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The existence of fixpoints of entire functions

By
IRVINE NOEL BAKER

The existence and distribution of the fixpoints of entire functions are

- important in the study of the iteration of these functions; in [2] this is pointed

out and reference is made to the literature. In the following if § is a positive

integer f;(z) will denote the j-th iterate of the entire function f(z). A fixpoint
of exact order # of f(z) is a solution of

f].(z) —2z=0

for { = but not for any 7 <<x. We prove the

THEOREM. If [(2) #s an entire function other than a linear polynomial then
there are fixpoints of exact order n of f(z) except for at most one value of n.

We must certainly exclude linear polynomials since, if
fz)=E+a(z—§), a==0 oraroot of unity,

then: ) =E+a"(z—8)
and £ is the only fixpoint (of order 1).

We use the following notation (c.f. [4]):
n{f, 7, @) = number of solutions of /(z) = a in |z| < # counted according to
multiplicity,

%(f, 7, a) = number of different solutions of f(z)=a in |z| <7,

r

N(f,?’,cl)—:f”(f’t'a)_;n(flo’u) dt+.n(f,9,a)10g7,'

0
14

N{i,7a) ;_zf it a) *tW 2% 4t +mf,o0,a)log7,
0
T(f,#) = Nevanlinna characteristic of /(z),

M(f,7) =Max | ()]

LemMA 1 (POLYA [8]). Let e(2), g(2) and h(z) be entive functions satisfying
1) e(z) =¢g{h(2)}
(2) h(0)=0.
There is a constant c>0 independent of e, g, h — with

(3) Menn>M [g, cM (h, —2-)] ;
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Condition (2) can be dropped provided (3) is to hold merely for all suffi-
ciently great 7.
LeMMA 2. For n>k, n and k positive integers, we have

(4) Mm T(f,,7)[T{f,,7r) = 0.

Proor oF LEMMA 2. From [4, p. 24] and lemma 1:
1
T(f 1) = 5-log M (1, -2~)
. ¥
> ?logM [f,k’ CM(n—k: T)}
> - log M{(fy, r+Y)
for any arbitrarily large but fixed N provided  is large enough. By [I, p. 124

Hilfssatz 1] the last expression is greater than
N N :
TlogM(fk,r) =5 T(t.7)

for all sufficiently large . This proves the lemma.
PROOF OF THE THEOREM. I: The case of a transcendental f(z).

We suppose that there is no fixpoint of exact order k and select a fixed
integer #>> k. The function

_ =2
(5) (p(z) - fn—k(z) —z

is meromorphic. For 7(p, 7) we have (cf [4, p. 14])

IT(% NE T(ule) = 27) + T(faesle) —27) +0(1)
(6) ‘ = T(fn.7) + T(fus,7) + 0 (log7)

l ={14+0()} T(f,,7) Dby lemma 2.

By a similar argument it follows from

fn -z——{fn k —Z}(p(Z)

that T, ) < Tltaes, ) + T, 7) +0(l0g )
so that {1_0 }Tfn» <T((,‘0, 7) )
which combined with (6) yields

(7) T(p,7)={1+0(1)} T(},.7)

In this calculation we have used the fact that the iterates of a transcendental
function f(z) are themselves transcendental so that their characteristics are
not O (log 7).

We now calculate the N functions of ¢ (z) for the values 0, 1, .

(8) (9,7.0) = N(fu(2) — 2,7,0)
(9) N(‘P:": R gz_v—( n— k —z,7,o)<T(f”_k,r)—{—O(logr).
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If (z)=1 then f,(2)=/f,_,(2) so that £=f,_,(2) is a solution of f,(&)=¢&
and by the hypotheses also a solution of f;(&) =& for Some integery, 1 <j <k —1.
Thus f,_54;(4) =7,—1(2) and

k-1
N(‘P;” 1) é =1N(fn—k+7'(z) - fn—k(z)’ 7, O)
k-1
(10) é;l T(fuepti(®) — fn—k(z),”)
< 3 Tluepis?) + (B —1) T(fs_s, )+ O(4).
=1

Using (8), (9), (10} and the second fundamental theorem [4, p.70] in the form
T(g.7) = N(p,7,0) + N(g,7,1) + N(@, 7, o) + S(r)
where S(7) is O log(r T (g, 7)) except on a set of intervals of finite total length,
we have
T(p,7) <N(f(&) — 2.7, 0) + & T(f,_y,7) +§:T(f,,4-k+,», 7+ S().
Dividing by T(f,,7) and taking the lower limi’jc as 7—>oo we have in view

of (7) and lemma 2: _
(11) 1< lim Nl —27.0)

=) T(fn,7)

Now if the number of different fixpoints of order <(# is measured by a counting
“function N, () we have

N,(7) g’_tngV(fi(z)—z,r, o)gg (#,,7) +0(log7)

so that 'lln; TZ:I}‘: )>

there are fixpoints of exact order #. Thus the theorem is proved in the case
when f(z) is transcendental.

