3.5.24)
x0 A1)

where A: X — R is given by (3.5.16) with ¢ =1 and has the properties stated

in Theorem 3.5.4. The constant r is to be determined.

|28
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The following facts can be verified:

— the convergence in (3.5.16) is almost uniform in X,
- by Theorem 1.3.6, (3.5.14) and the monotonicity of f"
lim, ., (nbm)*/™f"(x) =1 (3.5.2¢
_ by (3.5.25), formula (3.5.16) goes over into
AMx) =lim, . (nbm)~ 1~ Y™/(£7Y(x) au. in X,
so that interchanging ‘lim” with ‘[’ signs in (3.5.24) yields
a(x) =rlim,_, , (nbm)t Y™ f1(x) — f™(x,)), (3.5.2¢
— since A satisfies (3.5.6), we have a(f(x)) — a(x) = a(f(xq)),
— by (3.5.18) (see (3.5.14)), (3.5.26) and (3.5.25) yield a(f(xg))= —ri
- taking in (3.5.26) r = —1/b we get (3.5.19),
— formula (3.5.22) with ¢ =0 is obtained by using (3.5.26) (r = —1/b
for both a(x) and a(f(xy))=1, and then forming their quotien
— the regularity and monotonicity of « follow from (3.5.24) (r = —1/b’

— relation (3.5.23) is a consequence of (3.5.21) that results froi
(3.5.24) (r = — 1/b) and (3.5.15) (c=1).

To prove the uniqueness, observe that if & is a C! solution of (3.5.19) i
X satisfying (3.5.21), then 4= 1/& (defined as O at the origin) must be
continuous solution of equation (3.5.6) in X u {0}, fulfilling conditio
(3.5.15). By Theorem 3.5.4, A = gA. Thus &(x) = (g/r)(c + a(x)) and g =r as
satisfies (3.5.19). W

3.5D. A characterization of the cross ratio
Let us put
D:={(x,, x,, X3, x,)€eR*: x, # x, for i #j}.
The cross ratio s: D —» R of four points of the projective line is given by tt
formula
s(xy, X2, X3, Xa) = (x; — X3)(x3 — x4)/(x3 — X3)(x; — x4).

S. Gotlab [2] considered the following system of functional equations:

S(xa, X4, X1, X3) = S(xy, X3, X3, X4), (3.5.2
S(Xl, X3, Xa, X4)+S(X1, X, X3, X4)=1, (3.5.2:
S(xy, X3, X3, X4)-S(xy, X3, X4y X5) = S(Xxy, X3, X3, Xs). (3.5.2¢

Of course, S =s satisfies (3.5.27)-(3.5.29), but the general solution of th
system, without any regularity assumptions, is given by (see Gotlab [2])

S(x1, X3, X3, X4) = s(y(x,), y(x2), ¥(x3), ¥(x4)), (3.5.3(
where y: R — R is an arbitrary injection on R.
To get a characterization of the cross ratio use can be made of the conditio

)29



130 Regularity of solutions of linear equations

S = s imposed on a one-parameter family of harmonic points of the projective
line, i.e., .

S(x,l, 2x ,0>=—1, xeR:=R\{—1,0,1}. (3.5.31)
x+1

Condition (3.5.31) leads to a functional equation for y which in turn can be
transformed to the Schroder equation

a(——x—>=%a(x) xeR"=R\{-2, —1,0}. (3.5.32)
x+2

If o: R — R is an injection satisfying (3.5.32), then the function § given by
(3.5.30) with y defined by

y(x)=b + (o(x + N—a(1)™t, x#0, y(0)=b (3.5.33)

(b may be arbitrary) has property (3.5.31). The converse is also true.
The injections ¢: R — R given by

o(x)=c——, x#—1,0(—1)=c, ceR, (3.5.34)
x+1

satisfy equation (3.5.32). Using them in (3.5.33) we get homographies, too,
and S=s with such ys. Since the function f: X - X, X:={[0,a), a>0,
f(x) = x/(x + 2) satisfies the assumption of Theorem 3.5.1 (in particular,
f'(x)=4%+ 0(x), x = 0), formula (3.5.34) yields all solutions ceCHX) of
(3.5.32). Thus we have the following (Choczewski [13]).

Theorem 3.5.7. Let S: D — R be a function given by (3.5.30) witha y:R—-> R
injective and of class C' in a neighbourhood of x =1. If S satisfies (3.5.31),
then S =s. In other words: equations (3.5.27), (3.5.28), (3.5.29) and (3.5.31)
then characterize the cross ratio s.

3.6 Solutions of bounded variation

The theory of linear equations in this function class is also rather widely
developed. An extensive study of solutions of bounded variation has been
carried out by M. C. Zdun [4], [5], [7], [8], [15] (see also Matkowski-Zdun
[1], Lasota [1]). Here we present a few of Zdun’s results.

3.6A. Preliminaries

We denote by Var <p|X the variation of the function ¢: X — R on the interval
X.If X is not compact, then Var cp]X is meant as the supremum of Var qo|1
taken over all compact subintervals I of X.

We shall look for solutions in the class of functions

130 v BVX:={¢p: X - R, Var 9| X < o0}

3.6 Solutions of bounded variation 1

that are of bounded variation on X. For the homogeneous equation
P(f(x) =g(x)e(x) 3.6.
we make the following hypotheses.
(i) X=(0,a,0<a< 0.

(i) f: X = R is continuous and strictly increasing, 0 < f(x) <x in .
(iii) geBVX and m:=infy g > 0.

As usual, the sequence (G,),.n, is defined by (3.1.4). Moreover, througho
this section we use the following notations (x,e X, ie Ny):
X;= [fiﬂ(xo),fi(xo)];
a;=supg=supgof’;

Xi Xo

b, = sup G;;

Xo

v;=Varg|X;=Var go f'|X,;
i-1
A"'-: I—[ aj.
j=0
The lemma that follows shows the role of the sequence (G,).

Lemma 3.6.1. Under hypotheses (i)—(iii) we have

0<L 'G(x;)S A, SLG,(x;) for x,,x,€X,, neN,, (3.6.
where

L:=exp Varlog g| X (3.6..
does not depend on x,; and

Var G,| X, < KG,(x,), neNg, (3.6.¢
where K is a positive constant independent of x,.

Proof. We have for xe X, ne N,
A, | .
log - < ). [log a;—log g(f(x))| < Var log g|(0, x,],
(h(X) i=0
whence, according to (3.6.3), L"' < 4,/G,(x) £ L and (3.6.2) follows.
Further, G,, ((x) =g(f"(x))G,(x), by (3.1.4). Therefore
Var G,.,| X, S a, Var G,| X, + v,b,,  neN,,
whence, first by induction and next by the inequality A4;,, 2 b, ,,
n—1 n—1
Var G,|X,s 4, Y vib, b
i=0 i+1 i=1 Vit
Take in the inequalities of (3.6.2) first x, = x, x, = x, and then x, = x,
x, = x (where x € X;) to get the inequalities

L72G,(xo) S G,(x)) £ I2G,(xo), x € Xp, neNg. (3.6.5

/3]

v;, neN.



150 Analytic and integrable solutions of linear equations

Theorem 4.1.2. Make assumptions (i')-(vi'). If, moreover,
lgo(&)| < 1,

then, for m =0 and for m sufficiently large, equation (4.1.3,,) has a unique
continuous solution ¢,. X - Y, and lim,,_, ., @,, = ¢, au. in X.

Proof. By (ii’') and (v’) there are an m’e N, constants L >0, ®e€(0,1) and a
compact neighbourhood C’ of £ (independent of m) such that
lgnx) 2O,  |hax)]| L

for m>=m' and xeC'. In virtue of (iv') we now choose a C such that
fu(C)c C=C', meN,. The existence and uniqueness of a continuous
solution ¢,: X =Y to equation (4.1.3,) for m=0 and mz2m’ result
from Theorem 4.1.1 (with X = C) and Remark 4.1.1. By Theorem 1.6.4 we
have lim,, ., ., ®,, = @, uniformly on C.

Fix a peN. It follows from (iii’) that there exists an neN such that
f8(clV,)cint C, and hence, by (v'), fn(cl V)= C for m=0 and m large
enough. Since the ¢,, satisfy (4.1.3,)), we have (induction)

n—1 n-tli-1
OmX) = (S 12X TT gl S ) + 3 [H gm(ffn(x))jlhm(fﬁ..(x))- (4.1.4)
i=0 i=0 Lj=0

Using formula (4.1.4) we can easily check that lim, ., ¢, = ¢y uniformly
on cl ¥,. Hence the theorem follows in view of (vi'). W

4.2 Analytic solutions; the case | f ’(0)| <1

Now we consider complex-valued functions defined on subsets of C ~ the
set of complex numbers. In this and the next two sections we use abbreviation
‘LAS’ for ‘local analytic solution (of the underlying equation) in a
neighbourhood of the origin’.

4.2A. Extension theorems

The question arises whether a solution analytic in a neighbourhood of the
origin can be extended to a solution on a larger set with the analyticity
preserved. We present two theorems to this effect which are due to J.
Matkowski [2]. The equation in question is

p(x)(x) = g(x) (S (X)) + h(x). @42.1)
Assume the following. ’

(i) X =C is an open set and 0e X. The boundary of X contains at least
two finite points.
(ii) f: X = X is an analytic funcnon, f0)=0,|f'(0) <1,and f(x)# x for
xe X\ {0}.
(iii) The functions p: X = C, g: X » C and h: X — C are analytic in X,
p(x)#0in X. ‘
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Theorem 4.2.1. Let hypotheses (i)-(iii) be fulfilled and let Uc X be a
neighbourhood of the origin such that f(U)< U. If an analytic function
@o: U = C satisfies equation (4.2.1) in U, then there exists a unique solution
@: X = C of equation (4.2.1) in X such that

o(x)=@o(x)  for xeU. (4.2.2)

This function ¢ is analytic in X.

