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otation and preliminary result. Throughout this paper p denotes
3. We shall be concerned with binary quadratic forms ax?+ bxy +cy?,
b, c), which are integral (that is, g, b, ¢ are integers), positive-definite
>0, b>*—4ac < 0) and primitive (that is, GCD(a, b, ¢) = 1). The
nant of the form (a, b, c) is the negative integer b*—4ac. On the set of
forms of fixed discriminant —D (D > 0), we define an equivalence
~ as follows: we write (q, b, ¢) ~ (a’, b’, ) if there exist integers p, g, r,
ps—qr = +1 such that

(px+ qy)* +b(px +qy) (rx +sy)+c(rx+sy)* = @' x>+ b xy+c'y*.

known that there are only finitely many ‘such equivalence classes. The
of classes is called the classnumber of forms of discriminant — D and is
by h(—D). The pnn01pal form of discriminant —D is the form
iven by

~_ )1, 0,D/4), if D =0 (mod 4),
2T L 1, (D+1)4), if D=3 (mod 4).

tive integer m is said to be represented by the form (a, b, ¢) if there exist
s x and y such that m = ax®+ bxy + cy?. If the prime p (not dividing 2D)
esented by a form of discriminant —D, it is well known that the

dre symbol (—;lz) = + 1. In this paper we shall be concerned with the
entability of a prime p (> 3) by the principal form p_j of discriminant
hen h(—D) = 3.

ecent deep work of Goldfeld, Gross, Mestre, Oesterle and Zagier (see [6],
2], [13], [141, [20]) has led to the complete determination of all the
ary quadratic fields with classnumber 3 [12: Théoréme 4], namely,

¢search supported by Natural Sciences and Engineering Research Council of Canada
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O/ ~—n): n=23. 31,59, 83, 107, 139, 211, 283, 307,
331, 379, 499, 547, 643, 883, 907.

The complete list of all the imaginary quadratic fields with classnumber 1 has:
been known for over twenty years [15], namely, :

O(/—ny: n=1,23 7, 11,19, 43, 67, 163.

From these results we can deduce

PROPOSITION. h(—D) =3 if and only if
0.2) D =23,31,44, 59,76, 83,92, 107, 108, 124, 139, 172, 211, 243, 268, 28
307, 331, 379, 499, 547, 643, 652, 883 or 907.

Proof. Let d be the discriminant of the imaginary quadratic field
uniquely by

—D =f%d,
where f is a positive integer. Then, by a formula of Gauss, we have

‘ h(=D) = h(f*d) = h(d)ya(f)u,

where
d\1
Ya(f) fﬂ(l <q)q>
and
3, ifd= -3,
u=<2ifd=—4,
1, ifd< —4.

d
Note that g runs through the distinct primes dividing f and <a>

Kronecker symbol. As ,(f) is a positive integer and h(—3) = h(—4)
see that

h(—-D)=3 < (a) d< —4, h(d) =3, Y,(f)=1 or
by d< —4, hd) =1, Y, (f)=3 or
(© Y-alf) =06 or
d) ¥-5(f)=9.
Now it is easy to check that
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Y (f)=1< f=1o0r f=2 d=1(mod 3);
W, (f)=3 < f=2,d=5(mod 8) or
f=13, d=0(mod3) or
f=6,d=1(mod 3g), d=0(mod 3);

V_a(f)=06 cannot occur;

Vos(f)=9 = f=6o0r[=9

us, appealing to the lists of imaginary quadratic fields with classnumber

3, we see that:
) occurs if and only if D = 23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379,

47, 643, 883, 907, 23-22, 31-2%;

b) occurs if and only if D = 11-22 19-2% 43-27, 67-2%,163-22;
) cannot occur;

) occurs if and only if D=3-6% 3-9%

his gives the twenty-five values of D listed in (0.2).

. Introduction. Gauss [5] showed that 2 is congruent to a cube modulo
ne p = 1 (mod 3) if and only if there exist integers x and y such that
2427y, that is, if and only if p is represented by the principal form of

minant — 108. Moreover, when 2 is a cube (mod p), where p = 1 (mod 3),
—108

three distinct cube roots (mod p). If p =2 (mod 3) then <—~>
p

3
)= —1 and p is not represented by any form of discriminant — 108,

has a unique cube root (mod p). Since every positive-definite, primitive,
al binary quadratic form of discriminant — 108 is equivalent to exactly
f the three forms (1, 0, 27), (4, —2, 7), (4, 2, 7), Gauss’ theorem can be

sed as follows:

THEOREM (Gauss). The polynomial x*—2 is
-3

(i) the product of three distinct linear polynomials (mod p) if <——> = +1
p

p is represented by (1,0, 27);
(i) the product of a linear polynomial and an irreducible quadratic

. —3
ynomial (mod p) if <__) = —1;
p
oo -3
(i) irreducible (mod p) if (7) = +1 and p is represented by (4, +2, 7).

