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Some time ago, on my way to a special lecture at the Fields Institute, I overheard
a couple of graduate students whispering in the corridor:

- Are you coming to Shishikura’s talk?
- Who’s that?
- The guy who proved that the boundary of the
Mandelbrot set has Hausdorff dimension two.

- Sweet!

That was not the topic of the talk (in fact, HD(∂M) = 2 had been proven
15 years earlier), so it was telling that they even knew what the notions were in
the statement. To me, this conversation is symbolic of how much the language of
complex dynamics has permeated mathematical culture since the early 1980s, when
it was preposterous to think of doing serious research on the properties of quadratic
polynomials.1

Back then much of the subject’s popularity had to do with the pretty pictures.
A few lines of computer code were enough to start exploring an endless variety of
fractal shapes, and ever since then, Julia sets have decorated calculus books, art
galleries, and cereal boxes. But there was serious research to be done, and complex
dynamics is today a vital branch of dynamical systems that has developed deep
connections to differential equations, geometric group theory, harmonic analysis,
algebraic number theory, and many other subjects. It is also a field with a rich
tradition. As a student, I got to learn quite a number of historical trivia facts, such
as the string of Paris cafés where Douady and Hubbard did most of their original
work, or the unconfirmed existence of T. Cherry’s notebooks, which may contain
valuable insights on rotation domains.

One peculiarity of the subject’s evolution is the 60-year hiatus between the
groundbreaking results of Fatou and Julia, and the explosion of research started
around 1980. To be sure, there were some sporadic results (notably Siegel’s treat-
ment of the small denominator problem [14]), but the floodgates were open only
after computer graphics became available. Without this powerful aid to intuition,
the work of the early pioneers appears all the more remarkable. What mental repre-
sentation did they have to work on? How much did they suspect about the richness
of the world they were uncovering?

These are open-ended questions, but they suggest that here is a historical topic
worth pursuing. The present book does this job admirably well. The authors seem
to have read every single paper written on the subject of complex iteration between

2010 Mathematics Subject Classification. Primary 01, 30, 37.
1“I must say that in 1980, whenever I told my friends that I was just starting with J. H. Hubbard

a study of polynomials of degree 2 in one complex variable (and more specifically those of the
form z �→ z2 + c), they would all stare at me and ask: Do you expect to find anything new?”
A. Douady in [11].
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1870 and 1942; the main results being digested for the benefit of readers interested
primarily in the mathematical story. They also had access to dozens of academic
and personal documents that enabled them to tell a more human tale; a tale in
which personalities are important and national traits evident. To put this story in
context, I will introduce a (very) rough division of the history of complex dynamics
into five periods. As a disclaimer, do not expect a full treatment; I am omitting
much in order to concentrate on highlights that might tempt readers from outside
the field to explore it.

1. Local Theory. The first modern study of iteration was due to Ernst Schröder,
a Gymnasium teacher in Germany who published two papers in Mathematische
Annalen in 1870–71. Although his treatment is not very rigorous, he was the first
to suggest the use of conjugation as a means to studying the dynamical behavior
of an analytic function f near a fixed point z0. The idea is to find a local change of
coordinates ζ = ϕ(z) around z0 that conjugates f into an easy-to-describe model.
When possible, this facilitates the study of f because conjugation respects iteration,
so the dynamical behavior of f and its “simpler” model are essentially the same.
To illustrate this idea, consider the function

(1) f(z) =

∞∑
n=1

anz
n,

which has 0 as a fixed point. The derivative f ′(0) = a1 (the multiplier of the fixed
point) dictates the dynamical behavior of f near 0. If a1 �= 0, we have f(z) ≈ a1z
near the origin, and we are led to ask, following Schröder, if f is conjugate to the
linear map L(ζ) = a1ζ.

For the case 0 < |a1| < 1, Gabriel Kœnigs gave a positive answer in 1884. It is
an instructive exercise to prove that

ϕ(z) = lim
n→∞

f◦n(z)

an1

furnishes an explicit solution to the Schröder conjugating equation ϕ(f(z))=a1ϕ(z).
Since L is a contraction, successive iterates f◦n(z) converge to 0 whenever z is in
the domain of the conjugating map ϕ, so we call 0 an attracting fixed point. The
case |a1| > 1 follows trivially from the attracting case by considering a local inverse
f−1. In this situation we call 0 a repelling fixed point.