Proof. Take an arbitrary compact set Co = X and write C, = f"(Co), neN.
By Theorem 1.2.6 we have Cy < U for an index N €N, Define the functions
@;: Cy_; — C by the recurrence
Qi1 (X) = (gX) 0 (f(x) + h(x))/p(x),  x€Cqoi-y; (4.2.3)
where @, is the given solution of (4.2.1). By (4.2.3), ¢, is analytic in Cy_,
in particular so is @y in Co. Denote this @y by @(Co;-). Since @, satisfies
equation (4.2.1)in U, the function ¢(Cy;-) is independent of the choice of N.
Let K,, K, be compact sets, K; = K, < X. We claim that
oK ; x)=(K,; x) for xeK,. 4.2.4)
Indeed, if NeN is such that f¥(K,)< U, then also f¥K;)c fN(K,)< U.
Thus @o(K,; x) = @o(K1; x) = @g(x) for xe f¥K,). Making use of (4.2.3)
we check that ¢,(K,; x) = @,(K,; x) for xe f¥7i(K,), i=1,..., N, and, in
particular (i = N), (K ; x) = on(K,; x) = 0n(K3; X) = 9(K,; x) for xe K.
Let (K;);en be an increasing sequence of compact sets, the union of which
is X. In virtue of (4.2.4) the function ¢: X - C
o(x) = @(K;; x) for xeK;, jeN,
is well defined. We shall prove that it is a solution of (4.2.1) in X. Take an
xeX. Since X = UJ  K;, we have xeK; for a certain j. Further
o(x) = @(K;; x) = @x(K;; x) with N such that fMK)cU. Of course

fef(K;) and fY71(f(K;) = f¥(K)=U. Thus
‘P(f(Kj);f(x)) = (pN—l(f(Kj);f(x)) = ‘PN—l(Kj;f(x))-

By (4.2.3) one gets

g(x) oy - (K j; f(x)) = p(x) on(K 5 X) — h(x) = p(x)p(x) — h(x). (4.2.5)
There is an index ke N such that f(x)e K,. Relation (4.2.4) yields

oK f(x) = 0(f(K)); f(x)) = o(f(K)) U Ki; f(x)) = @(Ky; f(x))
= @(f(x)),

which together with (4.2.5) shows that (4.2.1) holds. Our claim is proved.
In order to verify the relation (4.2.2) take an xeU and a compact set K

such that xe K = U. Since ¢, satisfies (4.2.1) in U, we get by (4.2.3)
@(K, x) = po(x). There is a je N such that x € K;. Hence by (4. 2.4)

o(x) = o(K;; x) = @(K; U K; x) = o(K; x) = ¢o(x),

i.e. @ is an extension of ¢,.
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Now we pass to the general linear equation (4.5.1), assuming thus h #0,

Theorem 4.5.2. Let hypotheses (i)-(iii) be fulfilled with f, g, h of form (4.5.2)
dnd q 0. The set ® of meromorphic solutions of equation (4.5.1) is determined
as follows.

(1) If either g <0 or (4.5.7) holds, then ® consists of the single ¢ which is
of form (4.5.3) with k=r — q and ® regular at the origin.

(2) If (4.5.6) holds with an m <0, then ® = J when r =m, and when r > m
® forms a one-parameter family whose members ¢ satisfy (4.5.3) with
k =m and ®s regular at the origin except for a unique @, of the form

Po(x)=x"Dy(x),  Do(0)#0,
with @, regular at the origin.

Proof. Inserting (4.5.2) and (4.5.3) into (4.5.1) we get
. XKF(x))O(f(x)) = x**IG(x)®(x) + x"H(x). (4.5.8)

(1) If g =0 and (4.5.7) holds then we must have k =r=r—g, and ® can
be uniquely determined from (4.5.8) in virtue of Theorem 4.2.3. 1f ¢ <0, then
necessarily k =r —q and Theorem 4.2.3 again works for equation (4.5.8),
but now in a neighbourhood of the origin. The unique @ resulting from
Theorem 4.2.3 can be then uniquely extended onto X with the aid of
Theorem 4.2.2.
. (2) If (4.5.6) holds with an m <0, then obviously ¢ =0, and (4.5.8) can be
written as

XE[(F(x))*®(f(x)) — G(x)®(x)] = x"H (x). (4.5.9)

If r = m and k # m, then the left-hand side of (4.5.9) has at the origin a pole
of order different from r, a contradiction. For k=m=r (4.59) yields
0 # H(0)/®(0) = F(0)" — G(0) = [ f'(0)]™ — g(0) = 0 which is also impossible.
Thus if r = m equation (4.5.1) has no solutions of the form (4.5.3).

Ifr <m, we take k =r in (4.5.9) and determine a unique ® = ¢, on account
of Theorems 4.2.3 and 4.2.2. The theorem results now from Theorem
451. A

Remark 4.5.1. If in (4.5.6) we have m 20 or r <m <0, Theorem 4.5.2 does
not work. Now ¢ =0 in (4.5.2) and k=r in (4.5.3), so that a meromorphic
¢ satisfies (4.5.1) if and only if @ is a local analytic solution of the equation

(Fx)y H(x)
=" ¢ -

G (f(x)) )
resulting from (4.5.8) on taking k = r. Equation (4.5.10), in turn, has such
solutions if and only if it has formal ones, i.e. if system (4.2.6) associated
with equation (4.5.10) has a solution (c;).

O(x) (4.5.10)
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We learn from Theorem 4.4.4 that we cannot handle the case of g > 0.
Equation (4.5.1) may then have divergent formal solutions.

Comments. Meromorphic solutions of linear and nonlinear functional
equations were investigated also by R. Raclis [1], W. Pranger [1], R.
Goldstein [1]-[6].

4.6 Special equations

Some of the results of Sections 4.2—4.4 will be used here for finding local
analytic solutions of the Schroder and Abel equations. We preserve the
abbreviation ‘LAS’ from Section 4.2,

4.6A. The Schrioder equation
Theorem 4.2.3 when applied to the equation
a(f(x)) = so(x) (4.6.1)
yields the famous theorem of G. Koenigs [1].

Theorem 4.6.1. Let X = C be a neighbourhood of the origin, and let f: X - C
be an analytic function,
f0)=0, ['(O)=s, O<lsf<t

Then equation (4.6.1) has a unique LAS o fulfilling the condition ¢'(0) = 1.
This solution is given by the formula

o(x)= lim s™"f"(x). 4.6.2)
Proof. Because s(f'(0))=s**1 31 for ke N, system (4.2.7), when written
for equation (4.6.1), is uniquely solvable. Thus the existence of a unique LAS
o of (4.6.1) actually follows from Theorem 4.2.3. Formula (4.6.2) may be
obtained by the argument we have used in the proof of Theorem 3.5.1
(formula (3.5.2)). H

Remark 4.6.1. If an invertible function ¢ satisfies equation (4.6.1), then its
inverse ¢ = o~ ! satisfies the Poincaré equation (Poincare [1], [2])

p(sx) = f(o(x)).

The case where |s| =1, but 5 is not a root of unity, is covered by Theorem
4.3.1. For the case where s is a root of unity we have the following result
(see Rausenberger [1], Muckenhoupt [1]). ‘

Theorem 4.6.2. Let the conditions of Theorem 4.6.1. be fulfilled except that
now s is a pth root of unity. Then equation (4.6.1) has an LAS o such that
a(0)=0, a’'(0) =1 if and only if f? =1id. The solution is not unique.
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8.5A. Julia’s equation and the iterative logarithm '
The theory of conjugate FPSs is based on some notions and results by J.
Ecalle [2] concerning the Julia equation
AMf(x)) = f'(x) A(x). . (8.5.1)
. Let f be an FPS of the form .

Jx)=x+ 3 bx",  b,#0,m22. (8.5.2)
Suppose that an FPS
Ax)=3 c,x" (8.5.3)
n=0
formally satisfies equation (8.5.1). Insert (8.5.2)and (8.5.3) into (8.5.1) to get
® n © 1 w n
>y (’f)c,,x""i( y bkx“> =3 Y (i +m)bypcyx"tmL,
n=1i=1 \1! k=m n=0i=0
Equating the coefficients of x™*/~1, je N,,, we obtain
jCjbm+Aj=mmej+Bj, A0=BO=0’ ’ (8.5.4)
where the terms 4; and B, contain only ¢, with i <j, and are homogeneous
inthec. Forj=0,..., m— 1 relation (8.5.4) yields ¢; = 0. Thus 4,, = B,, =0,

¢, may be arbitrary, and then the c; for j>m can be uniquely determined

from (8.54) and are homogeneous functions of ¢m Thus we have the
following.

Theorem 8.5.1. If [ is an FPS of the form (8.5.2), then equation (8.5.1) has
a unique formal solution Ay of the form

Ao(X)=bux™+ Y c,x". (8.5.5)
n=m+1
The general formal solution A of (8.5.1) is given by A(x) = cAy(x), where ¢ is
an arbitrary constant (a parameter).

Theorem 8.5.1 gives rise to the following definitions which are due to J.
Ecalle [2].

Definition 8.5.1. (1) The FPS A, given by (8.5.5) is said to be the iterative
logarithm (logit 1) of the FPS f given by (8.5.2) and is denoted by f,.

(2) The number m — 1 (see (8.5.5)) is called the iterative valuation (valit f)
of f.

(3) By the iterative residuum (resit ') of S we mean the coefficient of x~!
in the formal Laurent series 1/ fw» or, which is the same, the coefficient of
x™~1 in the FPS 1/f,, where £, (x) = x"f(x).

There is a one-to-one correspondence between S and logit £,

ERL

8.5 Conjugate formal series and analytic functions 347

Theorem 8.5.2. To every FPS (8.5.5) there corresponds a unique FPS (8.5.2)
such that 4, =logit f.

Proof. This follows on inserting (8.5.2) and (8.5.5) into (8.5.1) and equating
the coefficients of x*™*/~!, 1

The convergence of the series (8.5.5), in the case where the series (8.5.2)
converges in a neighbourhood of the origin, is a difficult problem. What is
more, it is rather a rare situation, as may be seen from the theorem below
whose proof will not be given here.

Theorem 8.5.3. Let f be a meromorphic function, regular at the origin and
having the expansion (8.5.2). If the FPS f, has a positive radius of
convergence, then

X
=, beC.
1) 1+ bx

Theorem 8.5.3 is implied by the results of I. N. Baker [9] (see also Szekeres
[4]) and ErdGs—Jabotinsky [1].

8.5B. Formally conjugate power series
We start with necessary conditions for two FPSs

fx)=x+ 3 bx", b,#0,m22,
" (8.5.6)
gx)=x+ Y a,x", a#0,k22,

n=k
to be conjugate. Regarding the theorem that follows see Ecalle [1], [2],
Erdds—Jabotinsky [1], Muckenhoupt [1].

Theorem 8.5.4. Let f and g, of form (8.5.6), be formally conjugate FPSs, i.e.

o(f(x)) = glo(x)) (8.5.7)
holds with an invertible FPS ¢, the inverse of which has the form

e 'x)= Y dx",  d,#0. (8.5.8)
n=1
Then, for f, =logit f and g, = logit g, we have
fi=(g.°0)/0', (8.5.9)
valit f = valit g, (8.5.10)
resit f =resit g. (8.5.11)

Proof. In view of Theorem 8.5.1 the series f, and g, are uniquely determined.