: Clearly Gauss’ theorem can be reformulated as a criterion for p to be
esented by the principal form of discriminant —108, namely,
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TuroreMm (Gauss). The prime p is represented by (1,0, 27) if and only

<—p-3 — o1 and x3—2 is congruent to the product of three distinct lin
polynomials (mod p).
Jacobi [10] showed that 3 is congruent to a cube modulo a pr

= 1 {mod 3) if and only if p can be written in the form 4p = A% +243
where A and B are integers. I 4p = A%+ 243 B? then we have A = B (mod 2)
p = x?+xy+61y* with x = L(4—B). y = B. Conversely, if p = x4+ xy+6
then we have 4p = A%+ 243B% with 4 =2x+y, B=. Since every posit
definite, primitive, integral binary quadratic form of discriminant —24
equivalent to exactly one of the three forms (1, 1, 61), (7, —3,9), (7,3
Jacobi’s theorem can be restated as follows:

TuroreM (Jacobi). The prime p is represented by (1, 1, 61) if and onl

_3 : :
<~—— — +1 and x3—3 is congruent to the product of three distinct
) p

polynomials (mod pj.
In this paper we generalize the results of Gauss and Jacobi to all D
for which h(—D) = 3. These values of D are listed in (0.2). We pro
TueoREM 1. Let D be a positive integer such that h(—D)=3. Th
prime p (p >3, pX¥ D) is represented by the principal form p_p of discri

—D
—Dif and only i (——— = +1 and f_p(x) is congruent Lo the product ¢
p

distinct linear polynomials (mod p), where f—p(x) is the monic cubic poly
with integral coefficients listed in Table 1. Further we have

o _Dp,  if D=3(mod 4) or D = 12 (mod
discriminani(f-p() =4 _piu i p =28 (mod 32).

Table 1
D f-p(x) D f-px)
23 x3—x+1 243 x3—3
31 x3+x+1 268 x3+2x2—2x+2
44 xP+x2—x+1 283 x3+4x+1
59 x34+2x+1 307 x3—x?+3x+2
76 x> —2x+2 331 x3—2x?+4x+1
83 x3+x24x+2 379 x34xr+x+4
92 x3—x+1 499 x> +4x+3
107 X34+ x?+3x+2 547 x>+ x?—3x+4
108 x3=2 643 x3—-2x+5
124 - x34+x+1 652 x34+3x2—5x+3 ,
139 x3—x24+x+2 883 x345x%2—5x+2
172 x3—x?—x+3 907 x34+5x24+x+2

201 x*=2x43
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he cases D = 108 and D = 243 of the theorem are the aforementioned
s of Gauss and Jacobi respectively, so these two values of D will be
ded from further consideration. Furthermore, when D = 92 and D = 124,
asy to check that p is represented by p - p if and only if it is represented by
as D/4 =7 (mod 8). Thus we can also exclude these two values of
m further consideration. We divide the remaining 21 values of D into two
according as D=3 (mod 4) or D = 0 (mod 4), namely,

A) D =23,31,59,83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883,
907>

B) D =44, 76, 172, 268, 652.

The proof of Theorem | for the 16 values of D listed in (A) is based on
orem of Weinberger [18] and is given in Section 2. For the 5 values of
ed in (B), Weinberger’s theorem does not apply and we give a proof (in §3)
. Artin’s reciprocity law instead. We remark that the existence of such
ynomial f_p(x) is known by class field theory (see [3: Theorem 9.2 and
.3]). Our Theorem 1 gives such a polynomial f_p(x) explicitly for all
th h(— D) = 3, and furthermore shows that f_p(x) may be chosen with
iminant —D/4 or —D according as D =28 (mod 32) or not. In future
it is planned to determine f_ p(x) explicitly when h(—D) =4, 5, 6, 7 and
suming that the known lists of such D are complete. For general D not
h is known about f_p(x) or its discriminant.

The case D = 124 of Theorem 1 was treated by Kronecker [11], who
ed that p is represented by (1,0, 31) if and only if the congruence

(x3 ~10x)? +31(x*—1)* = 0 (mod p)
lvable. It is easy to check that this is equivalent to our result, namely,

R

. ) =31
2-3-31) is represented by (1, 0, 31) if and only if <———> = 41 and the
p

ruence x3+x+1 = 0 (mod p) is solvable. Appealing to Theorem 1,
xtic polynomial analogous to that of Kronecker for D = 124 can be found
gach D in (0.2).

