FRACTIONAL ITERATION
NEAR A FIXPOINT OF MULTIPLIER 1.

I. N. BAKER
(received 28 November 1963)

1. Introduction
An analytic function f(z) is said to have a fixpoint £ £ oo of multiplier
Y if f(&) ==&, (&) = 1. The function then has an expansion

(1) fz) = 4+ (z—&)+ Ea,,(z—f)", Gy 0, m 2 1.

m+1

It has been shown in [1] that there is for every complex s a unique formal
iterate

) 1) = B —8)+ S ay(5) (z—E)%, apyyls) = Saen,
m+1

(where the a,(s) are well-defined polynomials in s) satisfying the formal
identity

3) fofz) =1fof()
(where fog(z) denotes fgz))) and indeed
{4) 0 1e(2) = fope2).

The series f,(z) is identical with f(z) and, more generally, for s = n,
a positive integer, f,(z) is identical with the formal iterate fo fo - - - o f(2);
by analogy the f,(z) are called fractional iterates.

It was shown in [1] that the set of s-values corresponding to f, with a
non-zero radius of convergence has one of the forms: (i) the whole complex
s-plane, (ii) a discrete one-dimensional lattice {ns},n=0,4£1,---,5,5%0 or
(iii) a discrete two-dimensional lattice {msytnsy), m, n=10, £ 1, -, s[5,
not real. Cases (i) and (ii) were shown to occur for f= z/(1—z) and
= e*—1 respectively. G. Szekeres [4] has shown

THEOREM 1. If f(z) in (1) 1s an entire or rational function and © is the
set of those s-values for which the series (2) has a positive radius of convergence,
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then & 1s not the whole plane (and consequently © is a discrete lattice) except
in the case

5) Hz) = &+ (z—8)[{1+alz—8)}
when
(6) fo(2) = E+(z—8)[{1 tas(z—£)}.

In. this connexion Szekeres asks whether the same result holds for
the class of meromorphic or, more generally, single-valued analytic functions.
We shall prove:

TuEOREM 2. If (1) is the expansion about & of a meromorphic funciron,
then © is the whole plane only when the function has the form (5).

- The proof of 2 will give a somewhat different approach to Theorem 1.
It may easily be shown (c.f. [1, section 7], [4, introduction]) that there are
series (1) other than (5) for which & is the whole plane: these examples
of functions of f(z) and their iterates are many-valued under analytic
continuation. It may be remarked in conclusion that no examples are
known where & is a two-dimensional discrete lattice.

2. Preliminary results

We shall prove Theorem 2 only for the case m = 1 in (1), i.e. when
(7 Ha) = £+ (z—8&)+ay(z—E)2+ T a,(z—&)%,  ay # 0.
3

The ideas in the general case are the same, but the description of certain
regions involved is more complicated.

It is convenient to transfer the fixpoint & to co. If we change variables
in the transformation z, = f(z) by putting z—¢& = &ft, z,—§ = kjt;, the
function f{z) becomes for suitably chosen & (c.f. [4])

(8) fh=g() = t+1+ X bt™*
1
and the same change of variables turns f,(z) into
9) b, = g,(8) = t+s+3 by(s)i ™
1

The g, are the unique series of form (9) such that

(10) 8508 =g0g&;
further
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(11) 398t = Zorts

and g,(¢) is convergent for values other than £ = oo if and only if £, in (2)
is convergent for values other than z = £.

From now on g,(t) will denote the series (8) and g = g, will be assumed
convergent for 1f] > R.

We quote the following results from [1, 2]:

LEMMA 1 [1, p. 272] If the region DK) = U_(,,,Q)S,s(,m €(x, K),
where €(«, K) is the half-plane {z|Re (z2e™™) > K}, then for all sufficiently
large K(> R), g.(2) is regular,

(12) (1) eDK), =n=1,2--
and
(13) Re g,(2) - 0 as # >

for all z in the closure D(K) of D(K).
By [1,273(21)] (13) holds uniformly on any compact subset of DK).

LEMMA 2 [1, p. 273] For all sufficiently large K the domain DK) of
lemma 1 has the properties:

(14) A(t) = lim {g,(¢)—n—b, log %},

(where b is as in (8)) exists uniformily for t D(K); moreover A (t) is regular
and schlicht in D(K) and A'(¢) - 1 untformly as t — oo in D(K). One has

(15) A(g.(t)) = A(t)+n for t e D(K).

LeEMMA 3 [4, §2] If the series (9) have a positive radius of convergence
for every s, then b(t) = A'(t) is regular in a full neighbourhood of ¢ == oo
and has an expansion

(16) b(t) = 1--p14 2 Bt
2
which may be calculated from

bog(t)=o(fg ().
We now prove

LEMMA 4. If the serics (9) have a positive vadius of convergence for cvery

s, and if g.(8) are single-valucd in their whole domain of cxistence for

=1, 2,---, then there cxists Ry >0, such that for t in any annulus
Ry< Ry S lt| S R, < 0 one has for all large enough n
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'(i) ga(t) regular, g,(t) e D(K), and
(i) £a() > co uniformly as n > co.