%




348 On conjugacy

Inserting (8.5.6) and (8.5.8) into the relation 9" tog=fop~! we obtain

EEQJer(Foe) - S (g o)

whence it follows immediately that m=k, yielding (8.5.10); and also
b, = a,d; ™. Hence the series on the right-hand side of (8.5.9) has the form
bux™+ .. Thus it is logit £, if it satisfies the Julia equation (8.5.1). We
check that (note that g, og=g’cg,, by the definition of 94)

9x°(@°f) _94°(9°0) _(gu°9)o0 _g'o0 (g e0)0’ gyop

= (p =
oo f oS oS  @ef oof ¢
When (8.5.7) is differentiated, the first ratio here becomes Sfiie.
g* f fv gt
¢ @'

and we get (8.5.9) in view of Theorem 8.5.1.

In order to calculate the iterative residua of g and f we need to find the
coefficient of x~ ! in 1/g, and 1/ S respectively. This coefficient depends only
on a finite number of the coefficients in the FPSs g, and o
(respectively in the FPSs f, and ¢). Thus there exist polynomials G and ®
(curtailments of g, and @) such that the coefficients of x~! in 1/G and in
®'/(G - @) are equal to those in 1/g, and in 1/ fa = @'/(g, ° @), respectively.
But for polynomials these coefficients are the usual residua of the
corresponding functions, and can be expressed by the known integral
formulae. Thus we have

resitf=—1—,fm=—l—, —di=resitg,
27 J G(®(x)) 2=i) Gu)
where the path of integration is a (positively oriented) closed contour around
the origin. This proves (8.5.11). B

The relation of conjugacy is transitive. Thus we may first look for

conditions for f to be conjugate with a specific (sample) FPS. We attempt
to find a DeC for f to be formally conjugate with

g(x)=x + x™+ Dx?¥"~1, 8.5.12)

Supposing that (8.5.7) holds with an FPS o, the inverse of which has
expansion (8.5.8), we obtain

2 b,,<z dkx> Z Z d ( ) puitmi(] 4 Dxm=1y,  (8.5.13)
n=m k=1 .

p=1i=1
Comparing in (8.5.13) the coefficients of x™ yields b,,d} = d,, whence d, may
be any of the m — 1 values of the (m — 1)st root of b,,. Equating then the
* coefficients of x™*/~! for j 2 2 we find

mb,dy~'d;+ A, =jd, + B, (8.5.14)
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where 4, and B, depend only on d; with i < j, and, for j 2 m, B; may depend
also on D. Since b,d} '=1, relation (8.5.14) yields unique d; for
i=2,...,m—1.Forj=mwehave B, = Bf +d,D, where B is independent
of D. Since (8.5.14) now becomes A,, = B,,, we get D=d; (A4,, — B¥). For
j>m we can again determine the d; from (8.5.14), and d,, is arbitrary.

To proceed further we need the following lemma, which results from
comparing the coeflicients in the formula that we get from (8.5.1) with 1 = f,
(see (8.5.4)).

Lemma 85.1. If
f)=x+x"+dx*" '+ Y b,x"

n=2m
then
flX)=x"+ (D —fm)x* "1+ 3  cx"
n=2m+2

Now, we can prove that D does not depend on the choice of the root d,.
For suppose that f given by (8.5.2) is formally conjugate with g defined
by (8.5.12). By Lemma 8.5.1 g.(x)=x"+(D~dm)x>""t4... ie,
(1/g,)x)=x""—(D—-4m)x~' + ..., Theorem 8.5.4 says that resitf =
resit g = — D + 4m, and D = im — resit f depends only on f.

It follows from what has been said so far that f is conjugate with g of
form (8.5.12) if and only if D = 4m — resit f. Thus two series of form (8.5.6)
are conjugate with the same g given by (8.5.12) if they have the same iterative
valuation and iterative residuum. These considerations, together with
Theorem 8.5.4, imply the following.

Theorem 8.5.5. Let f and g be FPSs with f(0)=g(0)=0, f'(0)=g'(0)=1.
Series f and g are formally conjugate if and only if valit f = valitg and
resit f = resit g.

There is one more fact that can be derived from our discussion based on
examining relation (8.5.13). Namely, if we stop after having determined from
(8.5.14)thed;forj=1,...,m— 1, then we get a polynomial P(x)=d,x + - - -
+dp_1x™ ! such that =P !0 fo P has a form §(x)=x + x™ + dx2"~! +
terms of higher orders, since the latter bear only on ¢; with j > m. We shall
formulate this fact as a lemma, which will be useful in the next subsection.

Lemma 8.5.2, If f is an FPS of form (8.5.2), then there exists a polynomial
P such that

P lofePx)=x+x"+dx™ 1 4...

where d = $m — resit f.
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8.5C. Conjugate analytic functions

The conditions expressed in Theorem 8.5.5 are also necessary, but not
sufficient for the analytic conjugacy of f and g if they actually represent
analytic functions. In fact, let f be an analytic function with expansion (8.5.2)
such that f, has a positive radius of convergence, and let g be given by
(8.5.12), where D =4m —resit . Then f and g are formally conjugate in
virtue of Theorem 8.5.5. If /' and g were analytically conjugate, then we
would have g=¢~'o fog with an analytic function ¢, and by Theorem

8.5.4 g, = (f.°v)/o' would have a positive radius of convergence. But this.

is impossible in view of Theorem 8.5.3, as g(x) # x/(1 + bx).

Necessary and sufficient conditions for analytic conjugacy of functions f, g
with f(0)=g(0)=0, f'(0) =g'(0) = 1 have been given by J. Ecalle [3], but
they are too complicated to be reproduced here. However, after
B. Muckenhoupt {1], we shall prove the following.

Theorem 8.5.6. Let X = C be a neighbourhood of the origin, and let f: X — C
and g: X — C be analytic functions such that f(0) = g(0) =0, f'(0) = g'(0) = 1.
If their iterative logarithms f, and g, have positive radii of convergence and
/. g are formally conjugate, then they are analytically conjugate.

Proof. By Lemma 8.5.2 and Theorem 8.5.5 it suffices to consider f and g of
the form
a0 @O
JER)=x+x"+dx> " 4 ¥ bx", gx)=x+x"+dx* '+ ¥ ax",
n=2m n=2m
where d=4m+r, m=1+valit f = 1 + valit g, r = resit f =resit g, for the
series above are formally conjugate with the corresponding original ones.
By Lemma 8.5.1 we have

foxX)=x"+(d—=dm)x?=1 4 ... Gu(X)=x"+(d—-dm)x*" "1 4 ...,

(8.5.15) -

Consider the differential equation
Y = fu0)/g4(x). (8.5.16)

We want to find its solutions of the form y(x) = x + x™z(x). Then z should
satisfy _

e Julx + x"z) — g, (x) — mzx™~ ‘g*(x).

. x"g(x)

By (8.5.15) the right-hand side of (8.5.17) is an analytic function of (x, z) in
a neighbourhood of (0, 0). By Cauchy’s Existence Theorem for differential
equations, (8.5.17) has an analytic solution z in a neighbourhood of the
origin. The corresponding function y is analytic and invertible in a
neighbourhood of the origin. Write

h=ylofoy. (8.5.18)

(8.5.17)

8.5 Conjugate formal series and analytic functions

Treating h as an FPS we find similafly as in the first lines of the proof of
Theorem 8.5.4 that

h(x)=x+x"+ Y hx"

n=m+1
(observe that now b,, = 1), By Theorem 8.5.1 the FPS h, =x™ + - . . makes

sense. We want to prove that h, =g,.
Indeed, (8.5.16), (8.5.18), the relation f,of=f'-f, and again (8.5.16)

imply
Y eh)guoh)=Feoe)=(feo floy=(f"yNfucy)=(f">y)y 9,
But (8.5.18) yields (' sh)h' = (f' o y)y’ so that
gulh(x)) = H (x)g,(x).
In view of (8.5.15) this means that g, = h,.. By Theorem 8.5.2 also g = h and
(8.5.18) shows that g is analytically conjugate with f. W

Now we pass to the case where | f ’(0)’ =1 but f'(0) # 1. Observe that the
condition f'(0) = g'(0) is necessary for functions f and g (both analytic in a
neighbourhood of the origin) to be analytically conjugate. Theorem 8.5.7,
whose part (b) is due to B. Muckenhoupt [1] contains conditions equivalent
to analytical conjugacy. (If f'(0)? = 1, f? #id, then Theorem 8.7.6 applies.)

Theorem 8.5.7. Let X = C be a neighbourhood of the origin and let f: X — C,
g: X — € be analytic functions such that f(0) = g(0) = 0. Consider two cases:

(a) f'(0)eS, where S is the Siegel set (see Definition 4.3.1),
(b) f'(0)+#1 is a pth root of unity and f?=id.

Necessary and sufficient conditions for g to be analytically conjugate with f are

in case (a): ¢’'(0) = f'(0),
in case (b): g'(0) = f'(0) and g* =id.

Proof. Part (a) follows from Theorem 8.3.1. In case (b) the necessity of the
condition g” = id is obvious, and the sufficiency is a consequence of Theorem
462. B

8.5D. Abel’s equation

Results of Subsection 8.5A may also be used to prove a theorem on complex
solutions to the Abel equation

a(f(x)) = a(x)}+ 1 (8.5.19)
in the case where s = f'(0) = 1 (Ecalle [2]; for s # 1 see Subsection 4.6B).

Theorem 8.5.8. Let f having expansion (8.5.2) be analytic in a neighbourhood

35/
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of the origin. Then equation (8.5.19) has solutions a defined in a vicinity of
the origin and such that ‘ '

m-1 .
ax)=cologx+ 3 cx"'+o(x), ¢ ...,cu_16C, (8.5.20)
=1

where @ is an analytic function in a neighbourhood of the origin, if and only
if fx =1logit f has a positive radius of convergence. If S, actually is a function
analytic at the origin, then o is determined uniquely up to an additive constant
and is given by the formula

7% de 77 de
(x)= +f [J - :’ , 8.5.21
e UL ol o ®32D)

where c is an arbitrary constant (a parameter), x, is a point arbitrarily fixed
in a vicinity V of the origin, and the integration is over an arbitrary path in
V joining x, with x, respectively f(x,).