In Section 4, we use Theorem 1 to construct explicitly some class fields.
prove

TuroreM 2. (i) For those D in (A), the Hilbert class field over Q(\/ —D) is

Q(/=D, Yup+3xp),

re x; is given as follows:

*p D Hp D *p

(—27+3./69)2 139 (—6143/4T2 379 (—101+3/1137)2
(~27+3./93)2 211 (—81+3./633)2 499 (—81+3,/1497)/2
(—2743,/177)2 283 (—27+3./849)2 547 (—137+3/1641)2
s (-4743/249)2 307 (—=794+3/921)2 643 (—135+3./1929)2
(~29+3. /322 331 (—83+ 3/993)2 883 (—529+3./2649)2

on AT
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(i) For those D in (B), the ring class field of the order Z[./—D/4] i

ZI(—1+/—~D/4)2] is
0L~ Dfa, Yrp+ 3/,

s = — 194333,

wae = —27+3./57,
Wias = —35+3/129,
Kooy = —53+34/201,
Hesa = — 13543./489.
We remark that Hasse [9] has shown that the Hilbert class field

0(/—23) is

where

0(/ =23, Y(25+3./69)2+¥/(25—3./69)/2)
and the Hilbert class field over Q(/—31) 1s

0(/ =31, V(29+3./932+3/(29-3./93)2).

Our results for D = 23 and D = 31 agree with those of Hasse since f§ = (
for ' '

{oc = 2743692+ (—27-3/69)2 = —3.9741...,
g = 3/(25+3\/6—9)/2+%25—3\/@)/2 = 3.2646..;
and 6 = (—y—9)/y for ‘

{y = V(2743 /93)2+/(—27-3/93)/2 = —2.0469...,
5= /2943 /992+(29-3/93)2 = 3.3967...

In Section 5, we use Theorem 1 and a theorem of Cauchy [2]
a necessary and sufficient condition for the prime p to be represented by
in list (A) or list (B)) in terms of integer sequences defined by a secon
linear recurrence relation which need only be considered modulo p.
D = 23 our result agrees with that of Gurak [8]. We prove

THEOREM 3. Let D denote one of the integers in list (A) or list (B). L

D
a prime (> 3) such that (—-—) = +1. Then
p

D
x24+—y?, if D =0 (mod 4),

4
1+D
x2+xy+<—;:—>y"‘, if D=3 (mod 4),

p=
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pable in integers x and y if and only if

Up-1y3 = 2 (mod p), if p=1{(mod 3),
Upr1ys = —2k (mod p),  if p=2 (mod 3),

¢ the sequence of integers {u,}n=o.1,2,. IS given by

uy =2, u, =1,
Uppo = lupyy +Ku, - n=0,1,2,..,

the integers k, | are given in Table 2:

Table 2

D k ! D k !
23 =1 +25 283 +12 +27
31 —1 +29 307 +38 -79
44 —4 —38 331 +38 + 83
59 —4 —43 379 +2 +101
76 +38 —2 499 +12 + 81
83 +2 —47 547 —10 +137
107 +38 +29 643 —6 +135
139 +2 —61 652 +20 +196
172 —4 +70 883 —40 +529
211 —6 —381 907 —-22 - +259
268 —10 + 106

The identities
o = 12— 2(— PR, g, = 13— 3 (= 1",

often useful in computing u,+ )3 (mod p). We illustrate Theorem 3 with
ple example.

ExampLE. Is the prime 1297 represented by the form (1, 0, 19)? Here we
p= 1297, (p—1)/3 = 432, D = 76, k = 8,1 = —2. Making use of the above
tities, we- obtain successively modulo 1297
Uy =2, uy=—2, u,=1028, u, =726, ug= 889,

Uieg = 904, Ugg = 544, Uiag = 1296, Ugzy = 2,
that, by Theorem 3, 1297 is represented by (1,0, 19). Indeed we have
=1-924+19-8%

2. Proof of Theorem 1 for those D listed in (A). Throughout this section,
notes one of the integers listed in (A). Note that D is a prime = 3 (mod 4).
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) —D : .
Let p be a prime > 3 with pAD. If <——> = -1 then p i1s not represe
p

by pp={(1,1,4D+1) and, as discrim(f_p(x)) = —D, by a theorem
Stickelberger [16], f_p(x) is the product of a linear polynomial and s

: . : —D
irreducible quadratic polynomial modulo p. Now suppose (—) = +1.W
) p

must show that p is represented by p_, = (1, 1, 5(D+1))if and only if /_,
congruent to the product of three distinct linear polynomials (mod p).
We set

2.1) Kp=0(/3D) Kb =0(/3D\0}.
Let G, be the group defined by

—

(2.2) G, = {aeK}: (1) = 4> for some ideal 4 of K}
and let H, be the subgroup of G, given by |
(2.3) H,={aueK}: a=p> for some feK}}.

Then Gp/H, is a group isomorphic with the direct sum of r;,+1 group
order 3, where r}, is the rank of the 3-Sylow subgroup of the classgroup H
of K;,. Now

Z,, for D =107, 331, 643,
(2.4) H(K,) ~ < Zs, for D =547,
Z,, otherwise,

SO

i for D = 107, 331, 643
2.5 — b 2 b ?
(2:5) " {0, otherwise,
and thus

Z.xZ if D =107, 331, 643
2.6 G, /JH,~< 3 3 ’ ’ ’
(2.6) o/Hy {23, otherwise.

