Baker, I. N.

The existence of fixpoints of entire functions

By
IRvine Noel Baker

The existence and distribution of the fixpoints of entire functions are important in the study of the iteration of these functions; in [2] this is pointed out and reference is made to the literature. In the following if j is a positive integer $f_{j}(z)$ will denote the j-th iterate of the entire function $f(z)$. A fixpoint of exact order n of $f(z)$ is a solution of

$$
f_{j}(z)-z=0
$$

for $j=n$ but not for any $1<n$. We prove the
Theorem. If $f(z)$ is an entire function other than a linear polynomial then there are fixpoints of exact order n of $f(z)$ except for at most one value of n.

We must certainly exclude linear polynomials since, if
then

$$
f(z)=\xi+a(z-\xi), \quad a \neq 0 \text { or a root of unity }
$$

$$
f_{n}(z)=\xi+a^{n}(z-\xi)
$$

and ξ is the only fixpoint (of order 1).
We use the following notation (c.f. [4]):
$n(f, r, a)=$ number of solutions of $f(z)=a$ in $|z| \leqq r$ counted according to multiplicity,

$$
\begin{gathered}
\bar{n}(f, r, a)=\text { number of different solutions of } f(z)=a \text { in }|z| \leqq r, \\
N(f, r, a)=\int_{0}^{r} \frac{n(f, t, a)-n(f, o, a)}{t} d t+n(f, o, a) \log r \\
\bar{N}(f, r, a)=\int_{0}^{r} \frac{\bar{n}(f, t, a)-\bar{n}(f, o, a)}{t} d t+\bar{n}(f, o, a) \log r \\
T(f, r)
\end{gathered}
$$

Lemma 1 (Pólya [5]). Let $e(z), g(z)$ and $\bar{h}(z)$ be entire functions satisfying

$$
\begin{align*}
& e(z)=g\{h(z)\} \tag{1}\\
& h(0)=0 \tag{2}
\end{align*}
$$

There is a constant $c>0$ independent of $e, g, h-$ with

$$
\begin{equation*}
M(e, r)>M\left[g, c M\left(h, \frac{r}{2}\right)\right] . \tag{3}
\end{equation*}
$$

Condition (2) can be dropped provided (3) is to hold merely for all sufficiently great r.

Lemma 2. For $n>k, n$ and k positive integers, we have
(4)

$$
\lim _{r \rightarrow \infty} T\left(f_{k}, r\right) / T\left(f_{n}, r\right)=0
$$

Proof of Lemma 2. From [4, p. 24] and lemma 1 :

$$
\begin{aligned}
T\left(f_{n}, r\right) & \geqq \frac{1}{3} \log M\left(f_{n}, \frac{r}{2}\right) \\
& >\frac{1}{3} \log M\left[f_{k}, c M\left(f_{n-k}, \frac{r}{4}\right)\right] \\
& >\frac{1}{3} \log M\left(f_{k}, r^{N+1}\right)
\end{aligned}
$$

for any arbitrarily large but fixed N provided r is large enough. By [1, p. 124 Hilfssatz 1] the last expression is greater than

$$
\frac{N}{3} \log M\left(f_{k}, r\right)>\frac{N}{3} T\left(f_{k}, r\right)
$$

for all sufficiently large r. This proves the lemma.
Proof of the theorem. I: The case of a transcendental $f(z)$.
We suppose that there is no fixpoint of exact order k and select a fixed integer $n>k$. The function

$$
\begin{equation*}
\varphi(z)=\frac{f_{n}(z)-z}{f_{n}-k(z)-z} \tag{5}
\end{equation*}
$$

is meromorphic. For $T(\varphi, r)$ we have (c.f. [4, p. 14])

$$
\left\{\begin{align*}
T(\varphi, r) & \leqq T\left(f_{n}(z)-z, r\right)+T\left(f_{n-k}(z)-z, r\right)+O(1) \tag{6}\\
& \leqq T\left(f_{n}, r\right)+T\left(f_{n-k}, r\right)+O(\log r) \\
& =\{1+o(1)\} T\left(f_{n}, r\right) \quad \text { by lemma } 2
\end{align*}\right.
$$

