Permutable Entire Functions

By
Irvine Noel Baker

1. Introduction and results

Two functions $f(z)$ and $g(z)$ are called permutable if

$$
\begin{equation*}
f(g(z))=g(f(z)) \tag{1}
\end{equation*}
$$

holds for all values of z. We shall be concerned only with the case where $f(z)$ and $g(z)$ are entire functions of the complex variable z. Julia [7], Ritt [8,9$]$ and, more recently Jacobsthal have treated the related cases of permutable polynomials and permutable rational functions.

A problem of some interest is the determination of the class $P(f)$ of those entire functions $g(z)$ which satisfy (1) with a given entire function $f(z)$. We define the natural iterates $f_{n}(z), n=0,1,2, \ldots$ of $f(z)$ by

$$
\begin{equation*}
f_{0}(z)=z ; \quad f_{n}(z)=f\left(f_{n-1}(z)\right), \quad n=1,2, \ldots, \tag{2}
\end{equation*}
$$

so that in particular $f_{1}(z)=f(z)$; for all n we have $f_{n}(z) \in P(f)$. The natural iterates of a given entire function are all different except in the cases

$$
\begin{equation*}
f(z) \equiv \alpha, \quad \alpha \text { constant } \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) \equiv \beta+\gamma(z-\beta), \quad \ddot{\beta} \text { constant and } \gamma \text { a root of unity. } \tag{4}
\end{equation*}
$$

Now $P(\alpha)$ is the (non-denumerably) infinite set of those entire functions $g(z)$ which have α as a fixpoint, i.e. for which

$$
\begin{equation*}
g(\alpha)=\alpha \tag{5}
\end{equation*}
$$

On the other hand $P(\beta \dot{+} \gamma(z-\beta))$ contains the non-denumerably infinite subset of functions of the form $\beta+\delta(z-\beta), \delta$ constant. Thus in every case $P(f)$ is an infinite set.

Ganapathy Iyer [5] and the present author [1] have shown independently: A. If $f(z)$ is a polynomial, then $P(f)$ contains entire transcendental functions if and only if $f(z)$ has one of the forms $f(z)=$ const. or $f(z)=\gamma z+\delta, \delta$ constant and γ a root of unity.

The quite different case $f(z)=e^{z}$ was discussed in [1, p. 147] where it was proved that:
B. $P\left(e^{z}\right)$ consists of the natural iterates of e^{z} together with the constants $c \cdot(f i x-$ qoints of e^{x}) such that $e^{c}=c . \cdot$ In particular $P\left(e^{z}\right)$ is denumerably infinite.

We quote also the following result of Jacobsthal [6]:
C. If $f(z)$ is a polynomial of degree greater than one, then the set of polynomials permutable with $f(z)$ is denumerably infinite.

Together A and C give
D. If $f(z)$ is a polynomial of degree greater than one, then $P(f)$ is denumerably infinite.

The results B and D suggest the
Conjecture. E. If $f(z)$ is an entire function, other than a polynomial of degree less than two, then $P(f)$ is denumerably infinite.

While E remains undecided, the partial result of theorem 1 offers some support in favour of the conjecture. The following terminology is used: If m is a positive integer, the complex number ξ is called a fixpoint of order m of $f(z)$ if

$$
\begin{equation*}
f_{m}(\xi)=\xi \tag{6}
\end{equation*}
$$

while

$$
\begin{equation*}
f_{j}(\xi) \neq \xi, \quad j=1,2, \ldots, m-1 \tag{7}
\end{equation*}
$$

$f_{m}^{\prime}(\xi)$ is called the multiplier of ξ. A fixpoint is repulsive if $\left|f_{m}^{\prime}(\xi)\right|>1$.
Theorem 1. If the entire function $f(z)$ is not a polynomial of degree less than two and if $f(z)$ has a fixpoint of some order which is either repulsive or. of multiplier +1 , then $P(f)$ is denumerably intinite.

