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Permutable Entire Functions

By
IRVINE NOEL BAKER

1. Introduction and results
Two functions f(z) and g(z) are called permutable if

(1) fg®) =¢(f(2)

holds for all values of z. We shall be concerned only with the case where
1{2z) and g(z) are entire functions of the complex variable z. Juria [7], RirT
[8, 9] and, more recently JAacoBsTHAL have treated the related cases of
permutable polynomials and permutable rational functions.

A problem of some interest is the determination of the class P(f) of those
entire functions g(z) which satisfy (1) with a given entire function f(z). We
define the natural iterates f,(z), n=0,1, 2, ... of f(2) by . '

(2) fo(z):z; fn(z)zf(fn-—l(z))r ’}’l«="1, 2:""

so that in parﬁcular fi(2)=F(2); for all » we have f,(z) € P(f). The natural
iterates of a given entire function are all different except in the cases

(3) f(?) =«, o constant,
and )
(4) (R =B+y(z—4), B constant and y a root of unity.

Now P(x) is the (non-denumerably) infinite set of those entire functions g (z)
which have « as a fixpoint, i.e. for which

(5) gle) =«a.

On the other hand P(f+y(z—p)) contains the non-denumerably infinite
subset of functions of the form f+4d(z—p), 6 constant. - Thus in every case
P(f) is an infinite set. -

GANAPATHY IYER [§] and the present author [7] have shown independently:
A. If f(2) is a polynomial, then P(f) contains entive transcendental functions
if and only if f(2) has one of the forms f(z)=const. or f(z)=vz+ 8, & constant
and <y a root of unity. :
- The quite different case f(z) =¢* was discussed in [Z, p.147] where it
was proved that: '
B. P(¢*) consists of the natural iterates of ¢ together with the constants c-(fix-
points of €*) such that ¢*=c. In particular P(e*) is denumerably infinite.

A7t
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We quote also the following result of JacoBsTHAL [6]:
C.. If {(2) is a polynomial of degree greater than one, then the set of polynomials
permutable with f(2) is denumerably infinite.

Together 4 and C give '
D. If {(2) is a polynomial of degree greater than one, then P(f) is denumerably
nfinite.

The results B and D suggest the
Conjecture. E. If f(2) is an entive function, other than a polynomial of degree
less than two, then P(f) is denumerably infinite.

While E remains undecided, the partial result of theorem 1 offers some
support in favour of the conjecture. The following terminology is used: If
m is a positive integer, the complex number £ is called a fixpoint of order m

of f(2) if

(©) fmé) =&
While
(7) HE *EE  j=12,..,m—1;

fw(€) is called the multiplier of £. A fixpoint is repulsive if |, (£)] >1.
THEOREM 1. If the entire function f(z) is not a polynomial of degree less

than two and if [(z) has a fixpoint of some order which is either repulsive or
of multiplier {1, then P(f) is denumerably infinite.

THEOREM 2. Theovem 1 includes the resulis B and D as special cases.

“These theorems will be proved in sections 3 and 4. It may be noted in
connexion with tt.eorem 1 that f(2) possesses fixpoints of every order m=1, 2, ...
except for at most one order [2]. However, very little is known about the
possible values of the multipliers of these fixpoints. For instance an unsolved
problem of FAToU [4] asks whether every transcendental entire function has
a repulsive fixpoint of some order. An affirmative answer to FaTou’s problem
would establish the truth of conjecture E.

2. Lbemmas used in the proofs

LEMMA 1 (BARER [1, p. 145)). If f(2) and g(z) are permutable entirve trans-
cendental functions, then there. exist a positive integer n and a real positive
tonstant R, such that
(8) Mg, r) <M(f,,7)

“holds for all r>R. ‘
M(g, #) and M(f,,r) are the maximum modulus functions.

Lemma 2 (Fatou [4]). If f(2) is an. entive transcendental function, then the
set Ff) of points about which the sequence {f,(2)} is not a normal family is a
nonempty perfect- set. F(f) comtains all repulsive fixpoints and fixpoints of
multiplier +1 (of any order) of f(2). Every point of (f) 1s a point of accumu-
lation of fizpoints (of varying orders) of {(z).
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Lemma 3 (Fatou (3, §§10, 11]). If & is a fixpoint of order 1 and multiplier
+1 of the function f(z), which therefore has an expansion

(©) HA) =2+ apia (e — §™ 1 4 all 2,
and if f_(2) is the inverse series (10) to (9):
(10) f—1(z):z_“mﬂ(z“§)m+l+

convergent in say |z—E&| <<p, p>0, then any open meighbourhood (which we
may assume to be interior to the circle |z — &| < ) contains open sets &,  with
the propertics ‘

(i) D& s a neighbourhood of &,

(i) /(®) S,
(iii) £,(z) >& wuniformly for 26@ as n—>oo,
(i) £4(5) < $,

(V) (F-)n(®) =f-n(2) >& uniformly jor 26§ as n— oo,
(vi) F(2), f-1(2) are schlicht in B U H o ().