By a similar argument it follows from
that

$$
f_{n}(z)-z=\left\{f_{n-k}(z)-z\right\} \varphi(z)
$$

so that

$$
T\left(f_{n}, r\right) \leqq T\left(f_{n-k}, r\right)+T(\varphi, r)+O(\log r)
$$

which combined with (6) yields

$$
\begin{equation*}
T(\varphi, r)=\{1+o(1)\} \vec{T}\left(f_{n}, r\right) \tag{7}
\end{equation*}
$$

In this calculation we have used the fact that the iterates of a transcendental function $f(z)$ are themselves transcendental so that their characteristics are $\operatorname{not} O(\log r)$.

We now calculate the \bar{N} functions of $\varphi(z)$ for the values $0,1, \infty$.

$$
\begin{align*}
& \bar{N}(\varphi, r, 0) \leqq \bar{N}\left(f_{n}(z)-z, r, 0\right) \tag{8}\\
& \bar{N}(\varphi, r, \infty) \leqq \bar{N}\left(f_{n-k}(z)-z, r, o\right)<T\left(f_{n-k}, r\right)+O(\log r) \tag{9}
\end{align*}
$$

If $\varphi(z)=1$ then $f_{n}(z)=f_{n-k}(z)$ so that $\xi=f_{n-k}(z)$ is a solution of $f_{k}(\xi)=\xi$ and by the hypotheses also a solution of $f_{j}(\xi)=\xi$ for some integer $j, 1<j<k-1$. Thus $t_{n-k+j}(z)=t_{n-k}(z)$ and

$$
\left\{\begin{align*}
\bar{N}(\varphi, r, 1) & \leqq \sum_{j=1}^{k-1} \bar{N}\left(f_{n-k+j}(z)-f_{n-k}(z), r, 0\right) \tag{10}\\
& \leqq \sum_{j=1}^{k-1} T\left(f_{n-k+j}(z)-f_{n-k}(z), r\right) \\
& \leqq \sum_{j=1}^{k-1} T\left(f_{n-k+j}, r\right)+(k-1) T\left(f_{n-k}, r\right)+O(1)
\end{align*}\right.
$$

Using (8), (9), (10) and the second fundamental theorem [4, p. 70] in the form

$$
T(\varphi, r) \leqq \bar{N}(\varphi, r, o)+\bar{N}(\varphi, r, 1)+\bar{N}(\varphi, r, \infty)+S(r)
$$

where $S(r)$ is $O \log (r T(\varphi, r))$ except on a set of intervals of finite total length, we have

$$
T(\varphi, r)<\bar{N}\left(f_{n}(z)-z, r, o\right)+k T\left(f_{n-k}, r\right)+\sum_{j=1}^{k-1} T\left(f_{n-k+j}, r\right)+S(r)
$$

Dividing by $T\left(f_{n}, r\right)$ and taking the lower limit as $r \rightarrow \infty$ we have in view of (7) and lemma 2:

$$
\begin{equation*}
1 \leqq \lim _{r \rightarrow \infty} \frac{\bar{N}\left(f_{n}(z)-z, r, o\right)}{T\left(f_{n}, r\right)} \tag{11}
\end{equation*}
$$

Now if the number of different fixpoints of order $<n$ is measured by a counting function $N_{1}(r)$ we have

$$
N_{\mathbf{1}}(r) \leqq \sum_{i=1}^{n-1} \bar{N}\left(f_{i}(z)-z, r, o\right) \leqq \sum_{j=1}^{n-1} T\left(f_{1}, r\right)+O(\log r)
$$

so that $\lim _{r \rightarrow \infty} \frac{N_{1}(r)}{T\left(f_{n}, r\right)}=0$ by lemma 2. This together with (11) implies that there are fixpoints of exact order n. Thus the theorem is proved in the case when $f(z)$ is transcendental.