Let &, denote the fundamental unit (> 1) of K,. When D # 107, 33
a basis for the group Gp/H,, is {3pHp}. When D = 107, 331 or 643, H

generated by the class containing the ideal A4, = (2, §(1+./3D)). Sin

((3(17++/321)), it D =107,

3 _ (%(31——,/993)), if D=2331, ‘
(%(4963 —113, /1929)) = (%(1258562169097—28655537523 1
- if D=6

.
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sis for Gp/H, is given by {e3pH,), papHp), where

(.%.(174+\/32714))’ if D =107,
psp = (331 -/993)) if D =331,

(4(1258562169097 —28655537523,/1929)),  if D = 643.

ce, for every nonzero integer o of K, there is a unique integer y;p of Kp,
ique integer r (=0, 1, 2), and, if D = 107, 331 or 643, a unique integer
0, 1, 2), such that

0E5p = ¥3p, if D# 107, 331, 643,

OCErg,D‘u%D = '})gD, if D= 107, 331, 643.
choice of generator u;p of A3 with large coefficients in the case D = 643 is
iat when ‘o is taken to be o, (see (2.12)) we have r = 0 and s = 1 (see Table 6

(2.13)). The values of &5, for those D under consideration are taken from
table of Wada [17] and are listed in Table 3.

Table 3

€3p

(25+3./69)2

(29+3./93)/2

62423 +4692. /177

8553815+ 542076.,/249

215+12,/321

85322647 + 4178268, /417

440772247 + 17519124 /633

1501654712948695 + 51536656330476. /849

2522057712835735 + 83104627139412., /921

2647+ 84./993

0468934487 + 19290626292, /1137

22516718751127 + 581961430932./1497

43754108, /1641

126794455 1 2886916.,/1929 |

99736649218553790682248535 + 1937821608115448210697276 /2649
'5231287949706796270736288215 + 100286934195999623391686388 /2721

ext we define g_p(x) to be the monic cubic polynomial
| _ 3 %, bo
g-p(9) =X +2x+2,

te the integers a, and b, are listed in Table 4.
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Table 4

D ap bp D ap by

23 1 25 307 +8 +79

31 —1 —29 331 +8 —83

59 —4 +43 379 +2 - —10l

83 +2 +47 499 +12 —81
107 +8 —29 547 —10 —137
139 +2 + 61 643 —6 — 135
211 —6 + 81 883 —40 —~529
283 +12 —27 907 22 —259

The integers a, and b,, were chosen so that the polynomials f_ p(x)and g
have the same discriminant as well as the same number of roots (mod p).
clear that

discrim(f - p(x)) = discrim(g - p(x))

as

discrim{ /- p(x)) = — D, discrim (g - p(x)) = (—4ap—bp)/27,
and |
(2.9) 4ad+ b3 = 27D.

It is also clear that f_,(x) and g_p(x) have the same number of roots (m

as
Ix+u

(2.10) fop0) = (=1)y'x"g p <~——>,

VX +W

where the integers d (=0, 1), e (=0, 3), £, u, v, w are given in Table

Table 5

D d e t u vow D d e t u
23 1 3 1 =3 3 0 307 0 O 3 -1
31 | 3 —1 =3 3 0 331 1 0 -3 2
59 0 3 2 3 3 0 379 1 0 -3 -1
83 0 0 3 1 0 3 499 1 0 -1 0
107 1 o -3 —1 0 3 547 1 0 =3 -1
139 0 0 3 -1 0 3 643 1 0 -1 0
211 0 0 1- 0 0 1 883 1 0 -3 =5
283 1 0o -1 0 0 1 907 1 0 -3 =5

We can also see that discrim(f_p(x)) = discrim(g- p(x)) from (2.
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b
2 423
3 U+27U

e 5, as in each case we have
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2
> = +(tw—uv)’.

Up = %(bD+3\/3D)’
at by (2.9) o, is of norm (—ap)’. For each D, we determine the values of r,
Y3p = ';%_~(uD+vD\/3D) in (2.7) when o = a;,. These are listed in Table 6.