Theorem 2. Theorem 1 includes the results B and D as special casès.
These theorems will be proved in sections 3 and 4. It may be noted in connexion with theorem 1 that $f(z)$ possesses fixpoints of every order $m=1,2, \ldots$ except for at most one order [2]. However, very little is known about the possible values of the multipliers of these fixpoints. For instance an unsolved problem of Fatou [4] asks whether every transcendental entire function has a repulsive fixpoint of some order. An affirmative answer to Fatou's problem would establish the truth of conjecture E.

2. Lemmas used in the proofs

Lemma 1 (Baker [1; p. 145]). If $f(z)$ and $g(z)$ are permutable entire transcendental functions, then there exist a positive integer n and a real positive constant R, such that

$$
\begin{equation*}
M(g, r)<M\left(f_{n}, r\right) \tag{8}
\end{equation*}
$$

holds for all $r>R$.
$M(g, \dot{r})$ and $M\left(f_{n}, r\right)$ are the maximum modulus functions.
Lemma 2 (Fatou [4]). If $f(z)$ is an entire transcendental function, then the set $\mathfrak{F}(f)$ of points about which the sequence $\left\{f_{n}(z)\right\}$ is not a normal family is a nonempty perfect set. $\mathfrak{F}(f)$ contains all repulsive fixpoints aisd fixpoints of multiplier +1 (of any order) of $f(z)$. Every point of $\mathfrak{F}(f)$ is a point of accumulation of fixpoints (of varying orders) of $f(z)$.

Lemma 3 (Fatou [3, §§10, 11]). If ξ is a fixpoint of order 1 and multiplier +1 of the function $f(z)$, which therefore has an expansion

$$
\begin{equation*}
f(z)=z+a_{m+1}(z-\xi)^{m+1}+\cdots \quad \text { all } z, \tag{9}
\end{equation*}
$$

and if $f_{-1}(z)$ is the inverse series (10) to (9):

$$
\begin{equation*}
f_{-1}(z)=z-a_{m+1}(z-\xi)^{m+1}+\cdots \tag{10}
\end{equation*}
$$

convergent in say $|z-\xi|<\varrho, \varrho>0$, then any open neighbourhood (which we may assume to be interior to the circle $|z-\xi|<\varrho)$ contains open sets $(\mathbb{G}, \mathfrak{F}$ with the properties
(i) $\mathfrak{G} \cup \mathfrak{F} \cup(\xi)$ is a neighbourhood of ξ,
(ii) $f(\mathbb{(B)})<$ (G)
(iii) $f_{n}(z) \rightarrow \xi \quad$ uniformly for $z \in \overline{\mathbb{B}}$ as $\quad n \rightarrow \infty$,
(iv) $f_{-1}(\mathfrak{F})<\mathfrak{S}$,
(v) $\left(f_{-1}\right)_{n}(z)=f_{-n}(z) \rightarrow \xi \quad$ uniformly for $z \in \overline{\mathfrak{V}}$ as $n \rightarrow \infty$,
(vi) $f(z), f_{-1}(z)$ are schlicht in $\mathscr{G} \cup \mathfrak{F} \cup(\xi)$.

A description of the form of $\mathbb{5}$ and $5 \mathfrak{5}$ will be found in Fatou [3], but is irrelevant to the present discussion.

3. Proof of the theorem 1

Since theorem 1 is already known in the case D where $f(z)$ is a polynomial, we shall discuss only the case where $f(z)$ is entire and transcendental. Moreover $P(f)<P\left(f_{m}\right)$ for every $m=1,2, \ldots$ so that we may and henceforth do assume the order of the fixpoint in the statement of theorem 1 to be one.

