BAKER, I. N. Math. Zeitschr. 79, 243-249 (1962)

Permutable Entire Functions

By IRVINE NOEL BAKER

1. Introduction and results

Two functions f(z) and g(z) are called permutable if

(1)
$$f(g(z)) = g(f(z))$$

holds for all values of z. We shall be concerned only with the case where f(z) and g(z) are entire functions of the complex variable z. JULIA [7], RITT [8, 9] and, more recently JACOBSTHAL have treated the related cases of permutable polynomials and permutable rational functions.

A problem of some interest is the determination of the class P(f) of those entire functions g(z) which satisfy (1) with a given entire function f(z). We define the natural iterates $f_n(z)$, n=0, 1, 2, ... of f(z) by

(2)
$$f_0(z) = z;$$
 $f_n(z) = f(f_{n-1}(z)),$ $n = 1, 2, ...,$

so that in particular $f_1(z) = f(z)$; for all *n* we have $f_n(z) \in P(f)$. The natural iterates of a given entire function are all different except in the cases

(3)
$$f(z) \equiv \alpha, \alpha \text{ constant},$$

and

(4)
$$f(z) \equiv \beta + \gamma (z - \beta)$$
, $\ddot{\beta}$ constant and γ a root of unity.

Now $P(\alpha)$ is the (non-denumerably) infinite set of those entire functions g(z) which have α as a fixpoint, i.e. for which

(5)
$$g(\alpha) = \alpha$$

On the other hand $P(\beta + \gamma(z-\beta))$ contains the non-denumerably infinite subset of functions of the form $\beta + \delta(z-\beta)$, δ constant. Thus in every case P(f) is an infinite set.

GANAPATHY IVER [5] and the present author [1] have shown independently: A. If f(z) is a polynomial, then P(f) contains entire transcendental functions if and only if f(z) has one of the forms f(z) = const. or $f(z) = \gamma z + \delta$, δ constant and γ a root of unity.

The quite different case $f(z) = e^z$ was discussed in [1, p. 147] where it was proved that:

B. $P(e^{z})$ consists of the natural iterates of e^{z} together with the constants c (fixpoints of e^{z}) such that $e^{c} = c$. In particular $P(e^{z})$ is denumerably infinite. We quote also the following result of JACOBSTHAL [6]:

C. If f(z) is a polynomial of degree greater than one, then the set of polynomials permutable with f(z) is denumerably infinite.

Together A and C give

D. If f(z) is a polynomial of degree greater than one, then P(f) is denumerably infinite.

The results B and D suggest the

Conjecture. E. If f(z) is an entire function, other than a polynomial of degree less than two, then P(f) is denumerably infinite.

While E remains undecided, the partial result of theorem 1 offers some support in favour of the conjecture. The following terminology is used: If m is a positive integer, the complex number ξ is called a fixpoint of order m of f(z) if

$$f_m(\xi) = \xi$$

(6) while

(7)
$$f_j(\xi) \neq \xi, \quad j = 1, 2, ..., m-1;$$

 $f'_m(\xi)$ is called the multiplier of ξ . A fixpoint is repulsive if $|f'_m(\xi)| > 1$.

THEOREM 1. If the entire function f(z) is not a polynomial of degree less than two and if f(z) has a fixpoint of some order which is either repulsive or of multiplier + 1, then P(f) is denumerably infinite.

THEOREM 2. Theorem 1 includes the results B and D as special cases.

These theorems will be proved in sections 3 and 4. It may be noted in connexion with theorem 1 that f(z) possesses fixpoints of every order m = 1, 2, ... except for at most one order [2]. However, very little is known about the possible values of the multipliers of these fixpoints. For instance an unsolved problem of FATOU [4] asks whether every transcendental entire function has a repulsive fixpoint of some order. An affirmative answer to FATOU's problem would establish the truth of conjecture E.

2. Lemmas used in the proofs

LEMMA 1 (BAKER [1, p. 145]). If f(z) and g(z) are permutable entire transcendental functions, then there exist a positive integer n and a real positive constant R, such that

(8)

$$M(g, r) < M(f_n, r)$$

holds for all r > R.

M(g, r) and $M(f_n, r)$ are the maximum modulus functions.