A description of the form of ® and $ will be found in FaTou [3], but is
irrelevant to the present discussion.

3. Proof of the theorem 1

Since theorem 1 is already known in the case D where f{z) is a polynomial,
we shall discuss only the case where f(z) is entire and transcendental. More-
over P(f)CP(f,) for every m=1, 2, ... so that we may and henceforth do
assume the order of the fixpoint in the statement of theorem 1 to be one.
* The constants in P(f) are solutions of f(z) =z and thus form a denumerable
set. By 4 any other polynomial members of P(f) have the form yz+ 6 where
0 is a constant and y is a root of unity. Now if £ is a fixpoint of order one
of f(2) and if g()€P(f), then f(§)=& and g(§)=g(f(§)=/(g(®)), so that

g(&) 18 a solution of f(z)=z. Thus if £ is a given fixpoint of order one of
f(z) and yz+ € P(f), then p£+ 4 is a solution of f(z)=2 For a fixed root
of unity y then, at most a denumerable set of values 4 yield yz+ o€ P(f).
The set of roots of unity is denumerable and so in consequence is the set
of all polyngmial members of P(f).

We introduce the set P(n, R, f), #n a positive integer, R>>0, which is the-
set of those transcendental members g(z) € P(f) for which (8) holds for all
r>R.

LEMMA 4. For any integer n>0, and’for any R>0, the st Pm R, f} is
finite. ‘

Theorem 1 follows from Lemma 4 since by Lemma 1 the set of all trans-
cendental members of P(f) may be written as

U UP(nmf)

n=1m=1
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ProoF oF LEMMA 4. Let & be a solution of f(§)=¢& with |f'(£)]>1 or
F'{€)=-+1. Choose Q so that

(11) Q > Max (| £‘| + 2, R)».

Then for any g(z) € P, R, f) and |2| < Q one has

(12) lg@| = Mg [2]) < Mg, Q) < M(f,. Q).
In particular

(13) [g(&) < M(t,. Q).

We note also that from (11) and (12) follows
(14 g :‘ LA dt1 < M(f,, Q) for |z <|&|+1.

271
lz—t|=1

Now g(£&) is by (13) one of the finite set (i, #;, ..., %) of fixpoints which
satisfy

We note moreover that if g'(&)=g"(§)=---=g" 1(§)=0 while g™ (&) =0,
then

fe@)= (@)™
Thus, if /'(§)=-+1 then f'(g(£)=-+1, while if | /(£)| >1, then |/'(g(£))]| >1.
Consider P(n, R,n,, {)( P(g, R, f), namely the subset of those
g(2)€P(n, R, f) for which g(&)=1;.
Case L |f'(&)] >1. In this case we have
(16) | ma)] > 1.
We take.a circular disc K centered in #;=g(£) and of radius so small that
(i) the expansion f_;(z)=mn;+F () (z—~n)+ --- of the inverse func-
tion to f(2) is convergent in K,
(17) ¢ (i) /-1 (K) CK,
(i) _,(2) = (f_1),(?) = uniformly in K as #—> o0,
(iv) f(2) is schlicht in K. ,
We then take a circular disec C centred in § and of radius so small that
(i) the expansion of f*; () =&+ f(£) (¢ —&)+ --- of the inverse func-
tion to f(z) conwerges in C,
(ii) f2,(0)<C,
(iii) f*,(2) >& uniformly in C as n—>oo,
(iv) f(2) is schlicht in C,
(v) g{C)CK for every g(z)cP(n, R, n;, ).
Condition (18) (v) may be satisfied because the inequality (14) holds for every
g(x) €EP(n, R, f).

(18)
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By lemma 2 the point & belongs to F(f) and the neighbourhood C of &
must contain a fixpoint g ==& of order (say) p of f(2):

folp) =@.
Now for g(z) € P(n, R, n;, f) the value g(p) must be a solution of f,(z) =z,

which by (18, v) lies in K. Suppose g(z) and % (z) are members of P(n, R, n;, /)
for which

gé) =h(&) =mn;
glgp)=h(g)=a (say).
The value f*,(g) is the only solution in C of f(z2) =g, g(f*1(p)) € K, and