Two students of Kœnigs, Auguste-Clémente Grévy and Leopold Leau, studied
the remaining cases a1 = 0 and |a1| = 1. They formed, at the turn of the century,
the core of a “French school of iteration” concerned with the problem of studying
similar conjugating equations and their domains of definition.

Grévy’s interest was to generalize Kœnigs’s linearization result, so he missed
the correct model in the superattracting case a1 = 0 (although he did find some
degenerate particular cases). The solution was found by Lucyan Böttcher, an ob-
scure Polish mathematician, who showed that the function f is conjugate to the
map z �→ zd, where the degree d is given by the smallest index such that ad �= 0.
Böttcher published almost exclusively in Polish and Russian, so his results went un-
noticed for a long time. Böttcher coordinates will be mentioned later as an essential
tool in polynomial dynamics.

Leau, on the other hand, faced the hard problem of finding a natural model for
the dynamics of f around 0 when the multiplier a1 is a root of unity, i.e., when the
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fixed point is parabolic. As it turns out, the origin is repelling in certain directions
and attracting in others, so f cannot be conjugate to its linear part. Leau’s Flower
Theorem decomposes a punctured neighborhood of 0 into a union of attracting
and repelling petals that alternate around 0 and have 0 as their common boundary
point. The dynamical behavior of f in each of these petals is conjugate to the
translation z �→ z + 1.

The case of a multiplier a1 = e2πiθ with irrational θ had to wait for half a century.
As we will see, it is a problem with connections to celestial mechanics and number
theory, and is still not completely solved.

2. Global theory. Newton’s method applied to the polynomial P (z) = z2 − 1

yields the rational function N(z) = z2+1
2z . It is an instructive exercise to prove that

iteration of N quickly converges to either of the two roots ±1 of P , provided the
initial point is not on the imaginary axis. In dynamical terms, N has superattract-
ing points at ±1, and their basins of attraction are the half-planes with positive
and negative real parts. This particular result appears in Schröder’s papers, but
is often accredited to Arthur Cayley who did a much better job of promoting it in
England and France.

The authors are likely right in saying that Cayley’s work was “probably tangen-
tial to the development of complex dynamics”, although it has historical significance
for three reasons. First, there is reason to believe that it carried more influence in
French circles than did his German counterpart. Also, Newton’s method for z3 − 1
splits C in three regions all of which share the same boundary and are thus fractal.
Cayley’s surprise at the difficulty of this situation (which he did not understand)
has become part of folk mathematical culture and was eventually popularized as
an early forerunner of chaos theory. The third reason is that this decomposition
of the plane into different dynamical behaviors (whether attributed to Schröder or
Cayley) can be considered the first dynamical result of a global nature.

Some nonlocal ideas can also be found in Böttcher’s work, and in
Salvatore Pincherle’s 1912 entry on functional equations in the French Mathemat-
ical Encyclopedia. The best indication however that global problems were ripe to
be attacked was probably the short note of Pierre Fatou in 1906 where he showed

that the rational functions fk(z) =
zk

zk+2
have an attracting fixed point at 0 whose

basin of attraction consists of the complex plane with a Cantor set removed.
Two events converged to make the transition possible. Paul Montel’s develop-

ment of the theory of normal families around 1907–11, and the announcement late
in 1915 of a Grand Prix des Sciences Mathématiques to be awarded by the French
Académie des Sciences at the beginning of 1918. The topic for the prize? Iteration
in one or several variables from a global point of view. . .