Proof. Let «, defined in a vicinity of the origin, be a solution of (8.5.19) with
property (8.5.20). Since (8.5.19) cannot have a solution analytic at the origin,
not all the c; are zero. Thus A(x) = 1/«'(x) is analytic at the origin and satisfies
equation (8.5.1). In view of Theorem 8.5.1, we have A(x) = yf,(x) with a
y #0. Since f, (x)=x™p(x) with ¥(0)=b,, #0, the function 1/2 is analytic
in a vicinity V' of the origin and has a pole of order m at 0. Consequently,
in V we have

X dt X
a(x)=c+J —=c+y! de (8.5.22) -

xo A1) w0 Ja(t)’
where x, € Vis arbitrary, and we integrate over an arbitrary path in V joining
xo with x. Since o satisfies (8.5.19), we have

JS(xo0) dt JSixo} _
f f - o'(t)dt = y[a(f(x0)) — a(xo)] =¥,

o Salt) Uy
and so (8.5.21) results from (8.5.22).
" Now assume that f, is an analytic function in a neighbourhood of the
origin. Then in a vicinity of x =0 we have Je(x)#0, f(x)# —x and

fitx) 1-m_  1l~m
Hmf N ) et S
x=0 Jx f*(t) x=0 (1 _m)bm

where the integral is taken over the segment joining x and f(x). So we can
find a vicinity V of the origin such that both J« and the integral occurring
in (8.5.23) do not vanish in V. Define a(x) for xe V by (8.5.21) with x,e V
arbitrarily fixed. Then it is easily seen that « has property (8.5.20) and satisfies
equation (8.5.19). W

=1, | (8.5.23)

Comments. Regarding conjugacy problems we discussed in this and the
preceding sections see, in particular, Belickil [1]-[9], Bratman [1],
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Ditor [1], Ecalie [1]-[3], Fine-Kostant [1], Herman [1], Julia {3], Kneser
(11, Kuczma [11], [23], Muckenhoupt [1], Nitecki [1], Sternberg [2], [6],
Venti [1], Weitkdmper [2].

8.6 Permutable functions
Let g = f in the conjugacy equation (8.0.1). Then we obtain the equation

o(f(x)) = f(o(x)). (8.6.1)

If (8.6.1) is satisfied, then we say that f and @ commute or are permutable.

Commuting functions have been extensively studied by many authors (see
Comments at the end of this section). Here we confine ourselves to the
one-dimensional case only and to presenting some results which can be
obtained with the aid of solutions of the Schréder, Abel and Béttcher
equations. :

Permutability is a rare property of functions. In the Cartesian square of
the space C=C([0,1], R) of continuous functions with the usual sup
norm, the pairs of commuting functions form a nowhere dense set (Kuczma
[27]). On the other hand, it can be deduced from Theorem 5.3.1 that for
every strictly monotonic f € C the solution ¢ € C of equation (8.6.1) depends
on an arbitrary function (Lipinski [1], Kuczma [26, pp. 213-14]).

However, if f and ¢ have a higher regularity, then often we are able to
prove the uniqueness of ¢ satisfying (8.6.1) with a given f. The theorems to
this effect we present below are based on the following scheme.

Suppose that f is conjugate to a function g, g f = g< @y, Where ¢, is
an invertible function smooth enough. If a function ¢ is permutable with f,
then ¢:=g@,° ¢ satisfies equation (8.0.1). In a class of sufficiently smooth
functions this equation may happen to have a unique solution, up to a
parameter. In such a case, since both ¢ and ¢, satisfy equation (8.0.1), they
must be related in a form ¢ = G(c, ¢,), where c is the parameter. Hence
¢ =9 '°Glc, ¢,), and we obtain a one-parameter family of solutions of
(8.6.1). -

Now, results on smooth permutable functions are obtained by the
argument just described with g(x) = sx, g(x) = x + 1 and g(x) = x?. Equation
(8.0.1) then becomes the equation of Schréder (8.0.2), Abel (8.0.3) and
Béttcher (8.0.4), respectively.

In the following, when we say ‘all ¢’ we mean ‘all functions ¢ commuting
with f and satisfying ¢(0)=0". Moreover, whenever we write U = X, we
mean by U a neighbourhood of the origin. Finally, we put

si=£(0).
In _the case of analytic functions, if 0 <|s| < 1, we obtain from Theorems
4.3.1, 4.6.1 and 4.6.3 the following,
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3f More on the Schréder and Abel equations 9.1 Principal solutions 367

Following G. Szekeres [ 1] we distinguish special solutions of this kind which
are called the principal solutions to Schrdder’s and Abel’s equations.

In the sequel we take X =[0,a, 0<a<oo, and /1 X > X to be a
continuous strictly increasing function, 0 < f(x) < x in X\ {0}.

e took in (9.1.1) an x, € X\ {0} in place of x,, then the limit would
rom the previous one only by a constant multiple. Thus the principal
lion of the Schrider equation is unique up to a constant factor.

eneral, the principal solution behaves better near the origin than other
ns of (9.1.2). Conditions for the existence of limit: (9.1.1) are contained

Definition 9.1.1. Let us assume that the limit orems 2.3.12 and 2.4.4 and also in Lemma 2.5.1.

n+i
s:=lim u_), xe X\ {0}, 'k 9.1.1. If there exists the limit
neo S (X) F(x)=lim s "f"(x), xeX, (9.1.3)
exists and it does not depend on x. Take an x,€ X\ {0}. If the limit e
£7(x) EHmit (9.1.1) exists as well. The converse is not true. E. Seneta [5] proved
o(x)=lim — , xeX, 9.1.1} e key condition for the existence of &, 0 < & < o0, is the convergence,
n=w S "(Xo) : improper integral
exists and is positive and finite in X'\ {0}, then it satisfies J" (f(x) — sx)x~2dx
ag(f(x)) =so(x) (9.1.2) 0

¥ X\ {0} (see Theorem 1.3.2). Formula (9.1.3) is called the Koenigs

and is called the principal solution of the Schroder equation (9.1.2). hm (Koenigs [1]); see Theorem 3.5.1

let (d be any sequence of reals for which
Table 9.1. Schrader’s equation (nlnen ¥ 549

lim - (™) = ) =1,  xeX\{0}. (9.1.4)

n—x n

Function class Subsection Applications Section, ete:

Monotonic 2.3F Branching processes (BP): limit 2.1B, 2.6A - )
distributions n 9.1.2. Let a sequence (d,) have property (9.1.4). If there exists the
Convex 24D BP: restricted stationary measures 2.6C
Fractional iteration 11.4 |
Regularly varying 2.5B BP: norming sequences Note 2.8. .
crrzl 3.5A Linearization _ 8.2 a(x):= lim — (f"(x) — f"(xo)), x€ X \{0}, (9.1.5)
8.2B Permutability 8.6 n=wo %n
Fractional iteration 11.4 : : :
Crows ratio 4 35D & %o € X\ {0}, then it satisfies
An integral equation Note 3.8.14 i a( f(x))=a(x)+1 (9.1.6)
Analytic 4.6A Conjugacy 8.4A : i
43A Permutability 8.6 called the principal solution of the Abel equation (9.1.6).
8.2A Fractional iteration 11.6
Characterization of functions 10.2A. D ay be easily shown that limit (9.1.5) does not depend on the choice
Second-order iterative inequality 12.7 .

fsequence (d,) satisfying (9.1.4), and that by replacing x, in (9.1.5) by
r x, € X\ {0} we obtain a limit which differs from (9.1.5) by a constant
and. Thus the principal solution of the Abel equation is determined
an additive constant.

Table 9.2. Abel's equation

Function class Subsection Applications Section, ete.
Convex 2.4D BP: limit distributions 2.1B, 2.6A k 9.1.2. If (9.1.4) holds for d, = f"* }(xy) — f"(xo), where xo€ X\ {0}
BP: restricted stationary measures 2.1D, 2.6C h ists the limit
Cr=1 3.5C Second-order differential equations 3.7C there exists the lim
Conjugacy 8.4B ) — ™(x
Permutability 8.6 &(x) = lim ~fT§—) - f( 0_) , X e X\{O} s 9.1.7)
Analytic 4.6B n=w ST (X0) = [ "(x0)
8.5D

t is the principal solution of (9.1.6). Formula (9.1.7) is called the
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420 Characterization of functions

(This is a result of W. Sierpinski [1]. The proof is similar to that of
Proposition 10.6.1, and is presented e.g. in Kuczma [26, Ch. XI, § 5].)

10.6.2. For results concerning other characterizations of peculiar, mainly
c.n.d., functions, in most cases by systems of simultaneous equations see
Andreoli [1], de Rham [1]-[5], Dubuc [3], Julia [4], Ruziewicz [1],
Sierpifiski [3], [4], Wunderlich [1]. Regarding systems of simultaneous
iterative functional equations see also Howroyd [1]-[3].

10.6.3. The cotangent can be characterized in the following ways:
" (a) (Gupta [ 1], private communication) The unique function ¢: (0, 1) » R
that is continuous, satisfies lim,_, o(¢(x) — 1/x) = 0 and solves the equations

o(x)=3{o(x)+ oG(x+1))], xe(0,1), (10.6.2)
and @(x) + (1 ~ x) =0 (thus ¢(}) =0) is ¢(x) = = cot 7x.
(b) (Jager [17) If : (0, 1) - R is continuous and satisfies the equations

n—1 ;

(p(x)=1 Y <p<xT+l>, xe(0,1), (10.6.3)
i=0

for all neN, then ¢(x)=acotnx+b,a,beR.

The main tool to prove (a) is a particular case of Lemma 10.4.1 due to
E. Mohr [1] (see also Walter [1]) that concerns Riemann integrable solutions
{on [0, 1]) of (10.6.2). Using it for the (continuous in [0, 1]) solution @ of
(10.6.2), ¢(x)=@(x)—ncotmx, xe(0,1), (0)=@(1)=0, one finds p=0
by ¢(3) = () =0.

That the cotangent satisfies (10.6.3) for neN is seen, for instance, from
its resolution into partial fractions

ncolnx=1+ 3 < : ——1~>, xed. (10.6.4)
x si\x+k x—k

This formula is derived (Mohr [1], see also Walter [1]) as in (a), by showing

that the function @(x):=ncotnx —lim,., 3" _,1/(x+j) for xe(0,1),

¢(0) = @(1) = 0 shares all the properties of ¢. In turn, (10.6.4) follows directly

from Euler’s identity for the sine,

0 2
sinnx = nx [] (1—"—2), xeR, (10.6.5)
k=1 k
by differentiation. To prove (10.6.5) H. Haruki [5] uses the equation
o(x)= o)kl —x),  xeC, (10.6.6)

and shows that it has the unique entire solution ¢ = | and that the quotient
of both sides of (10.6.5) is also an entire function (its singularities at the
integers are removable) that satisfies (10.6.6).
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Iterative roots and invariant curves

11.0 Introduction

Dealing with a continuous iteration semigroup { f*: s > 0} (see Section 1.7)
and putting f:=f! we get, in particular, the existence of solutions of
the functional equations

V=7 (11.0.1)
for any positive integer N; indeed, it suffices to take ¢:=f'V Having,
however, a self-mapping [ which, a priori, is not embeddable into any
continuous (or even only rational) iteration semigroup, we may go on trying
to find solutions of (11.0.1), at least for a given N e N. This is just the central
idea of the present chapter.