=0 by lemma 2. This together with (11) implies that

II. The case when f(z) is a polynomial
Suppose f(z) is a polynomial of degree d=2. Then f,(z) is a polynomial
of degree d". We suppose that % and » are two positive integers with #>> 4
such that there are no fixpoints of order # or k. These numbers must satisfy

m>k=2
because the equation f(z) —z=0 .always has 4 solutions. As in (5) we form -

. @ —z

P = o=

P(z)
: - Q)
P(z) and Q(z) are relatively prime polynomials of degrees d"—d”‘k+q and

g respectively. @(z) has d® —d"~* poles at z=o0 and ¢ poles at finite z values.
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The number of poles (and hence of zeros) of ¢'(z) is therefore at most
(12) ar—dr* 429 —1.

We now count the number of different places where ¢(2)=0. At any
such place f,(z) —z=0 and by hypothesis f;(z) —z=0 for some 1=7j<#n. In
fact 7 must divide #. Further if 7 divides 2’ and %' divides # every solution
of f;(2) —z=0 will be a solution of f,(z) —2=0 and will be counted among

. the solutions of this equation. Thus the different solutions of ¢ (z) =0 number
at most .

(13) x'd

where the summation is taken over divisors § of #, 1<<f<n excluding § for
which there exists a &' with j| &', | n, j<k'<m. _
Similarly if @ (2)=1 we have f,_,(2)=/,(2) =/, (fs—4(2)) and f,_,(2) being

a fixpoint of f,(2), is by hypothesis a fixpoint of f;(z) for some divisor 7 of %
with 1<j<k. Thus [;(f,—s(2))=/Fu—2+;{2) =fs—s(2). The polynomial
fu—r+i(2) —Fu—z(2) has degree 4"~ so that the number of different 1-points
of ¢(z) is at most

Z‘dn k+7< Zdn—k+7<dn 14 k>3

ik j=1

or =4d"1if k=2.

Thus in any case the number is at most

(14) a .

From (12), (13),
) =

equations ¢ (z

(14) we conclude that the total number of solutions of the
0 and <p( =1 (counting multiplicity) is at most

—dtpog — 1+ YA +a
while from the form of ¢(z) it is exa;:tly 2(d"* —d" *4g¢). This means that
2d"F 4 2qZdr—d 42 — 1+ Y d - ar
A (R oy R )
S gt i dnR a1

or

which is a contradiction. The last steps depend on the estimate that for
n=3, 42 d'=d*? while for n=5 Y d'<d + ... +d"<d"

DiscussioN OoF THE RESULT. A fixpoint &; of exact order # of f(z) forms
part of a cycle of order n. The members of the cycle are the values &, &, ...,
&,_1, &, which have the property

f (Ez) = §i+1

or f;(§)=§,,; where the 74-7 is interpreted as a residue modulo #. No two
of the n &, are the same and all have the same value of f,(&;), namely

gf
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which is called the multiplier of the cycle. Our result may be expressed in
the form:

A non-linear entire function possesses cycles of all orders except for at most
one exceptional order.

One exceptional value can indeed occur. The polynomial f(z) =22 — 7 has
two fixpoints of order 1, namely 0 and 2. The fixpoints of f,(z) are 0 taken 3
times and 2 taken once. Thus there is no cycle of order 2. For transcendental
functions there’ may be no fixpoints of order 1 as in the case of f(z)=2-4¢".
One may ask if #=1is the only possible exceptional order for transcendental
functions. ) '

For a certain class of functions including those with Picard exceptional
-values it has been shown in [3] that there are indeed fixpoints of exact order
n for all # without exception.

If f(z) is an entire transcendental function with no fixpoints of order %
we can conclude from (11) not only that there are fixpoints of exact order #
for n>>Fk but that. their number provides an N-function of the same growth
as T(f,, 7). The question arises whether this remains true for all transcendental
functions. ;

The results may also be expressed as necessary conditions that a given
entire function be an iterate. As a sample of -such statements we show: If
a transcendental entire function F(z) is an iterate of nonprime order n=pgq,
(p=>1, ¢g> 1 integers) then not all its fixpoints £ (of first ovder) can have different
multipliers F'(&). . :

Proor. Suppose F(z)=f, (). Then f(z) is transcendental and since p=4=n
there will be cycles of order p or of order n for f(2). If there is a cycle of
order n there are n numbers &, &, ..., &, with f,(§;)=§; and F'(§) = (&)
is the same for y=1, 2, ..., # as noted at the beginmng of this section. If
there'is no cycle of order # then there is one of order $ and there are numbers
Ny, ..., 7, such that f(n,) =y, for j=1,...,p and .f,(,) is independent of j.
But then f,(n;)=7, since p divides n and F'(n;)={f,(n;)y" is the same for
each #, of the cycle. Thus the statement is proved. If weé knew that cycles
of every order other than the first do occur we could drop the non-prime
condition abpire and would have a generalisation of [2, theorem 3] where a
similar theorem is proved with restrictions on the growth of the functions
involved.
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