Fle(* @) =g (f(*19) =2 (p) =o;

so that g(f*;(g)) is the unique solution in K of f(z)=a«. Replacing g(z) by
k(z) in this argument one has also that 4 (f*;(g)) =g (/X1 (p)) =7/_1(x). By
induction we define the sequences f*,(®), =1, 2, 3, ... such that f* (¢)=
721 (P ara (@), and f_, (), #=1,2,3 such that /_,()=f—y (/_ps1(x)). The
first of these sequences belongs to C and tends to £ as #— oo, while the second
belongs to K and tends to 7; as #—oco (17iii and 18iii). Moreover f* ()
is the unique solution in C of f(z)=7_,,, (z), while _, («) is the unique solution
in K of f(2)=/_,41(®). Also g(f%,(9)) €K, h(f*,(p)) K. From

FHe* @) = (F(*0(@)) =8 (Fonia (@) = F-ni1 (@)
it follows that
g(1*a@) =f-ulo),

B (@) =1-a(@).
Since g(2) and %(z) agree on a convergent sequence of points they must be

identically equal. Thus g(2) €P(n, R, #,, f) is completely determined by the
choice of g (p), which must take one of the finite set of values « which satisfy

fp () =«
and lie in K. Since the set P(n, R, 7, f) is finite, it follows that P(s, R, f)
which by (15) is a union of finitely many such sets, is also finite.
Case IL. f'(&)=+1.

In this case we have

(19) F'n)=1 where n;=g(§).

-Again we will show that P(n, R, n;, f) is finite. We take a pair of sets &, $
satisfying the requirements (i)— (vi) of Lemma 3 with respect to the fixpoint n;
(not &) of f(z): Then GuHu(n,) }cbntains'a circular disc K of centre n;. We
choose a circular disc C, of centre &, such that for all g(2)¢P(n, R, 7, f)
one has

and similarly

g(C)CK.
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This is possible by (14). We now choose sets &, , which are contained
in C and satisfy the conditions of Lemma 3 with respect to the fixpoint ¢
of f(2).

Now £ €3 (f), so that by Lemma 2 there is a fixpoint ¢ 3£ of order (say)
p of f(z) lying in &y 9,. One has f,(p)=¢. For all n=1,2,....one has
fup (@) =@ =&, so that f,(p)-1> £ as n~>o0 and by Lemma 3 we have p§©,,
@€ 9. Forany gC P(n, R, n;, f) one has g(p) =« where (i) a EKC B Hu (1),
(ii) fp(e)=w. If also A(p)=ua for KEP(n, R, n;, f) we again introduce (ana-
logously to Part I) the uniquely defined sequences of points {f*, (@)} and
{f—.(@)}, n=1,2,3,.... Here f*,(p) is the unique solution in Gy, of
fa(z)=19 and f_,(x) is the unique solution in uHu(y,) of f,(z)=a. More-
over f*,(p) is the value taken at z=¢ by the n-th iterate of the expansion
f¥1(z)=2— a1 (z—E)™* ... of the inverse of f(z), while f_, («) is the value
taken at z=a by then-thiterate of the expansion /_, (2) = z — ap, 11 (z — 7)™ T -
In fact it follows from @ €9, that f*,(p)E€H, for all #, and that f*,(p) &
as n—>oco. Moreover exactly the calculation used in case I shows that

g(fea(@) =h(f*a(@) =1, (),

so that g(z) =h(z) and g(z) is determined by the choice of g(p) subject to
(i) and (ii). Thus again P(n, R,#;, f) and hence P(n, R, f) are finite sets.

4. Proof of theorem 2

Theorem 2 includes result B on P(¢*), since ¢ possesses an infinity of
repulsive fixpoints of order one. The pair nearest the origin are 0,3181 ...
+i1,3372....

To show that D is included in the formulation of theorem 1, we must
show that every polynomial of degree 4=2 has a fixpoint of the required
type. Let f(2) be a polynomial 6f degree d=2, and let £, &;, ..., &; be its
fixpoints of order one. If any &; is a multiple root of f(z) =z, then f'(§,)=+1.
If no & is a multiple root of f(z)=2, then &, ..., &, are all different with
multipliers f'(§;) = S;==1, and

d :
(20) {fz) —z}2= Z (S;— 1)z —§&)>

. =1
Expanding (20) in powers of 1/2 and comparing coefficients of 1/z gives

d
0= Z (S, — 1)_1.
. j=1
Putting £;=(S;— 1) so that
4
Q= Z t,‘ N
j=1

we note that the interior of |S|< 1 is mapped by ¢=(S — 1)1 onto Re {< :2—1—
But at least one ¢; must have Re#;=0> :‘2—1 and for this value of § one has

[ Sil=1f(&)| >1. Thus in anA'y,case f(z) has a fixpoint (or order 1) of the
kind postulated in ‘theorem 1..
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