For obvious intuitive reasons any solution of equation (11.0.1) is called
the Nth iterative root of the function f. The symbol f /¥ used above suggests
also an alternative term: (the Nth) firactional iteration, actually occurring in
many papers.

The material of this chapter is organized as follows. Starting with the
iterative roots of arbitrary mappings we proceed to discuss special aspects
of this problem for functions from a subset of the real line (usually an interval)
into itself. Next, we investigate local analytic solutions of equation (11.0.1)
in a neighbourhood of the origin at the complex plane. Then we deal with
iterative roots of identity, i.e. we seek for solutions of the so-called Babbage
equation

oV =id (11.0.2)
which in fact is one of the oldest iterative functional equations ever discussed.
We shall be concerned mainly with continuous solutions of (1 1.0.2) and of
its special case N = 2 defining the involutions.

The last part of the chapter is loosely related with the preceding ones. The
goal is to find two-dimensional manifolds invariant with respect to a given
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422 Iterative roots and invariant curves

transformation. This interesting geometrical problem leads, in a particular
case, to the following functional equation:

e(f(x, 9(x))) = g(x, @(x)). (11.0.3)
The problem of existence and uniqueness of local Lipschitzian solutions of
(11.0.3) in a neighbourhood of the origin is considered. The reason for
associating such studies with finding iterative roots is just the following
common feature of (11.0.1) and (11.0.3): both of them contain superpositions
of the unknown function.
" As previously, supplementary facts and information are collected in the
final Notes section.

11.1 Purely set-theoretical case

In the whole of this short section, X denotes an arbitrary set, f is a
self-mapping of X and N is a fixed positive integer.
We start with the following.

Theorem 11.1.1. Let ¢: X — X be a solution of the equation o™ = f. Then ¢ is
surjective (resp. injective, bijective) if and only if f is surjective (resp. injective,
bijective).

Proof. ¢(X)=X implies f(X)=@™(X)=X. Conversely, assume f to be
surjective; if the set X'\ (X)) were not empty, say xoe€ X\ ¢(X) then, for any
xe X, we would have @(x)# x, whence f(x)=¢"(x)=@(e" '(x))# X0
which contradicts the surjectivity of f.

Since the composition of injections is an injection again we see that the
injectivity of ¢ implies that of f. Conversely, assume f is injective; if ¢ were
not injective then, for some x, ye X, x # y, we would have ¢(x) = ¢(y) whence

Sx)=0"x) =" o)) = o" Mo () = o) = £(1),
which contradicts the injectivity of f.
The appropriate bijectivity equivalence follows now immediately. W

For bijective mappings f the equation

oVN=7f (11.1.1)
was solved by S. Lojasiewicz [1] (see also Bajraktarevi¢ [9], Haidukov [1]
and Kuczma [26]). The general solution in the case N = 2 has been described
by R. Isaacs [1]. Extéhding the notions and methods of Isaacs (see also
Sklar [1]), G. Zimmermann-Riggert [1], [2] gave a solution in the general
case by reducing the problem of the existence of the Nth iterative roots to
the problem of the so-called N-mateability. The whole procedure is described
in detail in G. Targonski’s monograph [8]. We shall confine ourselves here
to the statement of the main result to give a flavour of such studies only.
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For let n be a divisor of N2 and let Q,,...,Q, be orbits of J. Put
Q:={JI-, Q. We say that the orbits Q,,...,Q, are N-mateable provided
there existsa map ¢g: Q — Q such that ) = f]€2and ¢ has one single orbit.

Theorem 11.1.2. Equation (11.1.1) has a solution if and only if the family of
all orbits of F admits a decomposition into a disjoint union of classes such
that the cardinality of each class is a divisor of N and the elements of each
class are N-mateable.

Various necessary and sufficient conditions for N-mateability may be found
in Targonski’s book [8], too.

For further purposes we shall end this section with the proof of the
following lemma which is a particular case of a result of R, Isaacs [1.

Lemma 11.1.1. Suppose that f(a)=b and f(b)=a for some a,be X, a#b.
If, for any xe X, the equality f*(x)= x implies that x e {a, b, f(x)}, then the
equation

oi=f (11.1.2)

has no solutions.

Proof. Suppose that ¢:X — X is a solution of (11.1.2) and put c:=@(a). Then
FHe)=¢%@a)=o(f%@)=¢la)=c and therefore ce {a,b, f(c)}. If c=a,
then b = f(a) = ¢*(a) = ¢(c) = p(a) = c = a, a contradiction. If ¢ = b, then
b= f(a)= ¢*(a) = @(c) = p(b) whence a= f(b) = ¢?(b) =b, a contradiction
again. Finally, if we had f(c)=c, then ¢(b)= @(f(a)) = ¢*(a) = flo(a))=
J(c)=c whence ¢(a)= ¢(b) and, consequently, we would get b= fa)=
@*(a)= @*(b) = f(b) = a, contrary to our assumption. [

11.2 Continuous and monotonic solutions

Such a situation as described in Lemma 11.1.1 cannot happen for any
increasing function f: R - R. Actually, as we shall see later, any continuous
and strictly increasing function on the real line possesses continuous and
strictly increasing iterative roots of all orders. But first we shall prove some
preliminary results.

Lemma 11.2.1, Let X < R be an arbitrary set and let f: X — X be strictly
monotonic. Assume @: X — X to be a monotonic iterative root of f and fix a
point xge X.

(@) If o is increasing, then the following conditions are equivalent:

(1) f(xo) = xq;

(2) plxq) = xo;

(3) o(xo) = f(xo).

(b) If @ and f aredecreasing, then ¢(xo) = f(x4)if and only if f(x4) = x,.
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Proof. Suppose that ¢ is an iterative root of the Nth order. By Theorem
11.1.1 ¢ is strictly monotonic.

To prove (a) assume (1) and suppose that @(xg)>x, Then
@ Hxo)> @*(xo) for all keN whence f(xo) =@ (xo) > @(x)> xo, @
contradiction. Similarly. ¢(x,)<x, would imply f(xg) <x,. Therefore,
implication (1) = (2) has been proved. Assume (2); then f(x,)= oN(xo) =
Xo = ¢(x,), i.e. (3) holds true. Now, suppose (3) to be satisfied and put
g:=¢"~'. Then g is strictly increasing and g(x,) = ¢" ~(x,) = x,; applying
the first part of the proof with f replaced by g we infer that f(xo) = @(x) = x,.

To prove (b) observe that N has to be odd, y:=¢?, g:=f? are strictly
increasing and ¢ = g. On account of (a), relation g(x,) = x, is equivalent
to the equality ¥/(x,) = xo, i.6. f2(xo) = x, is equivalent to ¢?(x,) = x,. The
latter equality is satisfied if and only if @™~ '(x) = x, (recall that N is odd)
being equivalent to f(xq) = 0(x;). W

Lemma 11.2.2. Let X <R be an arbitrary set and let : X — X be strictly
increasing. Assume @:X — X to be an increasing iterative root of f. Then the
Junctions (f —idy)(@ —idy) and (¢ —idx)(f — @) are both nonnegative.

Proof. Suppose that ¢ is an iterative root of the Nth order. By Theorem
11.1.1 ¢ is strictly increasing. Fix an x,€ X and assume that f(xq) > x,. If
we had @(xo) < xo, then ¢**'(x,) < @*(x,) for all ke N and we would get
S(x0) = @™(x0) < @(x,) < X0, a contradiction. Similarly, S(x0) < x, implies
©(xo) < Xo. This proves that the function (f —idy)(¢ — idy) is nonnegative.
The remaining part of the proof is similar.

Theorem 11.2.1. Let X <R be an interval and let f: X - X be a strictly

monotonic surjection. Assume @: X — X to be an iterative root of f. Then ¢

is continuous if and only if @ is strictly monotonic.

Proof. By Theorem 11.1.1 g is bijective. Continuous bijection on an interval
has to be strictly monotonic. The converse results from the fact that any
monotonic surjection on an interval is continuous. i

11.2A. Strictly increasing continuous iterative roots

Now we can prove the following.

Theorem 11.2.2. Ler X = R be an interval and let f be a strictly increasing
and continuous self-mapping of X. Then [ possesses strictly increasing and
continuous iterative roots of all orders. More precisely, for any positive.integer
N 2 2, the strictly increasing and continuous solution of the functional equation

oMx)=f(x), xeX,
depends on an arbitrary function.

11.2 Continuous and monotonic solutions 425

Proof. Without loss of generality we may assume that X =(a, b,
—wo<€a<bgow, and a< f(x)<x for all xeX. Indeed, otherwise,
setting F:={xe X: f(x)=x} we have X = F u | J, X, where X, are pairwise
disjoint intervals of the form («, f| or [«, §) with o, e F or x=a or §=b.
If @ is a (necessarily strictly) increasing iterative root of f, then Lemma
11.2.1 gives ¢(x) = x for xe F, whence ¢{X,) < X, for each k; conversely, if
for each k a self-mapping ¢, of X, is a continuous Nth iterative root offlxk,
then the function ¢:X — X defined by the formula

@,(x) forxe X,
@lx)= {x

yields a continuous and strictly increasing Nth iterative root of [ (see
Lemma 11.2.2).
Thus, to proceed, fix arbitrarily a point x,€X, choose any points
X;>x, >+ > xy_y from the interval ( f(x,), xo) and put
Xeen=J{x)
(which is equivalent to x, = f ~!(x,,»)) for all those ke Z for which the
recurrence procedure is performable. Put J:=Z ~[—k,, 00) provided that
either x_, =beX or x_, ., does exist but x_, does not; otherwise, put
Ji=2Z. Let =[x, x, 1, ke Z,if J = Z;if, however,J = Z n (— kg, ), then
1._{[xk+l,xk] for ke Z n (—kq, o),
X BN X for k=k,.
Finally, given arbitrary increasing homeomorphisms ¢, of I, onto I, |,
ke{0,...,N—2}, we put
eelx)=fo @ity so oo ti(x), x€ly,
forkeN, k= N—1, and
Plx)= @t o e oty o f(x), xely,
for keyn(—oo, —1]. Now, it is easy to check that the formula
P(x)=gy(x)
defines a continuous and strictly increasing Nth iterative root of f. W

forxeF,

for xel,, keJ,

Remark 11.2.1. Each continuous and increasing iterative root of a
continuous and strictly increasing self-mapping of a real interval may be
obtained in the manner just described. We omit the obvious detailed
calculation.