Proor. Choose K so large that Lemma 2 holds and that [Lemma 3]
- #A"{#) is regular in |f| > K. By enlarging K we may suppose A’(t) as close
- to 1 (uniformly) as we please in D(K). Then ¢t - w = A4 (f) maps D(K)
“‘univalently and conformally on to a region € of the w-plane lying to the
right of a curve (of the same general appearance as the boundary of D(K))
which approaches oo in the directions arg @ = 4 3n/4. € contains a half
‘plane Rew > B. One may now take Ry>K, Ry < Ry <R,. Let
R, <7 < R, and y be the segment ¢ > 7, of the real  axis, § the semicircle
t=17¢% 0 <60 <m By Lemma 3, b(f) = A'(t) is regular on Uy, and
so A () may be continued regularly along fuy to ¢ = —r, the values
4 (8) being bounded. For all large enough # the values A4 (8)4-» lie in the
half plane Re w > B, while for all positive #, £ e y C D(K) implies by (15)
4@)+n=A(g,() €. Thus A(Buy)+n is a curve in §. Consider
A_{A@#)+n}=h{t) on Buy. On y, h(t) =g,(t), while as ¢ describes
By, A(t)+n describes A(B U )+ in € and the inverse of the schlicht
map 4: D(E) — & gives a regular continuation A(¢) of g,(¢) along 8 to —r.
Moreover for ¢ =7e®, 0 <0 <=, R, <7 < R, we have g,(¢) lying in a
compact subset of D(K).
A similar argument may be applied to the path g’y where g : 7e%
0 = 6 = —=. The assumption that g,(¢) is single-valued assures that both
the upper and lower continuation yield the same result for g,(f). Thus
&x(f) is regular in the annulus R; < [i| < R,, g,(f) maps the annulus into
a compact subset of D(K), and by lemma 1 (i) follows.
We may restate lemma 4 in terms of the function f(z) with a finite
fixpoint &:

Lemma 5. If the series (7)
(7) 12) = &+ (e—&)+ay(e—E)+ ?ak(z—e)k, ay #0,

and the fractional ilerates 2)
(2) fs(2) = &+ (2—&) +-say(z—&)2+ § 2, (s) (z—&)*

il have a positive radius of convergence, and if f,(t) are single valued in their
whole domain of existence for n =1, 2, - - -, then there exists py > 0, such that
for 2 in any anmulus 0 < p, < |7—§| < p, < P, On€ has for all large enough n

(i)  f.(z) regular, and
(i) f.(2) > & uniformly as n — co.
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3. Proof of theorem 2

Without loss of generality we assume £ = 0. Suppose that f(z) is
entire or meromorphic and that the set & of theorem 2 is the whole plane.

(i) In the case where f(z) is rational or entire the theorem follows
at once from results of Fatou [2, 3] who proved that (i) a fixpoint of mul-
tiplier 1 belongs to the set § of nonnormality of {f,(2)}, (i) ¥ is perfect
(except when f(z) is of the form (5)). Thus, however small we take p,,
there are points of § in 0 < |2| < p,, and hence there is an annulus
0 < py = [2| = py in which {f,(z)} is not 2 normal family, in contradiction
to Lemma 5.

(ii) If f(z) is a transcendental meromorphic function we take p, as
in Lemma 5 and show that there are in the disc § : |z} < py no antecedents
of poles of /(z), 1.e. no B for which a — fx(B) is a pole of f(z). If B were such
a-point, then for any neighbourhood % of B, f.(M) is a neighbourhood of
¢, f»:1(M) a neighbourhood of 0, and £,.,.(N), & = 2 includes all points
of the plane with at most two exceptions. Thus f is an essential singularity
of all £,,,(z) in contradiction to lemma 5. Thus our assertion is established
and it follows that all £,(z) are regular in §.

We now note that {f,(z)} does not form a normal family in . If {f,(z)}
is normal, then we can extract a subsequence {f,. (z)} uniformly convergent
m 2} < py < pp to a regular function, which by Lemma 5 is identically
zero. But for this it is necessary that fw (0) — 0, while, in fact f.(0) = 1.

Since {f,} is not normal in $ the functions fn(z) take in ® all values
with at most two exceptions. If there are at least two (finite) poles a, &
then f, =4, b or o« in R, which contradicts the first paragraph of (ii).
We are left only with the case when /(z) has a single pole a. If f(z) = a
has a solution ¢, then ¢ 7 a and we can find solutions in § of fn = ¢, ao0rco,
which again gives a contradiction.

If f(z) has a single pole a and /(z) = a has no solution {e.g. f(z) =
a+e*[(z—a)}, consider the meromorphic function
(17) he)= (1) =2)/(/(2) —a),

(17%) F(z)=(ah(z)—z)[(h(z) —1).

The function A(z) has no finite poles (since f(z) :# a) and is not a
polynomial since otherwise #(z) would be rational by (17°). Hence A(z) is
entire transcendental and 4 (z) % 1 for z # a. Thercfore by Picard’s theorem
it has infinitely many zeros and f(z) =z has infinitely many solutions.
Returning to the non-normal family f,(z) we see that there is a z, e &t
such that Iy (20) = 21, 2, # 0, f(z)) = . Then f,(z,) = z, for all u > »,,
and in any annulus 0 < P2 = 2] = p; < p, containing z,, the sequence
7s(2) cannot tend uniformly to 0.

We have now established theorem 2 in all cases.
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4. Extensions

... The differences caused by assuming » > 1 in (1) are that the region
DK of Lemumas 1, 2 must be replaced by a set of m smaller ones (essentially
sectors of opening 3n/2m; c.f. [1]), and that the expansion (16) of A’(Z)
27 hgs-a different form. We shall not state the necessary modifications in the
_ ?mbf'of theorem 2.
o ' Ft is interesting to note that our method extends to further classes of
' fm&tmm If, for example, f(z) in (1) is a single-valued function defined in
the whole plane except for a number (> 2) of isolated essential singularities,
then the argument of § 8(ii) shows that there are no antecedents of these
singularities in a disc § surrounding z = £ and the family {f,} is con-
sequently regular and normal in ®, which by the second paragraph of
, §3(i;}camnotbethecase
.4 Although I have been able to prove various results of the above type,
F-have Bot been able to extend theorem 2 to cover all single-valued f(z).
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