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Abstract. This paper explores the factorization of an odd, composite integer N that has been
expressed in two different ways as mx2 ± ny2. The negative case mx2 − ny2 = N turns out
to be quite different from the positive case mx2 + ny2 = N because it deals with a hyper-
bola instead of an ellipse. Of particular interest in the negative case is that Pell-connected
representations produce trivial factorizations.

1. INTRODUCTION. In about 1643, Fermat devised an effective sieving method
for representing an odd, composite integer N as an integer point (a, b) on the hyper-
bola x2 − y2 = N , which yields the nontrivial factorization N = (a − b)(a + b) [5,
Ch. XIV, p. 357]; [7, pp. 55–58]. The importance of Fermat’s new factoring method
was threefold: (1) It represented a number as a quadratic form for the first time. (2)
It improved the ancient practical factoring method, where N is trial-divided by the
successive primes ≤ √

N generated by the progressively more-complicated Eratos-
thenes sieve. (3) It used a new kind of sieve, a quadratic sieve, where about half the
possibilities are excluded for each modulus used in the sieving.

About a century later, Euler used similar ideas to derive a formula to express N as
a product of two nontrivial factors by finding two representations of N by the ellipse
E : mx2 + ny2 = N for certain given positive integers m, n. A discussion of Euler’s
method can be found in [1] and [4, Chapters 3–5].

About a century after Euler, Lucas, and Mathews developed an elegant factorization
formula for numbers with double representations by the ellipse E , discussed in the
recent work [2, eq. (7)]. The present paper extends the investigation to the hyperbola
H : mx2 − ny2 = N . Historically, all we know about the hyperbolic case is Fermat’s
method with m = n = 1, where we do not need to find a second integer point on the
hyperbola because x2 − y2 is already reducible. To our knowledge, the general case
mx2 − ny2 = N was never considered in its own right because we suppose no one
thought of doing so due to the apparent sufficiency of that method.

In Sec. 2, we discuss the Lucas–Mathews factorization formula in both the ellip-
tic and hyperbolic cases. Interestingly, in the latter case, a complication arises when
certain pairs of representations of N lead to the trivial factorization N = N · 1. Our
analysis of this curious anomaly in Sec. 3 shows that the trivial factorization occurs
only when the two points belong to the same “Pell family,” an infinite set of integer
points on H , based on the equation x2 − mny2 = 1. Section 4 contains a commentary
on an approach to factoring Mersenne numbers using double hyperbolic representa-
tions. The paper concludes with a discussion of applications of the method.

2. THE LUCAS–MATHEWS FORMULA.

Factoring using an ellipse. [2, Thm. 2]
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Theorem 1 (Lucas–Mathews formula for an ellipse.). If an odd integer N is repre-
sented in two different ways as

N = ma2 + nb2 = mc2 + nd2, (1)

where

m, n, a, b, c, d ∈ Z
+ and (ma, nb) = (mc, nd) = 1, (2)

then N factors nontrivially as

N = (N , ad − bc) (N , ad + bc). (3)

Remark. In general, if N divides a product u · v, we cannot conclude that N =
(N , u)(N , v). This equation does hold, however, if (N , u) and (N , v) are relatively
prime, which is the case in equation (3), as the following argument shows. Let p
be a prime divisor of (N , ad − bc) and (N , ad + bc). Then p divides N , 2ad, and
2bc. Since N is odd, p cannot be 2, so either p|a or p|d. If p|a, then p|N − ma2 =
nb2, which violates the gcd condition (ma, nb) = 1 in (2). A similar contradiction is
reached if p|d.

Example 1. The Mersenne number M11 = 211 − 1 = 2047 can be written as 2047 =
6 · 22 + 7 · 172 = 6 · 122 + 7 · 132, so (3) gives

2047 = (2047, 2 · 13 − 17 · 12)(2047, 2 · 13 + 17 · 12)

= (2047, −178)(2047, 230) = 89 · 23.