11.2B. Strictly decreasing roots of strictly decreasing functions

If f is strictly decreasing, then, by Theorem 11.2.1, any continuous iterative
root of f has to be strictly decreasing, too (because a composition of
increasing functions remains increasing). Hence, the order of the root must
be odd; there is no continuous even iterative root of a strictly decreasing
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function. Generally, the behaviour of iterative roots for decreasmg functions
gives less satisfaction than that for increasing ones.
What we are able to prove is the following.

Theorem 11.2.3. Let X, Y be two disjoint real intervals and let Z be their
union. Assume f to be a strictly decreasing and continuous self-mapping of Z
such that
fX)=Y and f(Y)=X.
-Then, for every odd N e N and any strictly increasing solution y: X — X of
the equation
' yh =12, (11.2.1)
the formula
oty ~HN-1) X
o(x)=4" 'f ) forxeX, (112.2)
YN+ £ 1x)  forxeY;
defines a continuous and strictly decreasing Nth iterative root of f. Conversely,
each Nth iterative root of f has the above representation.

Proof. Without loss of generality we may assume that N> 3. Let y: X - X
be an arbitrary continuous and (necessarily strictly) increasing solution of
(11.2.1). Then the map ¢: Z — Z given by formula (11.2.2) is continuous
and strictly decreasing. Moreover, for any x€ X one has

QHx) = YA Do £ 1o foy IV x) =y (x)

whereas, for any xe Y, one gets

@2 (x)=foy THN T VoY NN, £l (x) = foho £ 71 (x).
Consequently, owing to the oddness of N, we obtain respectively

M (x)=@o@" T (x)= oV TI(x) = foy THN T Doy 3N D(x) = f(x),
xe X, whereas
PNx)=@o @V T x)=@o foy N Vo foi(x)
=T £l foy VDo ol =g f T (x) = f(x),  xeY,
on account of (11.2.1).
To prove the converse it suffices to take y:=¢?. W

Theorem 11.2.3 covers more cases than it might seem at the first glance,
and its seemingly artificial assumptions are quite adequate. In fact, observe
first that, according to Theorem 11.2.2, equation (11.2.1) has always a strictly
increasing and (necessarily) continuous solution. Take any surjective and,
strictly decreasing and continuous self-mapping f of an interval X <« R. Put
Fi={xeX: f%(x)=x}; plainly, F is closed in X. Let intervals X, ke K = N,
denote the components of X\ F. The function f has exactly one fixed point
xo€ X which, obviously, belongs to F. Let K~ be the set of all ke K such
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that X, lies to the left of x,. Put Y,:==f(X,), ke K~. Clearly, Y, n X, = &
for ke K. Moreover, f(Y,)= f*(X,)\ X, since the endpoints of X, are fixed
points of f? (or, possibly, the left point of X, coincides with the left point
of X). Consequently, f maps the union Z,:=X, 0 Y, ke K™, onto itself. This
reduces the situation to the case considered in Theorem 11.2.3. Therefore,
for each ke K™, there exists a strictly decreasing and continuous solution
¢, of the equation V= f’zk~ If x, is an endpoint of X,, then
lim),qu @i(x)=x, by means of Lemma 11.2.2 whence lim,_, @ (x)=
im,_,, fo@} Nx)=f(x,), ke K. Thus, the function

{go,,(x) forxe Z,,
P(x)i=
f(x) forxeF,

yields a strictly decreasing and continuous solution of the functional equation
¢"(x) = f(x), xe X. Consequently, we have proved the following.

Theorem 11.2.4. Let X — R be an interval and let [ be a strictly decreasing
and continuous function from X onto X. For each odd NeN there exists a
strictly decreasing and continuous Nth iterative root of f.

11.2C. Strictly decreasing roots of strictly increasing functions

If N is an even number, then a strictly increasing and continuous
self-mapping f of a real interval X can have also continuous and strictly
decreasing Nth iterative roots. In fact, the problem reduces itself to a solution
of the system

o=y and Y=,
where i isincreasing. In the light of Theorem 11.2.2, we may confine ourselves
to the case N =2 of equation (11.0.1). We begin with

Theorem 11.2.5. Let f be an increasing homeomorphism of an open or closed
real interval X onto X. Assume that (eFi={xeX: f(x)=x} and put
Fri={xeF:x<{},F*'={xeF:x 2 ¢} Consider (X\F~)n(—ac, &) as the
union of all members of the family F of disjoint open intervals with endpoints
in F~. Let « be a strictly decreasing map of F~ onto F* such that for every
=(a,b)eF and J:=(a(b), ala)) one has (f(x)—x)(f(¥)—y)<0 for all
(x,y)el x J. Then for any such I and J, the continuous and strictly decreasing
square iterative root of the function f |, , ; depends on an arbitrary function.

Proof. Without loss of generality we may assume that f{x)<x for xel.
Fix an arbitrary point x,el and an arbitrary continuous and strictly
decreasing function ¢q: [ f(xq), xo] = J such that @qeo f(xq)= fo ®olxe)-
With the aid of Theorem 5.3.1 we may extend ¢, to a continuous and strictly
decreasing solution y: I — J of the equation

yo f(x)= foy(x), xel; (11.2.3)

G427
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moreover, lim,_, y(x) =a(a) and lim, .., y(x) = a(b). Put Z:=1+ J. Then the
function ¢: Z — Z given by the formula
7(x)
w(x)=={ _
7o f(x)
is strictly decreasing and continuous. Moreover, for xe X, we have
@*x)=y"1o fop(x) = f(x)
in view of (11.2.3) whereas, for xeJ,
PHxy=yey o f(x) = f(x),
i.e. ¢ is a desired square iterative root of f|,. W

forxel,

11.2.4
forxelJ, ¢ )

Remark 11.2.2. In case ¢ is a (necessarily strictly) decreasing and continuous
square iterative root of a surjective, continuous and strictly increasing
self-mapping f of an open or closed real interval X, the assumptions of
Theorem 11.2.5 are actually satisfied. In fact, let ¢ be the unique fixed point
of @. Obviously, e F. Let I = (q, b)e # and suppose that f(x) < x for xe .
Put a:=¢|p- and take a ye(a(b), a{a)) = ¢({I). Then y = ¢(x) for an xe/
whence f(y) —y = ¢(@(x)) — 9(x) = ¢(f(x)) — @(x) > 0.

Remark 11.2.3. The general strictly decreasing and continuous solution
@:X - X of equation (11.0.1) for N =2 with a surjective, continuous and
strictly increasing map f: X — X may be obtained as follows. We take all
points £ e F and bijections «: F~ — F7 fulfilling the conditions described in
Theorem 11.2.5 on intervals Te # and we construct a suitable solution ¢,
on fuJ. We extend « onto F by taking &: F — F given by &|y- =« and
&|p+ =o', so that @ =&~ !, Then setting

@(x)=q,;(x) for xel LJ, IeZF, ¢(x)=2d(x) for xeF,
we check easily that ¢ is a strictly decreasing square iterative root of f. The

continuity of ¢ results now from Theorem 11.2.1.

Comments. The description of continuous iterative roots we have presented

in this section is due to P. I. Haldukov [1] and M. Kuczma [5, (b)].

11.3 Monotonic C* solutions

We have seen (Tlieorem 11.2.2) that strictly increasing and continuous
self-mappings of a real interval always possess iterative roots (of all orders)
having the same regularity properties. Unfortunately, this is no longer valid
for C" mappings, in general. The surprise disappears if we realize that the
extending procedure applied in the proof of Theorem 11.2.2 preserves the
regularity only in the interiors of the intervals considered and there is no
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reason to expect higher regularity at the sticking points. Indeed, in many
cases there exists no iterative root even of class C!, although the given
mapping is of class C* and with strictly positive first derivative in the whole
of its domain. We shall deal with C! iterative roots problem later on.

To establish any positive result, assume at first that ¢ is a C* solution of
the equation

oN=f (11.3.1)
where f is a C’" function mapping a real interval X into itself. Differentiating
both sides of equation (11.3.1) p times, pe {1, ..., r}, we come to an equality

of the form

FOX) =P @' (x), ..., @ (@" (X)) ..; 0P(x), ..., 0P (0" (%)),
xe€ X, where P, is a (uniquely determined) polynomial of p- N variables. This
observation allows us to establish the following (Kuczma [31].

Theorem 11.3.1. Assume reN and NeN\ {1} to be fixed and let fbeaCr
self-mapping of a real interval X = (a,bl, —c0 < a< b < o such that a < fxy<x
and f'(x)>0 for xe X. Fix arbitrarily a point x,e X, put Xyi=[f{x,) and
choose arbitrary points x, > x, > - -+ > x5 _, from the interval (xn, Xo). Then,
Jor every strictly increasing C" surjection ¢, [Xie 10 3 =[x 25 X211,
ie{0,..., N —2} such that

o (x4 1) =08 (xiv,)  forie{0,...,N~3} andpe{l,. .. ,r} (11.3.2)
(for N =2 this condition disappears) and
Po(@o(xo0)s ..y @ -2(xn-2)s On-2(Xn-y); .. 5 o (xo), - . .,

PR 2 (xn-2), PFL2(xw_ 1)) = fP(x,) for pe{l,...,r}, (11.3.3)
there exists a unique function @:X — X satisfying (11.3.1) and such that

@ xc. wx) =@; for i€ {0,..., N —2}. This function is strictly increasing and’
of class C" in X.

The proof is literally the same as that of Theorem 11.2.2. Assumptions
(11.3.2) and {11.3.3) assure the C” regularity of a solution constructed in that
way. We omit the tedious although almost evident calculations.

Equally straightforward are the following two results.

Theorem 11.3.2. Under the assumptions of Theorem 11.2.3, if, moreover, f is
of class C', 1 <r< oo, in Z with nowhere vanishing first derivative and if ¢
is of class C" in X, then so is the solution ¢ given by formula (1 1.2.2).

Theorem 11.3.3. Under the assumptions of Theorem 11.2.5, if. moreover, f is
of class C'. 1 <r< o, in Z:=1 U J with nowhere vanishing first derivative in
Z and if y is a C" solution of equation (11.2.3)in I, then the function ¢: Z — Z
given by (11.2.4) yields a C" and strictly decreasing square iterative root offl 7
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Somewhat deeper results will be presented in the next two sections with
regard to increasing and C! iterative roots. It turns out that their behaviour
depends essentially on whether the multiplier of the given function (i.e. its
derivative at the fixed point) vanishes or not. For that reason we shall
emphatically distinguish between these two cases.