LEMMA 2 (FATOU [4]). If f(z) is an entire transcendental function, then the set $\mathfrak{F}(f)$ of points about which the sequence $\{f_n(z)\}$ is not a normal family is a nonempty perfect set. $\mathfrak{F}(f)$ contains all repulsive fixpoints and fixpoints of multiplier + 1 (of any order) of f(z). Every point of $\mathfrak{F}(f)$ is a point of accumulation of fixpoints (of varying orders) of f(z).

244

LEMMA 3 (FATOU [3, §§10, 11]). If ξ is a fixpoint of order 1 and multiplier +1 of the function f(z), which therefore has an expansion

(9)
$$f(z) = z + a_{m+1}(z - \xi)^{m+1} + \cdots \quad all \ z,$$

and if $f_{-1}(z)$ is the inverse series (10) to (9):

(10)
$$f_{-1}(z) = z - a_{m+1}(z - \xi)^{m+1} + \cdots$$

convergent in say $|z-\xi| < \varrho$, $\varrho > 0$, then any open neighbourhood (which we may assume to be interior to the circle $|z-\xi| < \varrho$) contains open sets \mathfrak{G} , \mathfrak{H} with the properties

- (i) $\mathfrak{G} \cup \mathfrak{H} \cup (\xi)$ is a neighbourhood of ξ ,
- (ii) $f(\mathfrak{G}) < \mathfrak{G}$,
- (iii) $f_n(z) \to \xi$ uniformly for $z \in \overline{\mathfrak{G}}$ as $n \to \infty$,
- (iv) $f_{-1}(\mathfrak{H}) \subset \mathfrak{H}$,
- (v) $(f_{-1})_n(z) = f_{-n}(z) \to \xi$ uniformly for $z \in \overline{\mathfrak{H}}$ as $n \to \infty$,
- (vi) $f(z), f_{-1}(z)$ are schlicht in $\mathfrak{G} \cup \mathfrak{H} \cup (\xi)$.

A description of the form of \mathfrak{G} and \mathfrak{H} will be found in FATOU [3], but is irrelevant to the present discussion.

3. Proof of the theorem 1

Since theorem 1 is already known in the case D where f(z) is a polynomial, we shall discuss only the case where f(z) is entire and transcendental. Moreover $P(f) \in P(f_m)$ for every $m=1, 2, \ldots$ so that we may and henceforth do assume the order of the fixpoint in the statement of theorem 1 to be one.

The constants in P(f) are solutions of f(z) = z and thus form a denumerable set. By A any other polynomial members of P(f) have the form $\gamma z + \delta$ where δ is a constant and γ is a root of unity. Now if ξ is a fixpoint of order one of f(z) and if $g(z) \in P(f)$, then $f(\xi) = \xi$ and $g(\xi) = g(f(\xi)) = f(g(\xi))$, so that $g(\xi)$ is a solution of f(z) = z. Thus if ξ is a given fixpoint of order one of f(z) and $\gamma z + \delta \in P(f)$, then $\gamma \xi + \delta$ is a solution of f(z) = z. For a fixed root of unity γ then, at most a denumerable set of values δ yield $\gamma z + \delta \in P(f)$. The set of roots of unity is denumerable and so in consequence is the set of all polynomial members of P(f).

We introduce the set P(n, R, f), *n* a positive integer, R > 0, which is the set of those transcendental members $g(z) \in P(f)$ for which (8) holds for all r > R.

LEMMA 4. For any integer n>0, and for any R>0, the set P(n R, f) is finite.

Theorem 1 follows from Lemma 4 since by Lemma 1 the set of all transcendental members of P(f) may be written as

$$\bigcup_{n=1}^{\infty}\bigcup_{m=1}^{\infty}P(n,m,f).$$

PROOF OF LEMMA 4. Let ξ be a solution of $f(\xi) = \xi$ with $|f'(\xi)| > 1$ or $f'(\boldsymbol{\xi}) = +1$. Choose Q so that

$$(11) Q > \operatorname{Max}(|\xi|+2,R).$$

Then for any $g(z) \in P(n, R, f)$ and |z| < Q one has

(12)
$$|g(z)| \leq M(g, |z|) < M(g, Q) < M(f_n, Q)$$

In particular

$$|g(\xi)| < M(f_n, Q).$$

We note also that from (11) and (12) follows

(14)
$$|g'(z)| = \left| \frac{1}{2\pi i} \int_{|z-t|=1}^{|g(t)|} \frac{g(t)}{(t-z)^2} dt \right| < M(f_n, Q) \text{ for } |z| < |\xi| + 1.$$