Example 2. The Fermat number F5 = 232 + 1 = 4394967297 is represented as
69 · 73892 + 77 · 26182 = 69 · 66742 + 77 · 39832, so

F5 = (F5, 7389 · 3983 − 2618 · 6674)(F5, 7389 · 3983 + 2618 · 6674)

= (F5, 11957855)(F5, 46902919) = 641 · 6700417.

The proof of the Lucas–Mathews formula makes use of the next two equations that
readily follow from (1).

Proposition 2. If N = ma2 + nb2 = mc2 + nd2, then

(d2 − b2)N = m(ad − bc)(ad + bc) (4)

and

(
mac ∓ nbd

)2 + mn
(
ad ± bc

)2 = N 2. (5)

Because of (1) and the gcd condition (am, bn) = 1 in (2), the integer N in
Theorem 1 is relatively prime to m. It follows from (4) that N divides (ad − bc)(ad +
bc), so factors of N are found by taking gcd’s. The Lucas–Mathews formula (3)
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follows from the further observation that the gcd conditions in (2) imply that the two
factors (N , ad − bc) and (N , ad + bc) are relatively prime. Finally, equation (5) is in-
strumental in showing that 1 < ad + bc < N , from which we deduce the nontriviality
of the two factors in (3). (Cf. [2, (9) et seq.])

Factoring using a hyperbola. All we need to do in going from the ellipse E : mx2 +
ny2 = N to the hyperbola H : N = mx2 − ny2 is replace n by −n. Equation (4) con-
tinues to hold using this replacement as that equation has no n on its right-hand side.
Since (N , m) = 1, N again divides (ad − bc)(ad + bc) as in the elliptical case. Hence,
the Lucas–Mathews formula (3) also holds in the case of a double hyperbolic repre-
sentation. A question remains, however: Is this factorization nontrivial?

Example 3. From the double representation

M11 = 211 − 1 = 2047 = 1 · 632 − 2 · 312 = 1 · 472 − 2 · 92,

(3) becomes

M11 = (M11, ad − bc)(M11, ad + bc)

= (2047, 63 · 9 − 31 · 47) (2047, 63 · 9 + 31 · 47)

= (2047, −890) (2047, 2024) = 89 · 23.

Example 4. Now consider another double representation for the same number: M11 =
211 − 1 = 1 · 632 − 2 · 312 = 1 · 652 − 2 · 332. We then have that

(M11, ad − bc) = (2047, 63 · 33 − 65 · 31) = (2047, 64) = 1 and

(M11, ad + bc) = (2047, 4094) = (M11, 2M11) = M11, so

the factorization in (3) is trivial: M11 = 1 · M11.
Thus, the situation for a hyperbola is more complicated than for an ellipse: Ex-

ample 3 shows that the two representations do lead to a nontrivial factorization of N ,
while Example 4 produces only a trivial factorization. (Cf. [1, Sec. 5].) We investigate
the cause of this factorization failure in the next section.

To see why the nontriviality proof in the elliptical case, based on (5), fails in the
case of a hyperbola, it is helpful to replace n by −n in (5), which gives the following
equation.

Proposition 3. If N = ma2 − nb2 = mc2 − nd2, then

(
mac ± nbd

)2 − mn
(
ad ± bc

)2 = N 2. (6)

Equation (6), whose analogue (5) was so basic in proving that the factors (N , ad ±
bc) in Theorem 1 are nontrivial, fails to ensure nontriviality in the hyperbolic case. In
fact, we cannot deduce any information about the relative size of ad ± bc and N from
(6) because it involves a difference instead of a sum.