11.4 C?! iterative roots with nonzero multiplier

11.4A. A function with no smooth convex square roots

By means of the example formerly announced (J. Ger [1], see also Kuczma
[31]) we wish to exhibit two phenomena: (a) diffeomorphism with no smooth
(square) iterative roots; (b) a strictly increasing convex mapping with no
convex (square) iterative roots.

One function will serve for both purposes; that means that even a junction
of these two regularity requirements helps nothing.

Example 11.4.1. Fix an se(0, 1) and points x, < x, from (0, 1) such that
x, < \/s~xo/s. Take any convex mapping f € C!(R) and such that

f(x)=sx for xe(—o0, xo] and fixy=ax+f for xe[x,, ),

where a:=(1—/s-x0)/(1 = xy), B= (/5" X0 — x,)/(1 = x,).
Suppose that a function ¢: R — R satisfies the equation ¢? = f and ¢ is
a C! function or ¢ is convex. From Theorem 11.4.2 (resp. 11.4.3) below we

infer that @(x) = \/s-x for all xe[0, xy]. In particular,
P(xo) = /5:Xo = [(x1) = @*(xy). (11.4.1)

Moreover, in the case where ¢ is convex, Theorem 11.3.1 impties that ¢| 4,
is a C* function as well. In both cases there exists a finite limit lim,_, , .. ¢'(x).
This leads to a contradiction. To see this, observe that ¢ has to be strictly
increasing since so is f and Theorem 11.1.1 holds. Thus the sequence
X, =@ "(xo), n€ Ny, is well defined and the ‘new’ x, coincides with the ‘old’
one because of (11.4.1).

Further, (x,),en, tends to the nearest (and unique) fixed point
of ¢ at the right of x,, i.e. x, = 1 as n — o (note that ¢(1)=1 on account
of Lemma !1.1.1 and there are no other fixed points of ¢ except that at
zero). And yet, the sequence (@'(x,)),.n diverges. To see this, observe that

o'(X)e(px)=f'(x)=2s>0, xe(0,1), (11.4.2)

whence .
f,(xn+2) =f,(xn+2)=f’(xn+2)
O (@(xns2)) O (Xp11)  f'(Xpa1)

(Pl(xn+2)= (pl(xn)i nENo,

Ltyo
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and since x,,, > x,,, > x;, we have f'(x,,,)=f'(x,.,)=a, neN,, and
@' (Xp42) = '(x,), neN,.

On the other hand, since (11.4.1) holds, we have ¢(x,)=x,, whence by

(11.4.2) '(x,) = f"(x1)/9'(xq) = @/\/s # @'(xo). Thus the sequence (¢’(x,)nen,

is oscillating and hence divergent. This proves that ¢ cannot be of class C!

in any neighbourhood of 1. Obviously, ¢ is neither convex nor concave in

consequence of the nonmonotonic behaviour of the sequence (¢'(x,))yen,-

11.4B. Necessary conditions

We shall place the unique fixed point of a given mapping at zero. Such a
step has obviously a technical meaning only. We proceed with the following.

Theorem 11.4.1. Let [ be a self-mapping of a real interval X = [0, a|,

0 < a < o0, satisfying the conditions
O0<f(x)<x for xeX\{0} and  ['(x)>0 forxeX.
If : X — X is a C" solution of the functional equation

oM =f, (11.4.3)
then the infinite product

= S
Glx, y)=]] =7 t1.4.4
o= 1 E ) (144
is convergent for all pairs (x, ¢(x)) from the graph of ¢ whereas ¢ itself

satisfies the differential equation
@'(x)=s""G(x, p(x)),  xeX; (11.4.5)
here s:= f'(0) is the (positive!) multiplier of f.

Proof. ¢ has to be strictly increasing. Indeed, otherwise, according to
Theorem 11.1.1, ¢ would be strictly decreasing; this implies the existence of
a (unique) fixed point é e X \ {0} of ¢ whence f(¢) = ¢ which contradicts our
assumption on f. Consequently, ¢'(x) 20 for xe X. However, relation
(11.4.3) implies that

N-1

o'x) [] o'l0'x)=f"(x), xeX, (11.4.6)

i=1
whence, in particular, it follows that, in fact, ¢’(x) > O for all xe X. Moreover,
Lemma 11.2.1(a) implies the equality ¢(0)=0 whence ¢'(0)=0 for ie N,
Therefore, putting x =0 in (11.4.6), we get the equality ¢'(0) = s/¥.
On the other hand, formula (11.4.6) implies the relation

Sx) _ et e

= = o X.
flox) @' eMx))  @'(f(x) ©

ey
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and hence, for any ke N, we get

LU @'(x)

— = R xeX,
n=0 (M) @' (f (x))
since f and ¢ are permutable. We complete the proof by letting k tend to
infinity. W

11.4C. Main existence theorem

Theorem 11.4.1 suggests that a C! iterative root (if it does exist) has to be
unique. Actually, this has been proved, together with the existence, under
some supplementary conditions on the given function (Bratman [1],
Crum [1], Kuczma-A. Smajdor [3] and Zdun [9]). These results are collected
in the following theorem whose proof yields a perfect occasion for a survey
of natural applications of the results concerning the existence and
uniqueness of solutions of the crucial iterative functional equations (i.e. that
of Abel, Schréder and, more generally, linear equations) in various function
classes.

Theorem 11.4.2. Assume the hypotheses of Theorem 11.4.1 and put s:= f'(0).
(a) If s=1 and either '

(1) f is concave
or
(2) f/(x)=1—=b(m+ 1)x™+ 0(x"*?%), x -0,

then equation (11.4.3) has a unique C* solution in X; this solution.is given by
the formula
o(x)=oa" 1 (a(x) + 1/N) Jor xe X\ {0}, ¢(0)=0 (11.4.7)
where o is a principal solution of the Abel functional equation:
a(fx)=ax)+1,  xeX\{0}, (A)
(b) If se(0, 1) and either
(3) f is convex or f is concave or
@ f'(x)=s5+0(x%, x =0,

then equation (11.4.3) has a unique C' solution in X, this solution is
given by the formula

o(x)=0c"'(s"Yo(x)), .xeX, . (11.4.8)
where g is a nontrivial principal solution of the Schroder functional equation:
o(f(x))=s0(x), xeX. (S)

Here m, b and 6 denote some positive constants.

432
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Proof. A straightforward verification shows that formulae (11.4.7) and
(11.4.8) both give a solution of equation (11.4.3).

Part (a). Assume (1). Then Theorem 2.4.3 guarantees that the Abel
equation {A) possesses the family of strictly decreasing and convex (principal;
see Section 9.1) solutions given by the formula

S700) = £"(xo)

a(x)=c+ Hm —— "

n— f”l(xo)_f"(xo)’

xe X\ {0}, (11.4.9)

where ce R and xqe X\ {0}. The left and right derivatives of « do exist at
each point of the interior of X. Both of them are increasing and satisfy the
linear functional equation

Bf(x)) = Bx), xeint X. (11.4.10)

')

Since g:=1/f" is positive and increasing (f being concave has a decreasing
derivative) and since, consequently inf, .,y g(x)=1im, o g(x)=s5=1, we
may apply Theorem 2.3.1; therefore, our one-sided derivatives differ by a
constant factor only. But convex mappings have differentiability points! Let
zeint X be a differentiability point of «. If we had «'(z) = 0, then we would
have o’(x) =0 for all x >z, xeint X (recall that « is convex and decreasing)
contradicting the strict monotonicity of . Thus the proportionality factor
has to be 1, i.e. « is differentiable on the whole of int X and o'(x) < 0 for all
xeint X. Differentiable convex mapping is necessarily of class C!. Hence «
and, consequently, ¢ is of class C* in X\ {0}. It remains to prove that

lim ¢'(x)=1. (11.4.11)

x—=0
For observe that (11.4.7) implies

fx)<olx)<x for xeint X (11.4.12)
whence

_2lex) _«(/(x)_ 1
Z(x)  d(x) fx)

for any xeint X. Referring to (11.4.7) again we get ¢'(x) = a'(x)/2'(p(x)),
xeint X, whence

S'X)<@'(x)<1, xeint X,

from which we get (11.4.11) by letting x tend to zero.
To prove formula (11.4.7) and hence the uniqueness of ¢ observe that «
is a monotonic solution of equation (11.4.10) for which the function g:= 1/

433



434 Iterative roots and invariant curves

satisfies the condition

() = =
:12 glf"(x)) = 70

Thus, we may apply Theorem 2.3.2 getting

1, xeX.

s

o) B SUED iy
=0 f'{f"(x0))

0>at=c 1~ ma) =

- whence (see (11.4.4))

Gx e 1] LD _H) o i, yeint X, (11413)

=0 (S0 «(y)
Now Theorem 11.4.1 gives (s=1)
ey 200
7= ot
for any C? solution of equation (11.4.3). This says that taking such a solution,
we have (o @) =« and hence ac@ =0+ for some ¢q € R whence
a(f(x)) = a(pV(x)) =a(x)+ Nc,,  xeint X,
and since « satisfies Abel’s functional equation (A) we infer that co = 1 /N and,
finally, @(x)=a™ '(a(x)+ 1/N) for all xe X\{0}. That ¢(0) = 0 results from

Lemma 11.2.1(a). ‘ . ' .
Assume (2). Then Theorem 3.5.6 guarantees directly tnat oc,lglyen, again,
by formula (11.4.9) is strictly decreasing and of class C' in X \{0}.

,  xeint X, (11.4.14)

Moreover, from relation (3.5.26) (r = —b~!) we learn that
«'(x)= — lim b~ 1(nbm)" * /™ (f") (x), xe X\{0},
whence

€9 _ o UV T g,y
L) pow SN nmwi=o S1(SD) '
for all x, ye X\ {0}, i.e. (11.4.13) remains valid; this, as pre\'/ic.)usly, implies
the uniqueness of . To show that ¢ is of class C! at the origin, recall that
(11.4.14) holds true whence on account of (3.5.23)
Lo A xmlalx) (g(ﬁ)
AT e L PR ANE

b0 (@)M L xa0, (114.14)

T SbT 4 0(e())\ x ’
where 7+=min(m, 8). On the other hand, estimates (11.4.12) are satisfied
leading to the relation

ﬁx—)<£(ic—)<l, xe X\ {0},
x x

$3Y4
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and therefore, since f'(0) = I, we have

0'(0) = lim £ _ 1.

x+0 X
Now, letting x—0 in (11.4.14'), we get (11.4.11) which yields the
the desired resulit.