The story of this prize is one of the most cherished bits of trivia in the field.
The main protagonists were involved in a (civil) controversy over priority, and the
fact that Julia was a wounded war hero played a part in the whole situation resolv-
ing to his advantage. Most versions of this story are inaccurate. For instance, a
common misconception has Fatou as one of the competitors. In fact, the Académie
received three entries and accepted those by Gaston Julia and Samuel Lattès. Fa-
tou refrained from entering the competition, and the book offers some interesting
speculations about the role of the aforementioned priority dispute on his decision.
Another interesting contribution of the book is the disclosure of the third Prize
entrant. (Should I name him? The answer is in page 126 of the book.)
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Both Fatou and Julia realized that the key to understanding global dynamical
properties is the distinction between points with “regular behavior” and “wild”
points. Both used Montel’s definition of normal families to formalize this idea:
Assume f : C → C is a rational function of degree d ≥ 2 on the Riemann sphere,
and define Ff ⊂ C as the set of points z for which the iterates {f◦n} restricted to

a neighborhood U of z form a normal family; that is, {f◦n : U → C} are locally
equicontinuous in the spherical metric. The set Jf is defined as the complement

C \ Ff . In modern parlance, Ff is the Fatou set of f , and Jf the Julia set. The
imaginary axis in the case of Cayley’s N , and the Cantor set of Fatou’s fk are
examples of Julia sets.

The definition of Jf above is due to Fatou. Julia on the other hand defined it
as the closure of the set of repelling periodic points of f . A central result in both
works is the equivalence of the two definitions. Let us see how Fatou proved it. Pick
a point z∗ in the Julia set which is neither fixed nor critical, so that the preimage
f−1(z∗) consists of d distinct points z1, . . . , zd, all different from z∗. For each zj
there is a local inverse ψj of f such that f ◦ψj = id and ψj(z∗) = zj . Let all ψj be
restricted to a common domain U . Since z∗ ∈ Jf , the family {gn} defined by

gn(z) =

(
f◦n(z)− ψ1(z)

)
·
(
z − ψ2(z)

)(
f◦n(z)− ψ2(z)

)
·
(
z − ψ1(z)

)
is not normal on U , so by Montel’s Theorem the ranges cannot omit all three
values 0, 1, and ∞: For some point w ∈ U and iterate n > 0, we must have
gn(w) ∈ {0, 1,∞}. Thus, f◦n(w) is either w, ψ1(w), or ψ2(w), and w must be
periodic. Since it is known that only finitely many periodic points are not repelling,
the result follows.

This sample is just the tip of the iceberg. Although no one had a clear idea
at the time of how a Julia set looks, the work of Fatou and Julia made a deep
impression and was regarded as one of the earliest successful applications of the
new concepts that formed what we now call analysis. To give you an idea of the
high esteem given to their results at that time, I will just mention that Montel gave
a full account in his famous 1927 book on normal families, praising them as the
most accomplished application of his theory.

3. Interlude. One basic question remained open, and it was of a local nature: Is
the function (1) linearizable when the multiplier is irrationally neutral; i.e., when
a1 = e2πiθ and θ �∈ Q?

To be precise, let f be as in (1). We seek an analytic function ϕ(z) =
∑∞

n=1 cnz
n

such that

(2) ϕ(a1z) = f ◦ ϕ(z).

Notice that if such a linearizing map exists, multiplication by a constant c before
applying ϕ simply rescales the domain so ϕ(cz) is also a linearizing map. By setting
c = 1/ϕ′(0), the coefficient c1 can be assumed to be 1. It is an instructive exercise
to substitute the series for f and ϕ in (2), and prove that the coefficients of ϕ are
given by the recursion

c1 = 1, cn =

(
1

an1 − a1

)
·
(

n∑
r=2

∑
�1+···+�r=n

ar · c�1 · . . . · c�r

)
.
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This formula defines ϕ explicitly, so it seems to solve the linearization problem.
However, depending on θ, the factors 1/(an1 −a1) can get very large too often. This
threatens the convergence of the power series for ϕ, and, indeed, it is possible that
the series solution is only formal.