Now $g(\xi)$ is by (13) one of the finite set $(\eta_1, \eta_2, \ldots, \eta_k)$ of fixpoints which satisfy

(15)
$$f(\eta_i) = \eta_i, \quad |\eta_i| < M(t_n, Q), \quad i = 1, 2, ..., k.$$

We note moreover that if $g'(\xi) = g''(\xi) = \cdots = g^{m-1}(\xi) = 0$ while $g^{(m)}(\xi) \neq 0$, then

$$f'(g(\xi)) = (f'(\xi))^m.$$

Thus, if $f'(\xi) = +1$ then $f'(g(\xi)) = +1$, while if $|f'(\xi)| > 1$, then $|f'(g(\xi))| > 1$.

Consider $P(n, R, \eta_i, f) \in P(u, R, f)$, namely the subset of those $g(z) \in P(n, R, f)$ for which $g(\xi) = \eta_i$.

CASE I. $|f'(\xi)| > 1$. In this case we have

$$(16) |f'(\eta_i)| > 1.$$

We take a circular disc K centered in $\eta_i = g(\xi)$ and of radius so small that

- (17) $\begin{cases} \text{(i) the expansion } f_{-1}(z) = \eta_i + f'(\eta_i)^{-1}(z \eta_i) + \cdots \text{ of the inverse function to } f(z) \text{ is convergent in } K, \\ \text{(ii) } f_{-1}(K) < K, \\ \text{(iii) } f_{-n}(z) = (f_{-1})_n(z) \to \eta_i \text{ uniformly in } K \text{ as } n \to \infty, \\ \text{(iv) } f(z) \text{ is schlicht in } K. \end{cases}$

We then take a circular disc C centred in ξ and of radius so small that

- (18) $\begin{cases} \text{(i) the expansion of } f_{-1}^{*}(z) = \xi + f'(\xi)^{-1}(z \xi) + \cdots \text{ of the inverse function to } f(z) \text{ converges in } C, \\ \text{(ii) } f_{-1}^{*}(C) < C, \\ \text{(iii) } f_{-n}^{*}(z) \rightarrow \xi \text{ uniformly in } C \text{ as } n \rightarrow \infty, \\ \text{(iv) } f(z) \text{ is schlicht in } C, \\ \text{(v) } g(C) < K \text{ for every } g(z) \in P(n, R, \eta_i, f). \end{cases}$

Condition (18) (v) may be satisfied because the inequality (14) holds for every $g(z) \in P(n, R, f).$

246

By lemma 2 the point ξ belongs to $\mathfrak{F}(f)$ and the neighbourhood C of ξ must contain a fixpoint $\varphi = \xi$ of order (say) p of f(z):

 $f_{p}(\varphi) = \varphi.$

Now for $g(z) \in P(n, R, \eta_i, f)$ the value $g(\varphi)$ must be a solution of $f_p(z) = z$, which by (18, v) lies in K. Suppose g(z) and h(z) are members of $P(n, R, \eta_i, f)$ for which

$$g(\xi) = h(\xi) = \eta_i$$
$$g(\varphi) = h(\varphi) = \alpha \quad (say).$$

The value $f_{-1}^*(\varphi)$ is the only solution in C of $f(z) = \varphi$, $g(f_{-1}^*(\varphi)) \in K$, and

$$f\left(g\left(f_{-1}^{*}(\varphi)\right)\right) = g\left(f\left(f_{-1}^{*}(\varphi)\right)\right) = g\left(\varphi\right) = \alpha,$$