Part (b). Assume (3). Then Theorem 2.4.4 guarantees that the
Schrdder equation (S) possesses the family of monotonic and convex (resp.
concave) principal solutions (see Section 9.1) given by the formula
g(x})=c lim »I—”(X)

n—+x f"(xo)
where ce R™ and xq € X\ {0}. Except the trivial case ¢ = 0 (corresponding to
the choice ¢ = 0) these solutions are actually strictly monotonic. Indeed, if
¢ were (nonzero) constant on an interval I = [u, v] < X, it would be constant
on each f(I), ne N, violating the convexity (concavity) of ¢ because by (S)
the constant mappings o|; and o| ., are different.

To prove the C! regularity of the function ¢ given by (11.4.8) on the whole
of X (no matter which nontrivial solution (11.4.15) has been taken) it suffices
to reproduce the reasoning applied for the proof in case (1); this time

) xeX, (11.4.15)

lim ¢'(x) = sY¥,
x—=+0
whereas any nontrivial ¢ given by (11.4.15) is of class C! in X\ {0} with
o'(x} #0, xe X\ {0}, and satisfies the functional equation
() =——a'(x), xeX\{0}. (11.4.16)
S'(x)
Making use of Theorem 2.3.2 once more we deduce that
o(x)=¢[] —~—f (f (x)), xe X \{0},
n=0J"(f"(x0))
with some & 0, whence (see (11.4.4))

’

)

G(x,1)="-  forall x, ye X\ {0}. (11.4.17)
o'(y)
Now, Theorem 11.4.1 gives
' 1/N al(x)
@(x)=s"" ———, xe X\ {0},
o'(p(x))

forany C! solution of equation (11.4.1). This says that taking such a solution
we have (g0 ¢) = (s!Vo) and hence

o(p(x)) =5""a(x) + co
for some ¢, € R and all xe X\ {0}. Letting here x — 0 we get ¢, = 0 in view

of continuity of ¢ at 0, since obviously ¢(0)= @(0) =0. Therefore formula
(11.4.8) holds true.

1/N

(35
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Assume (4). Then Theorem 3.5.1 guarantees directly that the Schroder
equation (S) has a C’ solution ¢ in X given by the formula
f1(x)

n

xeX.

a(x) = lim

n—+wx s

Since ¢ is a continuous solution of equation (11.4.16) we may apply Theorem

3.1.4 (which assures that ‘case (AY occurs) and, subsequently, Theorem 3.1.2,

getting
n—1 f1(fi
o' (x)=0'(0) lim [] )—r—(f—()@, xeX.
n—w i=0 s

This leads again to formula (11.4.17) and the rest follows along the same
lines as in the preceding case. W '

It is noteworthy to observe that a powerful corollary follows.

Corollary 11.4.1. In the circumstances described in Theorem 11.4.2 the
function f is embeddable into an iteration semigroup (see Section 1.7) whose
members are of class C'.

This result is just at hand: it suffices to replace the number 1/N
in formulae (11.4.7) and (11.4.8) by a ‘continuous’ parameter te R*. This
should come as no surprise. Our regularity assumptions imposed on f turned
out to be strong enough to produce elegant and smooth iteration semigroups
(see also Kuczma [26, Ch. IX]).

Remark 11.4.1. Assumptions (2) and (4) are of a local character.
This is not the case for (1) and (3) and this might seem somewhat
restrictive. As a matter of fact, the problem is apparent only. Actually,
there is no need to assume the concavity (convexity) of f on the whole of
its domain; it suffices to assume it merely in a right vicinity of zero. Then
we obtain local C! iterative roots which, by Theorem 11.3.1,can be uniquely
extended onto the whole interval considered.

11.4D. Convex and concave iterative roots

In Subsection 11.4A (Example 11.4.1) we were faced by a situation where a
convex and smooth map admits no convex square iterative roots.
Nevertheless, if an iterative root does exist (which, for instance, actually
takes place if we assume the concavity of both f and [’ (Theorem 11.44
below, Zdun [13]), then it has a representation (11.4.7) or (11.4.8)
depending on whether s = 1 or se (0, 1). More precisely, we have the following
result of M. Kuczma—A. Smajdor [2].

Theorem 11.4.3. Let f be a convex or concave self-mapping of an open interval

436
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(O,da}lc Rd Sup:o;e that (1/x)f(x) > s€(0, 1] as x -0, f(x) <x for xe(0 a).
an > 0 in the domain of its existence. If a conve i i
oot of £ o o s x or concave Nth iterative

s=1 implies @(x)=oa"Ya(x)+ 1/N), xe(0,a),
where o is a principal solution of Abel’s equation (A), whereas
se(0,1) implies @(x)=06"'(o(x)+ 1/N), x€(0, a),

where o stands for a nontrivial principal solution of Schroder’s equation (S)

The p.roof is' s.imilar to suitable parts of the proof of Theorem 11.4.2 and
so we will omit it passing to Zdun’s result announced previous to that

‘Ih«g(_)ﬁe_m 11..4.‘4.‘ Assume [ to satisfy the assumptions of Theorem 11.4.1 and
suppose additionally that both f and f' are concave. Then the unique C'

z.teratz.ue root (of a given order) of f is concave and this is the only concave
iterative root (of that order) of f.

?;oof. Let ¢: X - X be .the unique C' solution of equation (11.4.3) (see
eorem 11.4.2). In particular, we have ¢'(x)>0 and f(x)< o(x)< x for
all xe X. As f and ¢ are permutable we get h

0D _ [l _
i T

and, since f' decreases,  is greater than or equal to 1 whence

xeX,

Q' (f(x) =@ (x) forall xeX.
Inductively, ¢'(f"(x)}= ¢'(x), xe X, neN i

_ y, = ) > ; letting n tend to i i
obtains ¢'(x) < @'(0)e[s, 1], ie. : © infinity one
e'(x)< 1 for all xe X. (11.4.18)

The fun.ction A/.= log /' is evidently concave and decreasing (since, by
assumnption, f* is). Therefore, for ye X arbitrarily fixed and for any
xe(p(y), y) we have ¢(x) < ¢(y) < x <y and hence

Ay) — Alx) s/i(X)—/l(w(y)) < Ho(y) - Hex)),
y—x x—0(3) o) -k
consequently, for some £e(x, y), we get

/ . o(y) — ol
P (Ay) — Alx)) = T o) ((y) = Ax) < () — He(x)).

— X

1 f f ct that AlS de ng 4 8 ]l() dS true we come to
]ll VIEW O the a Ccreast alld ll. .l
( ) l C t

Ay) = 2x) < Aoty)) = Mo(x))
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which says that
') ek
S fex)
ie. Yy(x) < (). Finally, bearing the continuity of y in mind, what we have
proved is the implication
xe[p(y),y] implies Y(x)<¥(y) (11.4.19)
for any ye X. Now, take any u, ve X, u < v. Then, for some ne Ny, one has
ue[@"*1(v), @"(v)) whence, by (11.4.19),
V() <Y (@") <Ylo" )< - S Y(o).
Thus ¥ is increasing and, consequently, for any x,yeX, x <y, we get
Px) 96
e'(f). @)

and, inductively,
@' (S"(x)) L9
e'(f") @'y
whence, as n — oo, we obtain ()< @' (x), ie., ¢ is decreasing and thus ¢
is concave. The uniqueness statement results from Theorem 11.4.3. W

for all neN,

11.5 C! iterative roots with zero multiplier

As we have pointed out several times (see Chapters 0, 1, 8) the Bottcher
functional equation

B(f(x) = B(x)’ (B)
occurs naturally and usually serves well when linearization via the Schrider
(resp. the Abel) equation is not possible; the idea is to replace the linear
mapping by a power function. The content of the present section may also be
regarded as a step-by-step verification of the appropriateness of such an
approach. All the results are due to M. Kuczma [33], [40].

11.5A. Abundance of solutions

Contrary to the case of mappings with nonvanishing multiplier, the ct
iterative roots for functions with multiplier zero depend on an arbitrary
function! (See Theorem 11.5.1 below.) So, the problem arises to choose a
function class assuring the uniqueness. That one which fits well while we are
considering Bottcher’s equation is that ensuring a suitable asymptotic
behaviour of the roots at the fixed point of the given map. This is described

by Theorem 11.5.3 in detail.
‘We begin with a technical lemma whose standard proof will be omitted.
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(I),emm<a 1151, Let f be a C' self-mapping of an interval X =[O, a|,

< a.\ .oo, such that 0 < f{x)< x and f'(x)> 0 for all xe (0, a| and f'(0)=0
(multiplier zero). Then, for any constant p > 1, the function

F(x):___{x"’f(x) Jorxe X\ {0},
b forx=0,
is of class C' if and only if
S (x)=bpx?~1 + c(p+ 1)xP + o{x?), x—0, (11.5.1)

Jor some constants b> 0 and ce R.

Suppose now that [ satisfies the ass i
‘ umptions of Lemma 11.5.1
¢: X - X is a C! solution of the equation e
N_
oV =1. (11.5.2)

Then ¢'(x)>0 for xe X\ {0} and ¢’
©'(0) = 0; moreover, f
Theorem 11.4.1 we learn that ver, from the proof of

, = A L))
N =o' T foxT xeX, (11.5.3)

for. any ke N. Since the sequence (f*),.n of iterates of f tends to zero almost
uniformly on X (see Theorem 1.2.2), the convergence

K )
lim J] =——=2=0 (11.5.4)
. k=wn=0 [ '(f"(x))
1s almost }mlform in (x, y) from the graph of the map ¢|.q-
A (partially) converse result holds true. !

Theorem 11.5.1. Assume the hypotheses of Lemma 11.5.1 and fix an x4 e (0 q|
If the convergence (11.5.4) is almost uniform in (x, y) from the set o

{(x, el f(x0), xo] x R: f(x) <y <x}, (11.5.5)

then the C! iterative roots of i
s on [0, a| forma family depending o i
« ’ n
. y dep g on an arbitrary

Proof. In view of Theorem 3.1, the assertion is obviously true on the interval
(0, a. Tbe point is to extend any C! iterative root ¢ of [, . to a C! solution
of equation (11.5.2) on the whole of [0, a). To this aim c()b‘;'erve that for an

xe[f(xp), xo] the pair (x, p(x)) belongs to set (11.5.5) (see Lemmas 11.25

and 11.2.1) which jointly with relation (11.5
.5.3) and th
convergence (11.5.4) implies ) ° ssoumed nu.

lim ¢'( f¥(x))=0

k=«

uniformly on the interval [f(xq).x,]. Consider any sequence (y,),.n
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