This is an example of a small divisor problem and its solution is not easy. Small
divisors were first encountered in celestial mechanics and gave Poincaré no end of
trouble. The linearization problem just described can be viewed as a baby version in
which no physical considerations obscure the convergence issue. Still, a quarter of a
century after the publication of Poincaré’s Méthodes Nouvelles, no one had an idea
for how to deal with small denominators. Fatou and Julia tackled the linearization
problem to no avail (Julia even published a wrong proof claiming that there are
no solutions). In 1917, George A. Pfeiffer found some nonlinearizable examples,
and in 1928 Hubert Cremer found a dense Gδ set of angles θ for which no rational
function is linearizable.

The first positive solution came in 1942 in a six-page article by Carl L. Siegel
[14]. He proved that any f whose multiplier at 0 is a1 = e2πiθ with θ Diophantine is
linearizable, and (assuming a standard normalization on f) gave an explicit lower
bound on the radius of convergence which depends only on the Diophantiness degree
of θ. Since the Diophantine condition is of full measure, Siegel’s result was as strong
as could be desired, even though it did not fully settle the linearization problem.
Because of the importance of the result and its influence on later developments
(particularly KAM theory), the 1942 paper has been praised as one of the most
instrumental of the 20th century; see [12] for details.

After Siegel, much progress was made on circle diffeomorphisms and rotation
domains (Fatou components where the map is conjugate to a rotation). Of par-
ticular mention are the works of Alexander D. Brjuno who described in 1971 the
largest class of numbers θ for which every analytic function f with fixed point 0 of
multiplier e2πiθ is linearizable, and Michael R. Herman culminating with his results
on quasi-symmetric conjugacy of circle homeomorphisms/diffeomorphisms to rigid
rotations (see his unpublished manuscripts [8] and Douady’s Bourbaki exposition
[6]).

It is important to emphasize that there was other work done in the field. The
book makes a point of noting the work of Irvine N. Baker, who published extensively
on the iteration of entire maps, and it mentions Hans Brolin, Thomas Cherry, and
others.

4. Modern theory. Sometime in the late 1970s the stage was finally set for the
dynamical study of the quadratic family Q =

{
fc(z) = z2 + c

}
. Preliminary devel-

opments include the Kneading Theory of Milnor and Thurston, the experimental
discovery of renormalization in the logistic family by Feigenbaum, and even ad-
vances in computer graphics.

Seen as a map on the Riemann sphere, fc has two critical points: one at 0 and one
at ∞. The later one is a superattracting fixed point, and it is an instructive exercise
to prove that the boundary of its basin of attraction coincides with the Julia set Jc
of fc. The behavior of the critical point at 0 determines the dynamical properties
of fc. In particular, computer experimentation shows that Jc is connected when
the orbit of 0 is bounded, and is a Cantor set when the orbit of 0 is attracted to
∞.
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In order to understand this dichotomy, one is led to define the set M ={
c
∣∣ {f◦n

c (0)} � ∞
}
. To avoid the controversy of who discovered first the Man-

delbrot set, I will simply point to an eloquent short note in Scientific American [9],
which seems to cover all bases.

In any case, Adrien Douady and John H. Hubbard started around 1980 a sys-
tematic study of Q that culminated with their proof that the Mandelbrot set is
connected (Nessim Sibony gave an alternate proof around the same time). Their
argument begins with the observation that when Jc is connected, the Böttcher co-
ordinate of the superattracting point at ∞ furnishes a Riemann map from the basin
of attraction to the unit disk. An extension of this idea to parameters c outside
M allowed them to construct a Riemann map for C \M , thus showing that M is
connected. The next obvious step has proved to be a fertile ground for ideas, but
is disconcertingly unassailable:

MLC Conjecture. The Mandelbrot set is locally connected.

Douady and Hubbard also introduced a notion of renormalization to explain the
self-similarity of M , and developed a kneading theory in the form of external rays.
These are pullbacks of straight rays in the unit disk by the Böttcher coordinate
at ∞. If the initial angle is a rational fraction of a full turn, the corresponding
external ray accumulates at one point w of Jc which turns out to be (pre-)periodic;
we say that the ray lands at w. Many rays can land at the same point w, and the
binary representation of their angles encodes the itinerary of the iterates f◦n

c (w)
around Jc. These tools have proved invaluable in attacking MLC.