907

Table 6

D ¥ up Up

23 1 -2 0

31 1 -2 0

59 1 +173 +13

83 1 +931 +59
107 1 +17 +1

139 1 + 2185 +107
211 1 +4101 +163
283 1 + 449331 +15421
307 1 + 754117 +24849
331 1 +31 +1
379 1 +4687 +139
499 1 +92433 +2389
547 1 —41 —1
643 0 — 55164 +1256
883 1 —3343018627 — 64952791

1 — 8124416167  —155749941

Ho coincidence that r = 1 for D # 643, this is a consequence of the choice

of b,.
dummarizing we have
) Aptap = Y%D’ for D # 643,
Aplap = y3p, for D = 643.

lew of (2.10), f_p(x) is the product of three distinct linear polynomials
1 p)if and only if g_ p(x) is the product of three distinct linear polynomials

1p). By a theorem of Dickson [4], as discrim(g- p(x)) = —D and
3
~) = +1, the polynomial g_p(x) is the product of three distinct linear

nomials (mod p) if and only if &, is congruent to a cube (mod p), where p
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is a prime ideal of the ring of integers of Ky which divides p. We note thaf
ap # 0 (mod p), otherwise plap. which is seen to be impossible {rom Table

4 remembering that p> 3 and { —— =+ 1. In view of (2.13), o}, 15 a cube

(mod p) if and only if &5p (if D # 643), psp (if D=0643) 1s a cube (mod p) j

Let H({—9D) denote the group of classes of primitive, positive-definit
binary quadratic forms of discriminant —9D, so that, for those D undg
consideration, H(—9D) is cyclic of order 12 (resp. 6) if D=1 (mod 3) (r
D = 2 (mod 3)). As the 3-Sylow subgroup of H(—9D) is of order 3, b
4 theorem of Weinberger [18], &3p (if D # 643), isp (f D =643) is a cub
(mod p) if and only if N(p) is represented by one of the forms in the subgr
of sixth powers in H (—9D), that 1s, by

(2.14) {(1’ i, 0D +1) or (9,9 4(D+9), if D=1(mod3J),

o ot

(1, 1, 9D + 1), if D=2 (mod 3).
In view of the identities
(OD +1) (D+1
R Y= x—y) +Hx—y)En+—y )(3y)2,
D+9 D+1
o 4 9ny 4+ O = (B b+

it is clear that if N(p) is represented by (1,1, 409D+ 1) or (9,9, (D +9))
represented by p_p = (1, L, 1(D +1)). In order to treat the converse, we
show that N(p)= 1 (mod 3). We have

3D
14

N(p) = 3D
o)
p

(—D 3D "
Recalling that ( I;—) — 1, the condition <-[7> =1 (resp. —1) 18 equival
\

p=1 (resp. 2) (mod 3). Hence we have N(p) =1 (mod 3). Thus, if N
represented by p-p = (1, 1, LD +1)), then

N(p) = x> +xy+x(D+1)y*

with either (i) y =0 (mod 3), or (i) x=y#0(mod3), D= 1 (mod 3):
holds then N(p) is represented by (1,1, 30D+ 1)) as »

N(p)= (x+%>2+(x+§> <§>+(—924i)<§—>2

If (i) holds then N(p) is represented by (9, 9, &(D +9)) as

CofXY 2 x—y (D+9) ,
N(p)~9< 3 >+9< 3 )y+-———~4 y-.

1.

I

= —1.
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s completes the proof when p = 1 (mod 3) as in this case N(p) = p. When
2 (mod 3), we have N(p)= p® and since there are exactly three in-
ivalent forms of discriminant — D, p? is represented by p ,, if and only il p is
esented by p_p.

This completes the proof of Theorem 1 for those D listed in (A).

We conclude this section by noting that when D = 44, and p is a prime

(mod 3) with (i—) = I, Weinberger’s theorem [18] gives a necessary
p
sufficient condition for p to be represented by the form (1, 1, 223), namely

p is represented by (1, 1, 223) if and only if &35 = 23+4\/33- 1s a cube
d p), where p 1s a prime ideal of Q(ﬂ) with N(p) = p.

This result is not relevant to Theorem 1. Similar remarks apply to the
r values of D in (B). Thus a different approach is needed to prove
orem 1 for those D in (B), and this is done in the next section.

Proof of Theorem 1 for those D listed in (B). Throughout this section,
s one of the five integers listed in (B). Note that D = 4D* where
i$ a prime =3 (mod 8). Let L, denote the bicyclic biquadratic field

-3,/ —=D%*). If 6eL,, the conjugates of 6 are 0, ¢, 0, &, where

(0 =a+b/~3+c/—D*+d./3D*,
0 =a—b./—3+c/—D*—d./3D*,
0 =a—by/—3—c/—D*+d/3D",
0 =a+b/-3—c/—D*—d /3D,

$

: s - N
Let p be a prime > 3 not dividing D/1f <—) = —1;p 1s not represented

p
: N /“""’/ .
-p=(1, 0, D/4), and, as discrim (f_,(x)] = —D, by a theorem of Stickel-

et [16], f_p(x) is the product of a linear polynomial and an irreducible
dratic (mod pJ. T —

' —D
Suppose now that (—) = +1. We must show that p is represented by
14

(1,0, D/4) if and only if f_p(x) is congruent to the product of three
Inct linear polynomials (mod p). Define

a b
900 =% + P12,

¢ the integers a, and b, are given in Table 7.
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Table 7
D ap bp
44 —4 + 38
76 +8 +2
172 —4 —70
268 —10 — 106
652 +20 — 196