3. PELL FAMILIES AND NONTRIVIALITY. Consider the integer points (a, b)

and (c, d) on the hyperbola H : mx2 − ny2 = N . We will show that there exist certain
families of points on H that always produce a trivial factorization when (a, b) and
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(c, d) belong to one of these families, as in Example 4. The key mathematical element
in the construction of such families is the Pell equation [3, pp. 31–34]

x2 − mny2 = 1. (7)

Consider the two rational points defined by

[
α±

β±

]
= 1

N

[
mac ± nbd

ad ± bc

]
. (8)

By equation (6), these points satisfy (7). We say that (a, b) and (c, d) are Pell-related
if and only if (α+, β+) or (α−, β−) in (8) is an integer point on (7).

In Example 3, with (a, b) = (63, 31) and (c, d) = (47, 9) that gave the nontriv-
ial factorization of 2047, the two rational points in (8) are (α+, β+) = (

153
89 , 88

89

)
and

(α−, β−) = (
27
23 , − 10

23

)
, neither of which is an integer solution to x2 − 2y2 = 1. Thus,

the pairs (a, b) and (c, d) are not Pell related.
On the other hand, in Example 4, when we use (a, b) = (63, 31) and (c, d) =

(65, 33) in (8), we see that

[
α+

β+

]
= 1

2047

[
63 · 65 + 2 · 31 · 33

63 · 33 + 31 · 65

]
=

[
3
2

]

is an integer point satisfying the Pell equation x2 − 2y2 = 1, thus demonstrating that
(a, b) and (c, d) are Pell related.

Looking at the situation differently, given a point (a, b) on the hyperbola, and a Pell
solution α2 − mnβ2 = 1, we can write

N · 1 = (ma2 − nb2)(α2 − mnβ2) = m(αa + nβb)2 − n(mβa + αb)2,

so the second Pell-related point (c, d) on H is obtained from

[
c
d

]
=

[
α nβ

mβ α

] [
a
b

]
. (9)

Using the fundamental Pell solution (α0, β0) of (7), we can create an infinite family of
solutions of mx2 − ny2 = N by multiplying one solution (a, b) by any integral power
of the matrix in (9). (A negative power comes from the inverse matrix.)

One suspects that two Pell-related points will always produce a trivial factorization.
Giving a second representation using a Pell equation is like obtaining a second equa-
tion in a linear system by multiplying one of the equations by a constant. It adds no
new information.

Theorem 4. If an odd, positive integer N is represented in two different ways as N =
ma2 − nb2 = mc2 − nd2, where m, n, a, b, c, d ∈ Z

+ and (ma, nb) = (mc, md) = 1,
then the factorization

N = (N , ad − bc) (N , ad + bc) (10)

is trivial if and only if (a, b) and (c, d) are Pell related.
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Proof. (=⇒) If the factorization in (10) is trivial, then, since N | (ad − bc)(ad +
bc), either N | ad − bc or N | ad + bc. In the first case, we can take α = mac − nbd

N

and β = ad − bc

N
and, in the latter, α = mac + nbd

N
and β = ad + bc

N
. Either way,

β is an integer and by (6), α and β are rational numbers satisfying α2 − mnβ2 = 1.
Since α is a rational whose square, mnβ2 + 1, is an integer, it follows that α is also an
integer and hence (a, b) and (c, d) are Pell related.

(⇐=) Suppose (a, b) and (c, d) are Pell related. Then there is an integral solution

(α, β) of (7) given by (8). Moreover, β = 1

N
(ad ± bc), so N divides ad ± bc, and

hence either (N , ad − bc) = N or (N , ad + bc) = N .

Representations of N as mx2 − ny2 can be viewed as binary quadratic forms of
discriminant 4mn. (In general, the discriminant of the form ax2 + bxy + cy2 is b2 −
4ac.) The issue of Pell-related representations has a natural interpretation in terms
of such forms, which correspond to solutions of the Pell equation. Powering of the
fundamental solution yields the other Pell-related integer solutions.

