
order  of � and define the function

X (ω) :=
{

� if ω is periodic;
the unique x minimizing τ−xω under  otherwise.

(We may think of τ−xω as ω viewed from location x , in which case X is the location
from which ω appears least.) Clearly, X is shift-equivariant. It is almost-everywhere
defined since � contains only countably many periodic elements.
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A Note on Euler’s Factoring Problem

John Brillhart

1. THE INITIAL PROBLEM. In 1640 Fermat communicated the following result
to Mersenne [5, p. 67]: A prime of the form 4n + 1 can be expressed as a sum of two
squares in just one way.

About a century later, Euler became interested in the following immediate conse-
quence of this result: An odd integer N that can be expressed as a sum of two squares
in two different ways is composite. (That N has the form 4n + 1 is clear from re-
ducing the sum of two squares mod 4). The factoring problem associated with this
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compositeness is, of course, how to find factors of N using the two representations.
Here “factoring” means splitting a composite integer N into a product of two factors.

Euler gave a simple solution to this problem that appears as equation (2) in the next
theorem.

Theorem 1 [1, p. 360]. Let N be an odd integer, expressible in two different ways as

N = a2 + b2 = c2 + d2, (1)

where a, b, c, d ∈ Z+. Then

N = 1

4(d − b)2

[
(a − c)2 + (d − b)2

] · [
(a + c)2 + (d − b)2

]
. (2)

Proof. Using (1) and the equation a2 − c2 = d2 − b2, we have that[
(a − c)2 + (d − b)2

] · [
(a + c)2 + (d − b)2

]
= (a2 − c2)2 + (d − b)2

[
(a − c)2 + (a + c)2

] + (d − b)4

= (d − b)2
[
(d + b)2 + 2(a2 + c2) + (d − b)2

]
= 2(d − b)2(a2 + b2 + c2 + d2) = 4(d − b)2 N .

Somewhat later Euler gave an improved solution in which the formula had no can-
celing and the two factors were nontrivial [1, p. 360, footnote 27*]. The version of his
later formula we give here, viz., (5) in the following development, is taken from Ore’s
elegant book [4, p. 61, (4–12)].

Let N = a2 + b2 = c2 + d2 be an odd integer, where b < d, a and c are odd, and b
and d are even. Then

(a − c) (a + c) = (d − b) (d + b). (3)

Next, set r = (a − c, d − b), where r is even. We can then write a − c = rs and
d − b = r t , where (s, t) = 1. Substituting these results into (3) gives

s(a + c) = t (d + b). (4)

Since (s, t) = 1, we see that t | (a + c), so we can write a + c = tu. Putting this result
into (4), we find that d + b = su, which implies that (a + c, d + b) = u, where u is
even. We can now give the factorization formula:

N =
[(r

2

)2 +
(u

2

)2
]

· (s2 + t2), (5)

where the factors are clearly nontrivial.

Proof.[(r

2

)2 +
(u

2

)2
]

· (s2 + t2) = 1

4

[
(rs)2 + (r t)2 + (su)2 + (tu)2

]

= 1

4

[
(a − c)2 + (d − b)2 + (d + b)2 + (a + c)2

]

= 1

2

(
a2 + b2 + c2 + d2

) = N .
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2. THE GENERAL PROBLEM. Following this investigation, Euler considered the
general problem in which an odd integer N is expressed in two different ways as
mx2 + ny2 for fixed positive integers m and n.

He first gave a factorization formula similar to (5) in the case m = 1 [1, p. 362]. The
general problem was later addressed by his mathematical assistants who aided Euler
when he became blind. Unfortunately, their writing was lacking, or as Weil puts it [5,
p. 222], it was “clumsy” and “hardly convincing.” This state of affairs seems to have
continued until the end of the next century when Lucas reconsidered these questions.

In 1891 Lucas published in volume 1 of his remarkable number theory book a neat
proof that a prime cannot be expressed in two different ways as mx2 + ny2, m, n ∈ Z+
[1, p. 364] [2, pp. 356–357]. He also stated that his proof was not a particular case of
the theory of quadratic forms which had been used previously.

He mentioned further that he would wait until later (presumably in volume 2 of his
book) to publish his associated factoring method. This, however, was not to be, since
he tragically died of a virulent infection in 1891, shortly after a freak accident at a
banquet when a fragment of a broken dish cut his cheek.

The following year Mathews published a factoring algorithm based on the identi-
ties that Lucas had used in proving his theorem [1, p. 364] [3, Sec. 215]. Since it is
unnecessary to prove a number is composite when a formula is to be given for its fac-
torization, we will not present Lucas’ proof here. Instead, we will rewrite Mathews’
algorithm as the proof of the next theorem in which formula (7) expresses N as the
product of two nontrivial factors. This formula clearly shows that he (and no doubt
Lucas) had solved Euler’s general factoring problem.

Theorem 2. Let N > 1 be an odd integer expressed in two different ways as

N = ma2 + nb2 = mc2 + nd2, (6)

where a, b, c, d, m, n ∈ Z+, b < d, and (ma, nb) = (mc, nd) = 1. Then

N = (N , ad − bc) · N

(N , ad − bc)
, (7)

where the factors are nontrivial.

Proof. From (6) we readily obtain the two identities

(d2 − b2)N = m(ad − bc)(ad + bc) (8)

and

N 2 = (mac − nbd)2 + mn(ad + bc)2. (9)

Since (m, N ) = 1 by (6), it follows from (8) that

N | (ad − bc)(ad + bc). (10)

Note in (9) that if mn > 1, then ad + bc < N . However, if mn = 1, i.e., m = n = 1,
then (9) becomes

N 2 = (ac − bd)2 + (ad + bc)2. (11)
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Further, if ac − bd = 0, it follows that d/c = a/b. Since (a, b) = (c, d) = 1, then
d = a and c = b, so (6) becomes

N = a2 + b2 = b2 + a2,

which are not different representations of N . Thus, ac − bd �= 0 and by (11) we con-
clude again that ad + bc < N .

On the other hand, since b < d, (8) implies that ad − bc ≥ 1. However, using (10)
and ad + bc < N , we see that ad − bc > 1. Thus,

1 < ad − bc < ad + bc < N ,

from which the nontriviality of the factorization in (7) follows from (10).

From a computational point of view, (7) can hardly be improved on since it contains
only a little arithmetic and the computation of a single GCD. Interestingly, this formula
does not contain m or n.
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Department of mathematics, University of Arizona, Tucson, AZ 85721
jdb@math.arizona.edu

πp, the Value of π in �p

Joseph B. Keller and Ravi Vakil

The two-dimensional space �p is the set of points in the plane, with the distance be-
tween two points (x, y) and (x ′, y′) defined by (|x − x ′|p + |y − y′|p)

1/p, 1 ≤ p ≤ ∞.
The distance from (x, y) to the origin is then (|x |p + |y|p)1/p. The equation of the unit
circle Cp, i.e., the circle with its center at the origin and radius 1, is

(|x |p + |y|p)
1/p = 1. (1)

Figure 1 shows Cp for p = 1, 3/2, 2, 3, and ∞. Equation (1) is unchanged when
x is replaced by −x , when y is replaced by −y, and when x and y are interchanged.
Therefore Cp is symmetric about the y-axis, about the x-axis, and about the line x = y.

It is natural to define πp as the ratio of the circumference of Cp (in the p-metric) to
two times its radius (also in the p-metric), which is its “diameter,” 2. This definition has
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