We note that

—D, if D # 652,

33, discrim(q_ n(x)) = (—4ad—b2)/27 =
(33} diserim(g p(x) = (~4a3—b3)/27 {__4]), b

and that
1 tx+u
(34) f-p0) = Glox+ w)eg_u< )
vX +w
where the integers d, e (=0, 3), t, u, v, w are given in Table 8.
Table 8
D d e t u v w
44 +1 0 +3 +1 0 +3
76 +27 +3 +1 +2 43 -3
172 —1 0o -3 +1 0 +3
268 -1 o -3 -2 0 43
652 —108 +3 -4 =2 =3 43

From (3.4) we see that f_p(x) Is congruent to the product of three d
linear polynomials (mod p) if and only if g »(x) is the product of three d
linear polynomials (mod p). By (3.3) we have

(discrim(gﬂD)> B <—D> _ a1
p “\p /)

so that by a theorem of Dickson [4], g-p(x) is the product of three d
linear polynomials (mod p) if and only if

(3.5) [’-;—I{I ~ 1,

where
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(19+3./33, if D =44,
1+43./57, it D= 76,
up =< —35+3/129, if D =172,
—53+43./201, if D =268,
L —98+6./489, if D =652,

. : L. : :
Jp is a prime divisor of p in R,. (The symbol [%] in (3.5) is the cubic
’3

endre symbol.) The prime factorization of the primé 3 in R} 1s given as

2 =2
3 _ {_‘nl)nl)a

2
—p>

if D =44,
if D =76, 172, 268, 652,

if D=44,
if D= 76,172, 268, 652.

i :{a1+2¢i§+.ﬁ-ux
D 2 3,

Artin’s reciprocity law, we have
s

. <:uD9 /ID) (Hpa ’ID) l}'l_pjl . if D =44,
ru_q} _ T, Js\ Tp Js3lMpls
Ap 13 <#Da AD) li'lv]

L 3 3

i’

if D # 44,

Tp Up

ﬁ) is the cubic Hilbert symbol. From (3.6) we see that
3

0) A pp = 1 (mod (\/—3)°),
(g, A A
(@__u) =<”D’ 2) _ 1
\ 7p 3 Tp 3

us (3.9) reduces to

S
Ap s Hp 3.

3) Up = C"D()ngz D
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(1 /=3+—1D), if D=44,
13/ =3+~ 19), if D=76,
(3.14) 0, =< 519/ =3+5./~43), if D =172,
1(5./=3++/ =67 if D =268,
1(715/—3+97/—163), if D =652.
We note that
2. if D=44,
(315) 0,0 m{-z, if D #44.

Appealing to (3.13) we see that

p 1] [ P
@19 -l

Thus we have shown:

(3.17) p is represented by p_p < [/;—D] = [%7[):' X
D3 D_13
From (3.14) and (3.15) we obtain

(—7—./33, if D= 44,
~23-3./57, if D =76,
+ 038, = 203 = < —1579-95./129, it D=172,
—71—-5,/201, if D =268,
| 1533671 —69355. /489, if D = 652,

from which we see that

(3.18) {« /3D* = r,, (mod 03),
' J/3D* = —ry (mod 05),

where
1, if D =44,
(3.19) rp=< 3, if D=76,172, 652,
5, if D = 268.
Multiplying (3.18) by /~3, we obtain

{« /—D* = 3rp./—3 (mod 63),
J=D* = —3rps/—3 (mod F3).

(3.20)
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xt, as A, is a prime divisor of p in R, we have

ApApApip, il p =1 (mod 3),
Apap, if p =2 (mod 3).

s an integer of 0(/—3, /—D*), il p = 1 (mod 3), and of Q(\/—D*), if
mod 3), there are integers x,, X, X,, X5, if p =1 (mod 3), and integers
2 (mod 3), such that

Y(xo+ X1/ =34 x,/—DF 4+ x3,/3D%), il p=1 (mod 3),
3(xo+x,1/ — D), if p=2 (mod 3),

e
.=
i

(A, if p=1(mod 3),
1 _D* — DD
Hu+oy/ =D i, if p=2(mod 3),

t u and v are integers such that

(x3+3x3—D*x2—3D*x3)/8, if p=1(mod 3),

Xos if p=2(mod 3),
) (xgX,—3x,x,)/4, if p=1(mod 3),
Xy, if p=2(mod 3),

4p = u* +D*v*, u=v (mod 2).

p is represented by p_p if and only if u = v = 0 (mod 2). Thus, in view
17), we must show that

Ap _ Ap - XoX,—3%;x; =0 (mod 8), if p=1(mod 3),

AN x; = 0 (mod 2), if p =2 (mod 3).