The constants in $P(f)$ are solutions of $f(z)=z$ and thus form a denumerable set. By A any other polynomial members of $P(f)$ have the form $\gamma z+\delta$ where δ is a constant and γ is a root of unity. Now if ξ is a fixpoint of order one of $f(z)$ and if $g(z) \in P(f)$, then $f(\xi)=\xi$ and $g(\xi)=g(f(\xi))=f(g(\xi))$, so that $g(\xi)$ is a solution of $f(z)=z$. Thus if ξ is a given fixpoint of order one of $f(z)$ and $\gamma z+\delta \in P(f)$, then $\gamma \xi+\delta$ is a solution of $f(z)=z$. For a fixed root of unity γ then, at most a denumerable set of values δ yield $\gamma z+\delta \in P(f)$. The set of roots of unity is denumerable and so in consequence is the set of all polynomial members of $P(f)$.

We introduce the set $P(n, R, f), n$ a positive integer, $R>0$, which is the set of those transcendental members $g(z) \in P(f)$ for which (8) holds for all $r>R$.

Lemma 4. For any integer $n>0$, and'for any $R>0$, the $\operatorname{set} P(n R, f)$ is finite.

Theorem 1 follows from Lemma 4 since by Lemma 1 the set of all transcendental members of $P(f)$ may be written as

$$
\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} P(n, m, f)
$$

Proof of lemma 4. Let ξ be a solution of $f(\xi)=\xi$ with $\left|f^{\prime}(\xi)\right|>1$ or $f^{\prime}(\xi)=+1$. Choose Q so that

$$
\begin{equation*}
Q>\operatorname{Max}(|\xi|+2, R) \tag{11}
\end{equation*}
$$

Then for any $g(z) \in P(n, R, f)$ and $|z|<Q$ one has

$$
\begin{equation*}
|g(z)| \leqq M(g,|z|)<M(g, Q)<M\left(f_{n}, Q\right) . \tag{12}
\end{equation*}
$$

In particular

$$
\begin{equation*}
|g(\xi)|<M\left(f_{n}, Q\right) \tag{13}
\end{equation*}
$$

We note also that from (11) and (12) follows

$$
\begin{equation*}
\left|g^{\prime}(z)\right|=\left|\frac{1}{2 \pi i} \int_{|z-t|=1} \frac{g(t)}{(t-z)^{2}} d t\right|<M\left(f_{n}, Q\right) \text { for } \quad|z|<|\xi|+1 \tag{14}
\end{equation*}
$$

Now $g(\xi)$ is by (13) one of the finite set $\left(\eta_{1}, \eta_{2}, \ldots, \eta_{k}\right)$ of fixpoints which satisfy

$$
\begin{equation*}
f\left(\eta_{i}\right)=\eta_{i}, \quad\left|\eta_{i}\right|<M\left(t_{n}, Q\right), \quad i=1,2, \ldots, k \tag{15}
\end{equation*}
$$

We note moreover that if $g^{\prime}(\xi)=g^{\prime \prime}(\xi)=\cdots=g^{m-1}(\xi)=0$ while $g^{(m)}(\xi) \neq 0$, then

$$
f^{\prime}(g(\xi))=\left(f^{\prime}(\xi)\right)^{m}
$$

Thus, if $f^{\prime}(\xi)=+1$ then $f^{\prime}\left(g(\xi)=+1\right.$, while if $\left|f^{\prime}(\xi)\right|>1$, then $\left|f^{\prime}(g(\xi))\right|>1$.
Consider $P\left(n, R, \eta_{i}, f\right)<P(\eta, R, f)$, namely the subset of those $g(z) \in P(n, R, f)$ for which $g(\xi)=\eta_{i}$.

Case I. $\left|f^{\prime}(\xi)\right|>1$. In this case we have

$$
\begin{equation*}
\left|f^{\prime}\left(\eta_{i}\right)\right|>1 \tag{16}
\end{equation*}
$$

We take a circular disc K centered in $\eta_{i}=g(\xi)$ and of radius so small that
(i) the expansion $f_{-1}(z)=\eta_{i}+f^{\prime}\left(\eta_{i}\right)^{-1}\left(z-\eta_{i}\right)+\cdots$ of the inverse function to $f(z)$ is convergent in K,
(ii) $f_{-1}(K)<K$,
(iii) $f_{-n}(z)=\left(f_{-1}\right)_{n}(z) \rightarrow \eta_{i}$ uniformly in K as $n \rightarrow \infty$,
(iv) $f(z)$ is schlicht in K.