so that $g(f_{-1}^*(\varphi))$ is the unique solution in K of $f(z) = \alpha$. Replacing g(z) by h(z) in this argument one has also that $h(f_{-1}^*(\varphi)) = g(f_{-1}^*(\varphi)) = f_{-1}(\alpha)$. By induction we define the sequences $f_{-n}^*(\varphi)$, n=1, 2, 3, ... such that $f_{-n}^*(\varphi) = f_{-1}^*(f_{-n+1}^*(\varphi))$, and $f_{-n}(\alpha)$, n=1, 2, 3 such that $f_{-n}(\alpha) = f_{-1}(f_{-n+1}(\alpha))$. The first of these sequences belongs to C and tends to ξ as $n \to \infty$, while the second belongs to K and tends to η_i as $n \to \infty$ (17 iii and 18 iii). Moreover $f_{-n}^*(\varphi)$ is the unique solution in C of $f(z) = f_{-n+1}(z)$, while $f_{-n}(\alpha)$ is the unique solution in K of $f(z) = f_{-n+1}(\alpha)$. Also $g(f_{-n}^*(\varphi)) \in K$, $h(f_{-n}^*(\varphi)) \in K$. From

$$f\left(g\left(f^{*}_{-n}(\varphi)\right)\right) = g\left(f\left(f^{*}_{-n}(\varphi)\right)\right) = g\left(f_{-n+1}(\varphi)\right) = f_{-n+1}(\alpha)$$

it follows that

$$g(f_{-n}^{*}(\varphi)) = f_{-n}(\alpha),$$

and similarly

$$h\left(f_{-n}^{*}(\varphi)\right) = f_{-n}(\alpha).$$

Since g(z) and h(z) agree on a convergent sequence of points they must be identically equal. Thus $g(z) \in P(n, R, \eta_i, f)$ is completely determined by the choice of $g(\varphi)$, which must take one of the finite set of values α which satisfy

 $f_{\phi}(\alpha) = \alpha$

and lie in K. Since the set $P(n, R, \eta_i, f)$ is finite, it follows that P(n, R, f) which by (15) is a union of finitely many such sets, is also finite.

CASE II. $f'(\xi) = +1$.

In this case we have

(19)
$$f'(\eta_i) = 1 \quad \text{where} \quad \eta_i = g(\xi).$$

Again we will show that $P(n, R, \eta_i, f)$ is finite. We take a pair of sets \mathfrak{G} , \mathfrak{H} satisfying the requirements (i)—(vi) of Lemma 3 with respect to the fixpoint η_i (not ξ) of f(z). Then $\mathfrak{G} \cup \mathfrak{H} \cup \mathfrak{G} \cup (\eta_i)$ contains a circular disc K of centre η_i . We choose a circular disc C, of centre ξ , such that for all $g(z) \in P(n, R, \eta_i, f)$ one has

$$g(C) \subset K$$
.

This is possible by (14). We now choose sets \mathfrak{G}_0 , \mathfrak{H}_0 which are contained in C and satisfy the conditions of Lemma 3 with respect to the fixpoint ξ of f(z).

Now $\xi \in \mathfrak{F}(f)$, so that by Lemma 2 there is a fixpoint $\varphi \neq \xi$ of order (say) p of f(z) lying in $\mathfrak{G}_0 \cup \mathfrak{H}_0$. One has $f_p(\varphi) = \varphi$. For all $n = 1, 2, \ldots$ one has $f_{np}(\varphi) = \varphi \neq \xi$, so that $f_n(\varphi) \to \xi$ as $n \to \infty$ and by Lemma 3 we have $\varphi \notin \mathfrak{G}_0$, $\varphi \in \mathfrak{H}_0$. For any $g \in P(n, R, \eta_i, f)$ one has $g(\varphi) = \alpha$ where (i) $\alpha \in K < \mathfrak{G} \cup \mathfrak{H} \cup (\eta_i)$, (ii) $f_p(\alpha) = \alpha$. If also $h(\varphi) = \alpha$ for $h \in P(n, R, \eta_i, f)$ we again introduce (analogously to Part I) the uniquely defined sequences of points $\{f_{-n}^*(\varphi)\}$ and $\{f_{-n}(\alpha)\}, n=1, 2, 3, \ldots$. Here $f_{-n}^*(\varphi)$ is the unique solution in $\mathfrak{G}_0 \cup \mathfrak{H}_0$ of $f_n(z) = \varphi$ and $f_{-n}(\alpha)$ is the unique solution in $\mathfrak{G} \cup \mathfrak{H} \cup (\eta_i)$ of $f_n(z) = \alpha$. Moreover $f_{-n}^*(\varphi)$ is the value taken at $z = \varphi$ by the *n*-th iterate of the expansion $f_{-1}^{-1}(z) = z - a_{m+1}(z - \xi)^{m+1} \ldots$ of the inverse of f(z), while $f_{-n}(\alpha)$ is the value taken at $z = \alpha$ by the *n*-th iterate of the expansion $f_{-1}(z) = z - a'_{m'+1}(z - \eta_i)^{m'+1} \ldots$ In fact it follows from $\varphi \in \mathfrak{H}_0$ that $f_{-n}^*(\varphi) \in \mathfrak{H}_0$ for all *n*, and that $f_{-n}^*(\varphi) \to \xi$ as $n \to \infty$. Moreover exactly the calculation used in case I shows that