€xt, as 0, is a prime divisor of 2 and A, is a prime divisor of the odd
p, we have i, + 0, and

A} = AP =1 = 1 (mod 6,),
g that

Ap =1, w or @* (mod 6y),

Arithmetica 572
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where @ = (—1+./—3)/2. Appealing to (3.18) and (3.20), we obtain fo; j
p=1(mod 3)

I (mod 0p), if E=0(mod4), F=4(mod 8),

(3.31) Ap = < w (mod 0Op), if £=2(mod4), F=4(mod 8),

sz (mod 0p), if E=2(mod4), F=0 (mod 8),

where

(3.32) E =xo+rxy, F=xq—x;—=3rx;+rxy;

and for p =2 (mod 3)
[ (mod 0)p), if x,=x;=0(mod 2), xo+rx, = 2 (mo

(3.33) A, =< w(mod 0p), Iif xo=x, = 1 (mod 2), xo+rx, =2 (mo
w?(mod 0,), if xo=x, =1(mod 2), xo+rx; = 0 (mo

We now treat the two cases p =1 (mod 3) and p = 2 (mod 3) separat
Case (i) p =1 (mod 3). We have by (3.31)

][
0D 3 _ID 3

Jp=1(mod 0p) 1p = o (mod 0p) Ap =
<> — or - or
1p =1 (mod 0p) 1p = w (mod Op) Ip =

e B
X, = —Irx; (mod 4)

o Xo—X; = 3rx, +rx; =4 (mod 8) or
x, = x5 (mod 4)
kx0+x:1—3rx2¥rx3 = 4 (mod 8)

[ xo+2 = —rx; (mod 4) A
J Xo— Xy —3rx, +rx; =4 (mod 8) (

or

X +2 = rx; (mod 4)

 Xo+ Xy —3rx,—rx; = 0 (mod 3)

-~

Xo+2= —1x3 (mod 4) W
Xo— %, — 33X, +1xy = 0 (mod 8)

) Xo+2 = rx; (mod 4)

~

Xo+ X, —3rx, —rx; = 4 (mod 8)
1 2 /
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X =X, =X, = x3 =0 (mod 2), say x; =2y, i =0, L, 2, 3)

and

or &
y; (mod 2), yo—y, —3ry,+ry; = (mod 4), yo+ v, —3ry;--rys =0 (mod 4)
or

Yo+l =y, (mod 2), yo—y, —3ry,+ry; = 0(mod 4), y,+y, —3ry,—ryy =2 (mod 4)

i

Yot

Vo= ¥1 = vy = vy (mod 2, yo— vy +ry,+1y; = 2 (mod 4)

or

Yo =y3t1 (mod 2), yo—y; —3ry,+rys = yo+y,—3ry,—ry;+2 (mod 4)

VoEW=V2=03 (mod 2), yo—y,—y,~V3 =2 (mod 4)
or

Vo=V, =y, +1=y;+1(mod 2)
uld be noted that if x,=x, =x,=x; =0(mod 2), with x; =2y,
, 1, 2, 3), then by (3.23), we have
Yo+ ¥+, +y; =0 (mod 2).
ew of (3.28) we must show that the assertion
XX, —3%; X3 = 0 (mod 8)
nivalent to
x; =2y, (i=0,1,2,3) and

Yo=Yy =Y, =y;(mod 2), yo—y;—y,— V3 = 2 (mod 4), or
VoEY =Y, H 1 =y;+1 (mod 2),

r (3.23). 1t is clear that (3.36) implies (3.35) as
XgXy—3% x5 = 4(Voy2—3Y1V3) =4y, —3¥0y) =0 (mod 8).

- Next we assume that (3.35) holds and begin by showing that the x; are all
We suppose that this is not the case, so that by (3.23) the x; are all odd,
=2z,4+1 (i=0,1, 2, 3). Then, from (3.35), we have

2zgz,+72,23)+(29+2,+2,+25) = 1 (mod 4).

er, as u = v = 0 (mod 2), by (3.27) we see that u+v = 2 (mod 4), and so
25) and (3.26), we have

(x3+3x2 —D*x2 —3D*x3) +2(x¢ X, — 3x; x3) = 16 (mod 32),
s0 (as D* = 3 (mod 8)) we obtain

) (234322 =322 —22)+ 2z 2, + 2, 23) + 2(20 — 2, +225) = 7 (mod ).
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From (3.37) we deduce

(3.39) 2z, + 1)z, = 1 —z4—2z, —2,4+ 2242, (mod 4).
Multiplying (3.39) by (2z,+1), we obtain

(3.40) 2y = 1 —(20+2,+2,)+2(22, +2,2,+2,25) (mod 4),
so that
(341) {22 =1—-A+2B (mod 4),
22 =1+4+A4*—-24+4+4AB (mod 8),
where '
(3.42) A=z4+z,+2z,, B=zyz,+2,2,+2,Z,.