We then take a circular dise C centred in ξ and of radius so small that
(i) the expansion of $f_{-1}^{*}(z)=\xi+f^{\prime}(\xi)^{-1}(z-\xi)+\cdots$ of the inverse function to $f(z)$ converges in C,
(ii) $f_{-1}^{*}(C)<C$,
(iii) $f_{-n}^{*}(z) \rightarrow \xi$ uniformly in C as $n \rightarrow \infty$,
(iv) $f(z)$ is schlicht in C,
(v) $g(C)<K$ for every $g(z) \in P\left(n, R, \eta_{i}, f\right)$.

Condition (18) (v) may be satisfied because the inequality (14) holds for every $g(z) \in P(n, R, f)$.

By lemma 2 the point $\boldsymbol{\xi}$ belongs to $\mathfrak{F}(f)$ and the neighbourhood C of $\boldsymbol{\xi}$ must contain a fixpoint $\varphi \neq \xi$ of order (say) p of $f(z)$:

$$
f_{p}(\varphi)=\varphi
$$

Now for $g(z) \in P\left(n, R, \eta_{i}, f\right)$ the value $g(\varphi)$ must be a solution of $t_{p}(z)=z$, which by $(18, \mathrm{v})$ lies in K. Suppose $g(z)$ and $h(z)$ are members of $P\left(n, R, \eta_{i}, f\right)$. for which

$$
\begin{aligned}
& g(\xi)=h(\xi)=\eta_{i} \\
& g(\varphi)=h(\varphi)=\alpha \quad \text { (say })
\end{aligned}
$$

The value $f_{-1}^{*}(\varphi)$ is the only solution in C of $f(z)=\varphi, g\left(f_{-1}^{*}(\varphi)\right) \in K$, and

$$
f\left(g\left(f_{-1}^{*}(\varphi)\right)\right)=g\left(f\left(f_{-1}^{*}(\varphi)\right)\right)=g(\varphi)=\alpha
$$

so that $g\left(f_{-1}^{*}(\varphi)\right)$ is the unique solution in K of $f(z)=\alpha$. Replacing $g(z)$ by $h(z)$ in this argument one has also that $h\left(f_{-1}^{*}(\varphi)\right)=g\left(f_{-1}^{*}(\varphi)\right)=f_{-1}(\alpha)$. By induction we define the sequences $f_{-n}^{*}(\varphi), n=1,2,3, \ldots$ such that $f_{-n}^{*}(\varphi)=$ $f_{-1}^{*}\left(f_{-n+1}^{*}(\varphi)\right)$, and $f_{-n}(\alpha), n=1,2,3$ such that $f_{-n}(\alpha)=f_{-1}\left(f_{-n+1}(\alpha)\right)$. The first of these sequences belongs to C and tends to ξ as $n \rightarrow \infty$, while the second belongs to K and tends to η_{i} as $n \rightarrow \infty$ (17 iii and 18 iii). Moreover $f_{-n}^{*}(\varphi)$ is the unique solution in C of $f(z)=f_{-n+1}(z)$, while $f_{-n}(\alpha)$ is the unique solution in K of $f(z)=f_{-n+1}(\alpha)$. Also $g\left(f_{-n}^{*}(\varphi)\right) \in K, h\left(f_{-n}^{*}(\varphi)\right) \in K$. From

$$
f\left(g\left(f_{-n}^{*}(\varphi)\right)\right)=g\left(f\left(f_{-n}^{*}(\varphi)\right)\right)=g\left(f_{-n+1}(\varphi)\right)=f_{-n+1}(\alpha)
$$

it follows that

$$
g\left(f_{-n}^{*}(\varphi)\right)=t_{-n}(\alpha)
$$

and similarly

$$
h\left(f_{-n}^{*}(\varphi)\right)=f_{-n}(\alpha)
$$

Since $g(z)$ and $h(z)$ agree on a convergent sequence of points they must be identically equal. Thus $g(z) \subseteq P\left(n, R, \eta_{i}, f\right)$ is completely determined by the choice of $g(\varphi)$, which must take one of the finite set of values α which satisfy

$$
f_{p}(\alpha)=\alpha
$$

and lie in K. Since the set $P\left(n, R, \eta_{i}, f\right)$ is finite, it follows that $P(n, R, f)$ which by (15) is a union of finitely many such sets, is also finite.