II. The case when $f(z)$ is a polynomial

Suppose $f(z)$ is a polynomial of degree $d \geqq 2$. Then $f_{n}(z)$ is a polynomial of degree d^{n}. We suppose that k and n are two positive integers with $n>k$ such that there are no fixpoints of order n or k. These numbers must satisfy

$$
n>k \geqq 2
$$

because the equation $f(z)-z=0$ always has d solutions. As in (5) we form

$$
\varphi(z)=\frac{f_{n}(z)-z}{f_{n-k}(z)-z}
$$

and perform any necessary cancellation to put φ in the form $\frac{P(z)}{Q(z)}$ where $P(z)$ and $Q(z)$ are relatively prime polynomials of degrees $d^{n}-d^{n-k}+q$ and q respectively. $\varphi(z)$ has $d^{n}-d^{n-k}$ poles at $z=\infty$ and q poles at finite z values.

The number of poles (and hence of zeros) of $\varphi^{\prime}(z)$ is therefore at most

$$
\begin{equation*}
d^{n}-d^{n-k}+2 q-1 \tag{12}
\end{equation*}
$$

We now count the number of different places where $\varphi(z)=0$. At any such place $f_{n}(z)-z=0$ and by hypothesis $f_{j}(z)-z=0$ for some $1 \leqq j<n$. In fact j must divide n. Further if j divides k^{\prime} and k^{\prime} divides n every solution of $f_{j}(z)-z=0$ will be a solution of $f_{k^{\prime}}(z)-z=0$ and will be counted among the solutions of this equation. Thus the different solutions of $\varphi(z)=0$ number at most

$$
\begin{equation*}
\sum^{\prime} d^{i} \tag{13}
\end{equation*}
$$

where the summation is taken over divisors j of $n, 1<j<n$ excluding j for which there exists a k^{\prime} with $j\left|k^{\prime}, k^{\prime}\right| n, j<k^{\prime}<n$.

Similarly if $\varphi(z)=1$ we have $f_{n-k}(z)=f_{n}(z)=f_{k}\left(f_{n-k}(z)\right)$ and $f_{n-k}(z)$ being a fixpoint of $f_{k}(z)$, is by hypothesis a fixpoint of $f_{j}(z)$ for some divisor j of k with $1<j<k$. Thus $f_{j}\left(f_{n-k}(z)\right)=f_{n-k+j}(z)=f_{n-k}(z)$. The polynomial $f_{n-k+j}(z)-f_{n-k}(z)$ has degree d^{n-k+j} so that the number of different 1-points of $\varphi(z)$ is at most

$$
\begin{aligned}
& \sum_{j \mid k} d^{n-k+j} \leqq \sum_{j=1}^{k-2} d^{n-k+j} \leqq d^{n-1} \text { if } k \geqq 3 \\
& \text { or }=d^{n-1} \text { if } k=2 .
\end{aligned}
$$

Thus in any case the number is at most

$$
\begin{equation*}
d^{n-1} \tag{14}
\end{equation*}
$$

From (12), (13), (14) we conclude that the total number of solutions of the equations $\varphi(z)=0$ and $\varphi(z)=1$ (counting multiplicity) is at most

$$
d^{n}-d^{n-k}+2 q-1+\sum^{\prime} d^{j}+d^{n-1}
$$

while from the form of $\varphi(z)$ it is exactly $2\left(d^{n}-d^{n-k}+q\right)$. This means that

$$
2 d^{n}-2 d^{n-k}+2 q \leqq d^{n}-d^{n-k}+2 q-1+\sum^{\prime} d^{i}+d^{n-1}
$$

or

$$
\begin{aligned}
d^{n} & \leqq d^{n-k}+d^{n-1}-1+\sum^{\prime} d^{j} \\
& \leqq d^{n-2}+d^{n-1}-1+d^{n-2} \leqq d^{n}-1
\end{aligned}
$$

which is a contradiction. The last steps depend on the estimate that for $n=3,4 \sum^{\prime} d^{j}=d^{n-2}$ while for $n \geqq 5 \sum^{\prime} \cdot d^{j}<d^{1}+\cdots+d^{n-3}<d^{n-2}$.