Using (3.41) in (3.38), we obtain
344(zo+2,) (2021 +2,2,+2,20)—2;) = 7 (mod 8),
that is
(2o42,) (292, + 212, +2,29—2y) = 1 (mod 2),
showing that |
Zo+2Z, = 2oz, +2,2, 2,202y = 1 (mod 2),

which gives the contradiction

Zo+z, =29z, = 1 (mod 2).

This completes the proof that (3.35) implies that all the x; are even, say X;
(i=0,1,2,3). We complete the proof in the case p =1 (mod 3) by sho
that we must have either .

Vo= =y, =y (mod2),  yo—y —y,—y;=2(mod4)
or

Vo =Y, =Y, +1=y;+1 (mod 2).
As u =0 (mod 2), v =0 (mod 2), u+v =2 (mod 4) we have

(3.43) yé—yi+y5—y3 =0 (mod 4),
(3.44) YoY2+V1V3 = 0 (mod 2),
(3.45) ve+3y}—3y3—y3+2y0y, +2y,y; =4 (mod 8).

We begin by showing that y, = y, (mod 2). Suppose not, so that we
Yo =y, +1 (mod 2). Next (3.34) gives y, = y3+1 (mod 2). Then, fro
(3.43) or (3.44), we deduce that y, = y;+1 (mod 2). Thus we have

(3.46) Vo=, +1=y,+1 =y, (mod 2).
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0 (mod 2) then (3.45) and (3.46) give
Y&—y3+2y,+2y; = 4 (mod 8),
h gives the contradiction
0= (y,+1)*—(y;—1)> =4 (mod 3).
=1 (mod 2) then (3.45) and (3.46) give
| y24+y3+2y,+2y, = 4 (mod 8),
h gives the contradiction
| 2= (y, + 1)+ (v, 4 1) = 6 (mod 8).
¢e we must have |
Yo =¥y (mod 2),
50, by (3.34), we also have
y, = y5 (mod 2).

= y2+1 (mod 2) we are finished. Otherwise y, = y, (mod 2) and we must
that y,—y,—y,—y; =2 (mod 4). We have

Yo =V =Y, =y; (mod 2).
by =), =y, =y; = 1 (mod 2) then (3.45) gives
YoY2+y1ys =2 (mod 4),
thus
VoY1 —Y2—3 = 26— o+ ¥ +¥5+3) (mod 4)
=2t D+ D= D D+ Geyaty1ys)
+2 (mod 4)
=2-—-0-0+2+2 (mod 4)
= 2 (mod 4),

equired. If y, = y, = y, = y; = 0 (mod 2) then (3.45) gives (remembering
n* = 2n (mod 8) when n is even)

Vo—Y1+Y,— V3 =2 (mod 4),
thus
Yo—V1—V2—Y3 = o=y +Y2—y3)—2y, =2 (mod 4),
equired. This completes the proof when p =1 (mod 3).
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Case (i) p=2(mod 3). As A =4, and ), — - 0}, we have [L}D} '-.'
— 4 " - .- b
A 2 a
Ap Ap )“1)] ! P TS .
=|-~|,andso|="| =|~| holds i and only i { l = 1. that is, if 4
l{}n];z [()I)l [01) 3 05 1; m

only if 4, =1 (mod 0,). By (3.33) this condition is equivalent to No=3x,

= 0 (mod 2), x,+rx; =2 (mod 4), which by (3.25), (3.26) and (3.27) is equiy.

alent to u = v = 0 (mod 2) as required. .
The proof of Theorem 1 is now complete.

e

4. Proof of Theorem 2. Since 3/ %,)+\7 x’,) is the real root of 271 p((x —r 1
where r is the coefficient of x* in f_ ,(x), Theorem 2 follows immediately fr
Theorem | and [3: Theorem 9.2, Exercise 9.3].

5. Proof of Theorem 3. Theorem 3 follows from Theorem | and |
following theorem (which is essentially due to Cauchy [2]) with k = A4,
= —B= —b, (see (2.8) and (3.2)).

THEOREM (Cauchy). Let A and B be integers and let p be a prime such t

—44°%-27B?
p > 3) p/}/ABO <A-._______>_ T ‘“‘> == + I
p

be the sequence

G Ligean

integers defined by
un+2+Bun+1 _A:I;un = Ov
Uy =2, u;=—B~B.

Then x>+ Ax + B is congruent to the product of three distinct linear polynomi
(mod p) if
Up-1y3 = 2 (mod p), p =1 (mod 3),
{u(pﬂ)/:; = —2A4, (mod p), p=2(mod 3),
and x>+ Ax+ B is irreducible (mod p) if

{u(p_l)/3 = —1(mod p), p=1(mod3),
u(p+ 1)/3 = Al (mOd p), p = 2 (mOd 3)
6. Acknowledgement. The authors would like to thank Dr. Kenneth Har
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