Case II. $f^{\prime}(\xi)=+1$.
In this case we have

$$
\begin{equation*}
f^{\prime}\left(\eta_{i}\right)=1 \quad \text { where } \quad \eta_{i}=g(\xi) \tag{19}
\end{equation*}
$$

Again we will show that $\dot{P}\left(n, R, \eta_{i}, f\right)$ is finite. We take a pair of sets (8), \mathfrak{F} satisfying the requirements (i) -(vi) of Lemma 3 with respect to the fixpoint η_{i} (not ξ) of $f(z)$: Then $\mathfrak{b} \cup \mathfrak{g} \cup\left(\eta_{i}\right)$ contains a circular disc K of centre η_{i}. We choose a circular disc C, of centre ξ, such that for all $g(z) \in P\left(n, R, \eta_{2}, f\right)$ one has

$$
g(C)<K
$$

This is possible by (14). We now choose sets $\mathscr{E}_{\mathbf{0}}, \mathfrak{F}_{\mathbf{0}}$ which are contained in C and satisfy the conditions of Lemma 3 with respect to the fixpoint ξ of $f(z)$.

Now $\xi \in \mathscr{F}(f)$, so that by Lemma 2 there is a fixpoint $\varphi \neq \xi$ of order (say) p of $f(z)$ lying in $\mathscr{H}_{0} \cup \mathfrak{g}_{0}$. One has $f_{p}(\varphi)=\varphi$. For all $n=1,2, \ldots$ one has $f_{n p}(\varphi)=\varphi \neq \xi$, so that $f_{n}(\varphi)-1 \rightarrow \xi$ as $n \rightarrow \infty$ and by Lemma 3 we have $\varphi \oplus\left(\mathscr{H}_{0}\right.$, $\varphi \in \mathfrak{S}_{0}$. For any $g \in P\left(n, R, \eta_{i}, f\right)$ one has $g(\varphi)=\alpha$ where (i) $\alpha \in K<\left(\xi \cup \mathfrak{G} \cup\left(\eta_{i}\right)\right.$, (ii) $f_{p}(\alpha)=\alpha$. If also $h(\varphi)=\alpha$ for $h \in P\left(n, R, \eta_{i}, f\right)$ we again introduce (analogously to Part I) the uniquely defined sequences of points $\left\{f_{-n}^{*}(\varphi)\right\}$ and $\left\{f_{-n}(\alpha)\right\}, n=1,2,3, \ldots$. Here $f_{-n}^{*}(\varphi)$ is the unique solution in $\mathscr{B}_{0} \cup \mathfrak{E}_{0}$ of $f_{n}(z)=\varphi$ and $f_{-n}(\alpha)$ is the unique solution in $\mathscr{S} \cup \mathfrak{S} \cup\left(\eta_{2}\right)$ of $f_{n}(z)=\alpha$. Moreover $f_{-n}^{*}(\varphi)$ is the value taken at $z=\varphi$ by the n-th iterate of the expansion $f_{-1}^{*}(z)=z-a_{m+1}(z-\xi)^{m+1} \ldots$ of the inverse of $f(z)$, while $f_{-n}(\alpha)$ is the value taken at $z=\alpha$ by the n-thiterate of the expansion $f_{-1}(z)=z-a_{m^{\prime}+1}^{\prime}\left(z-\eta_{i}\right)^{m^{\prime}+1} \ldots$ In fact it follows from $\varphi \in \mathfrak{F}_{0}$ that $f_{-n}^{*}(\varphi) \in \mathfrak{S}_{0}$ for all n, and that $f_{-n}^{*}(\varphi) \rightarrow \xi$ as $n \rightarrow \infty$. Moreover exactly the calculation used in case I shows that