Discussion of the result. A fixpoint ξ_{1} of exact order n of $f(z)$ forms. part of a cycle of order n. The members of the cycle are the values ξ_{1}, ξ_{2}, \ldots, ξ_{n-1}, ξ_{n} which have the property

$$
f\left(\xi_{i}\right)=\xi_{i+1}
$$

or $f_{j}\left(\xi_{i}\right)=\xi_{i+j}$ where the $i+j$ is interpreted as a residue modulo n. No two of the $n \xi_{i}$ are the same and all have the same value of $f_{n}^{\prime}\left(\xi_{i}\right)$, namely

$$
\prod_{i=1}^{n} f^{\prime}\left(\xi_{j}\right)
$$

which is called the multiplier of the cycle. Our result may be expressed in the form:

A non-linear entire function possesses cycles of all orders except for at most

 one exceptional order.One exceptional value can indeed occur. The polynomial $f(z)=z^{2}-z$ has two fixpoints of order 1, namely 0 and 2 . The fixpoints of $f_{2}(z)$ are 0 taken 3 times and 2 taken once. Thus there is no cycle of order 2. For transcendental functions there may be no fixpoints of order 1 as in the case of $f(z)=z+e^{z}$. One may ask if $n=1$ is the only possible exceptional order for transcendental functions.

For a certain class of functions including those with Picard exceptional values it has been shown in [3] that there are indeed fixpoints of exact order n for all n without exception.

If $f(z)$ is an entire transcendental function with no fixpoints of order k we can conclude from (11) not only that there are fixpoints of exact order n for $n>k$ but that their number provides an N-function of the same growth as $T\left(f_{n}, r\right)$. The question arises whether this remains true for all transcendental functions.

The results may also be expressed as necessary conditions that a given entire function be an iterate. As a sample of such statements we show: If a transcendental entire function $F(z)$ is an iterate of nonprime order $n=p q$, ($p>1, q>1$ integers) then not all its fixpoints ξ (of first order) can have different multipliers $F^{\prime}(\xi)$..

Proof. Suppose $F(z)=f_{n}(z)$. Then $f(z)$ is transcendental and since $p \neq n$ there will be cycles of order p or of order n for $f(z)$. If there is a cycle of order n there are n numbers $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ with $f_{n}\left(\xi_{j}\right)=\xi_{j}$ and $F^{\prime}\left(\xi_{j}\right)=f_{n}^{\prime}\left(\xi_{j}\right)$ is the same for $j=1,2, \ldots, n$ as noted at the beginning of this section. If there is no cycle of order n then there is one of order p and there are numbers $\eta_{1}, \ldots, \eta_{p}$ such that $f\left(\eta_{j}\right)=\eta_{j}$ for $j=1, \ldots, p$ and $j_{p}^{\prime}\left(\eta_{j}\right)$ is independent of j. But then $f_{n}\left(\eta_{j}\right)=\eta_{l}$ since p divides n and $F^{\prime}\left(\eta_{j}\right)=\left\{f_{p}^{\prime}\left(\eta_{j}\right)\right\}^{n / p}$ is the same for each η_{j} of the cycle. Thus the statement is proved. If we knew that cycles of every order other than the first do occur we could drop the non-prime condition above and would have a generalisation of [2, theorem 3] where a similar theorem is proved with restrictions on the growth of the functions involved.

References

[1] Baker, I N.: Zùsammensetzungen ganzer Funktionen. Math. Z. 69, 121-163 (1958). - [2] Baker, I. N.: Fixpoints and iterates of entire functions. Math. Z. 71, 146-153 (1959). - [3] Baker, I. N.: Some entire functions with fixpoints of every order. To appear in the Journal of the Australian Mathematical Society. - [4] Nevanlinna, R.: Le théorème de. Picard-Borel et la théorie des fonctions méromorphes. Paris: GauthierVillars 1929. - [5] Póıya, G.: On an integral function of an integral function. J. London Math. Soc. 1, $12 \rightarrow 15$ (1926).

Dept. of Math., Imperial College of Science and Technology, London SW 7 (England)
(Eingegangen am 1\%. Novemoer 1959)