$$g\left(f_{-n}^{*}(\varphi)\right) = h\left(f_{-n}^{*}(\varphi)\right) = f_{-n}(\alpha),$$

so that $g(z) \equiv h(z)$ and g(z) is determined by the choice of $g(\varphi)$ subject to (i) and (ii). Thus again $P(n, R, \eta_i, f)$ and hence P(n, R, f) are finite sets.

4. Proof of theorem 2

Theorem 2 includes result B on $P(e^x)$, since e^x possesses an infinity of repulsive fixpoints of order one. The pair nearest the origin are 0,3181... $\pm i1,3372...$

To show that D is included in the formulation of theorem 1, we must show that every polynomial of degree $d \ge 2$ has a fixpoint of the required type. Let f(z) be a polynomial of degree $d \ge 2$, and let $\xi_1, \xi_2, \ldots, \xi_d$ be its fixpoints of order one. If any ξ_j is a multiple root of f(z) = z, then $f'(\xi_j) = +1$. If no ξ_j is a multiple root of f(z) = z, then ξ_1, \ldots, ξ_d are all different with multipliers $f'(\xi_j) = S_j \neq 1$, and

(20)
$$\{f(z) - z\}^{-1} = \sum_{j=1}^{d} (S_j - 1)^{-1} (z - \xi_j)^{-1}.$$

Expanding (20) in powers of 1/z and comparing coefficients of 1/z gives

$$0 = \sum_{j=1}^{d} (S_j - 1)^{-1}.$$

Putting $t_j = (S_j - 1)^{-1}$ so that

$$0 = \sum_{j=1}^{d} t_j,$$

we note that the interior of |S| < 1 is mapped by $t = (S-1)^{-1}$ onto Re $t < \frac{-1}{2}$. But at least one t_j must have Re $t_j \ge 0 > \frac{-1}{2}$ and for this value of j one has $|S_j| = |f'(\xi_j)| > 1$. Thus in any case f(z) has a fixpoint (or order 1) of the kind postulated in theorem 1.

References

- [1] BAKER, I. N.: Zusammensetzungen ganzer Funktionen. Math. Z. 69, 121-163 (1958).
- [2] The existence of fixpoints of entire functions. Math. Z. 73, 280-284 (1960).
- [3] FATOU, P.: Sur les équations fonctionelles. Bull. soc. math. France 47, 161-271 (1919); 48, 33-94, 208-314 (1920).
- [4] Sur l'itération des fonctions transcendantes entières. Acta math. 47, 337-370 (1926).
- [5] GANAPATHY, I. V.: On permutable integral functions. J. Lond. Math. Soc. 34, 141-144 (1959).
- [6] JACOBSTHAL, E.: Über vertauschbare Funktionen. Math. Z. 63, 243-276 (1955).
- [7] JULIA, G.: Mémoire sur la permutabilité des fractions rationelles. Ann. sci. de l'Ecole Normale Supérieure (3) 39, 131-215 (1922).
- [8] RITT, J. F.: On the iteration of rational functions. Trans. Amer. Math. Soc. 21, 348-356 (1920).
- $[\theta]$ Prime and composite polynomials. Trans. Amer. Math. Soc. 23, 51-66 (1922).

Dept. of Math., Imperial College of Science and Technology, London S.W. 7

(Received November 6, 1961)