4. FACTORING MERSENNE NUMBERS. The Mersenne numbers Mp = 2p − 1,
where p is prime, go back to the time of Euclid and the idea of a perfect number.
The search for Mersenne primes has been a continuing preoccupation for centuries [5,
Ch. 1], especially in the age of high-speed computers. Most notable is GIMPS [6], an
acronym for Great Internet Mersenne Prime Search. Currently, less than 50 Mersenne
primes are known, the largest being M57885161, a number with over 17 million digits.
No one has been able to prove that there are infinitely many Mersenne primes. More
surprising, however, is the fact that no one has shown that infinitely many Mersenne
numbers Mp are composite [8, p. 29].

In this section, we bring our method to bear on the Mersenne numbers Mp. The idea
is simple. Find a hyperbola mx2 − ny2 that represents Mp and then look for a second
representation, using the same m and n. The hyperbola x2 − 2y2 is a natural form for
representing numbers Mp = 2p − 1 for any odd number p:

Mp = 2p − 1 = (2(p+1)/2 − 1)2 − 2(2(p−1)/2 − 1)2. (11)

Thus, one way to factor Mp is to find a second, non-Pell-related representation of the
form x2 − 2y2. We present a small table below showing the minimum values of c
and d for such a second representation (when it exists) for odd primes p < 50. Note
that there are no second representations when p = 3, 5, 7, 13, 17, 19, 31 since Mp

is prime for these exponents. The values of c and d, together with a = 2(p+1)/2 − 1
and b = 2(p−1)/2 − 1, give the Lucas–Mathews factors f = (Mp, ad − bc) and g =
(Mp, ad + bc) in the following table.

p Mp = 2p − 1 c d f g
11 2047 47 9 89 23
23 8388607 3225 1003 47 178481
29 536870911 23231 1185 2089 256999
37 137438953471 463161 196315 223 616318177
41 2199023255551 1890999 829715 13367 164511353
43 8796093022207 2968127 82719 431 20408568497
47 140737488355327 11911223 754899 10610063 13264529
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Figuring out a pattern for the second representations could be a first step in settling
the long-standing conjecture that there are infinitely many primes p for which Mp is
composite. Considering the scarcity of Mersenne primes, it would be a rare mathe-
matician who would doubt the truth of this conjecture.

5. APPLICATIONS. The method presented in this paper extends Fermat’s method
of expressing a number N to be factored as a difference of squares x2 − y2 to the
problem of finding a double representation of the general form mx2 − ny2. Just how
the theory may end up being used to design new schemes to factor numbers of various
forms in the era of standard or quantum computers remains to be seen. One would hope
that this new basic method would be useful in giving flexibility to some of the excellent
computer factoring methods. On its own, however, finding a double representation
seems an impractical way to factor a large number N , say, of 50 or more digits. The
obvious difficulty lies in choosing the appropriate values of m, n, a, b, c, and d. We
had hoped that the Lucas–Mathews method might have applied to certain classes of
numbers, such as Mersenne or Fermat numbers, but our limited experience suggests
that more work is needed.

We conclude by considering the following question. What odd positive integers
N have double representations satisfying (2) that allow them to be factored? By the
remark at the end of Theorem 1, N must have at least two prime factors. In the elliptic
case, not all composite values of N have double representations of the form mx2 +
ny2. For example, it is easy to check by exhaustion that double representations do not
exist for N = 15, 39, 95, and 105. The situation is different when using hyperbolas,
however, as the following surprising, but elementary, theorem asserts.

Theorem 5. Let N = xy, where x and y are relatively prime odd integers ≥ 3. Then
there exist positive integers m, n, a, b, c, and d satisfying N = ma2 − nb2 = mc2 −
nd2 and the conditions (2) such that

(N , ad − bc) = x and (N , ad + bc) = y. (12)

Proof. Assume without loss of generality that x > y. Take m = n = 1, and define

a = x + y

2
, b = x − y

2
, c = xy + 1

2
, d = xy − 1

2
. (13)
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