$$
g\left(f_{-n}^{*}(\varphi)\right)=h\left(f_{-n}^{*}(\varphi)\right)=f_{-n}(\alpha),
$$

so that $g(z) \equiv h(z)$ and $g(z)$ is determined by the choice of $g(\varphi)$ subject to (i) and (ii). Thus again $P\left(n, R, \eta_{i}, f\right)$ and hence $P(n, R, f)$ are finite sets.

4. Proof of theorem 2

Theorem 2 includes result B on $P\left(e^{z}\right)$, since e^{x} possesses an infinity of repulsive fixpoints of order one. The pair nearest the origin are $0,3181 \ldots$ $\pm i 1,3372 \ldots$

To show that D is included in the formulation of theorem 1, we must show that every polynomial of degree $d \geqq 2$ has a fixpoint of the required type. Let $f(z)$ be a polynomial of degree $d \geqq 2$, and let $\xi_{1}, \xi_{2}, \ldots, \xi_{d}$ be its fixpoints of order one. If any ξ_{j} is a multiple root of $f(z)=z$, then $f^{\prime}\left(\xi_{j}\right)=+1$. If no ξ_{j} is a multiple root of $f(z)=z$, then ξ_{1}, \ldots, ξ_{d} are all different with multipliers $f^{\prime}\left(\xi_{i}\right)=S_{j} \neq 1$, and

$$
\begin{equation*}
\{f(z)-z\}^{-1}=\sum_{j=1}^{d}\left(S_{j}-1\right)^{-1}\left(z-\xi_{j}\right)^{-1} \tag{20}
\end{equation*}
$$

Expanding (20) in powers of $1 / z$ and comparing coefficients of $1 / z$ gives

$$
0=\sum_{j=1}^{d}\left(S_{j}-1\right)^{-1}
$$

Putting $t_{j}=\left(S_{j}-1\right)^{-1}$ so that

$$
0=\sum_{j=1}^{d} t_{j}
$$

we note that the interior of $|S|<1$ is mapped by $t=(S-1)^{-1}$ onto $\operatorname{Re} t<\frac{-1}{2}$. But at least one t_{j} must have $\operatorname{Re} t_{j} \geqq 0>\frac{-1}{2}$ and for this value of j one has $\left|S_{j}\right|=\left|f^{\prime}\left(\xi_{j}\right)\right|>1$. Thus in any case $f(z)$ has a fixpoint (or order 1) of the kind postulated in theorem 1 :.

References

[1] Baker, I. N.: Zusammensetzungen ganzer Funktionen. Math. Z. 69, 121-163 (1958).
[2] - The existence of fixpoints of entire functions. Math. Z. 73, 280-284 (1960).
[3] Fatou, P.: Sur les équations fonctionelles. Bull. soc. math. France 47, 161-271 (1919) ; 48, 33-94, 208-314 (1920).
[4] - Sur l'itération des fonctions transcendantes entières. Acta math. 47, 337-370 (1926).
[5] Ganapathy, I. V.: On permutable integral functions. J. Lond. Math. Soc. 34, 141-144 (1959).
[6] Jacobsthal, E.: Uber vertauschbare Funktionen. Math. Z. 63, 243-276 (1955).
[7] Julia, G.: Mémoire sur la permutabilité des fractions rationelles. Ann. sci. de l'Ecole Normale Supérieure (3) 39, 131-215 (1922).
[8] Ritr, J. F.: On the iteration of rational functions. Trans. Amer. Math. Soc. 21, 348-356 (1920).
[0] - Prime and composite polynomials. Trans. Amer. Math. Soc. 23, 51-66 (1922). Dept. of Math., Imperial College of Science and Technology, London S.W. 7