In the context of the quadratic family, a parameter c is hyperbolic if fc has an
attracting periodic point. If true, MLC would imply the density of hyperbolic pa-
rameters. This is without a question the most important open problem in the field
and has been solved only partially. Jean-Christophe Yoccoz proved MLC at param-
eters c ∈ M that are at most finitely renormalizable. His proof uses external rays
to construct a puzzle of pieces nested around c. The finite renormalization condi-
tion ensures that the diameter of these pieces goes to 0, proving local connectivity.
Mikhail Lyubich refined this construction, describing a subset of puzzle pieces, the
principal nest, that allowed him to establish the truth of MLC for certain family of
infinitely renormalizable parameters.

Besides this explosion of activity in understanding the quadratic family, other
developments turned complex dynamics into a very active field. In 1985 Den-
nis Sullivan introduced quasi-conformal maps as a new, powerful tool to construct
functions with prescribed dynamics. Using this idea he proved the famous No Wan-
dering Domains Theorem, stating that every component of the Fatou set F of a
rational function f is eventually periodic. The argument is quite elegant. If the
successive iterates of a component W ⊂ F never intersect, we can put an arbitrary
Beltrami differential μ on W and use the forward and backward iterates of f to
spread μ along all components of F that have a forward image in common with
W (the grand orbit of W ). Straightening the resulting complex structure gives a
new rational map conjugate to f ; a deformation of f . Now, μ is arbitrary, so we
can construct an infinite-dimensional space of deformations; but this is impossible
since the space of rational maps of a fixed degree has finite dimension. Sullivan’s
theorem completed the classification of Fatou components of rational functions; a
problem originally considered by Fatou and Julia.
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5. Current status. One would expect that after all the “easy” theorems have
been proved, it only remains to wait for a lucky break to establish MLC and close
the subject. Instead, complex dynamics has branched in new and varied directions.
It would be unwise to try an enumeration of names is this short space; instead, let
me refer you to the Preface of [10], the Proceedings of the 2006 Fields Institute
Conference mentioned at the beginning of this review. Its description of the papers
submitted is an accurate portrait of the state of the art in complex dynamics today.
Another characteristic sample can be found in [13].

Some representative advances in the classical theory include the proof of the
MLC Conjecture for further families of infinitely renormalizable parameters, p-adic
dynamics, the combinatorial treatment of the dynamics of transcendental maps,
the phenomenon of intermingled basins in several variables, and the celebrated
discovery of polynomial Julia sets with positive area.

One example of a topic making new connections to complex dynamics is the
theory of self-similar groups of Volodymyr Nekrashevych: Let X be a finite alphabet
and X∗ denote the set of finite words over X. A faithful action of a group G on X∗

is self-similar if for every g ∈ G and x ∈ X there exist h ∈ G and y ∈ X such that
for all words w ∈ X∗,

g(xw) = yh(w).

Self-similar groups appear naturally as iterated monodromy groups of branched cov-
ers of the Riemann sphere C. If f is such a branched cover with degree d ≥ 2, let
the set P be the union of the orbits of the branch points and assume that P is
finite. The alphabet X is represented by the d inverse images of a generic point x∗.
If γ is a loop in C \P based at x∗, the n-fold lift of γ permutes the dn preimages of
x∗. The inverse limit of the quotients of π1

(
C \ P, x∗

)
by these monodromy actions

is the iterated monodromy group img(f). It is a self-similar group.
This algebraic construction brings new dynamical insights, while creating in-

teresting examples for group theorists. This two-way feedback is characteristic
of successful interactions between fields. To illustrate the first direction, consider
Thurston’s topological characterization of branched covers that are equivalent to
rational maps (see [7]). The language of self-similar groups is ideally suited to de-
scribe Thurston obstructions, and gave Nekrashevych the means for his solution
with Laurent Bartholdi of the famous “Twisted Rabbit Problem” in [3].

In the opposite direction, dynamically defined IMGs have supplied geometric
group theory with many new groups with desirable properties. This includes groups
of intermediate growth [5], and the first example of an amenable group that is not
subexponentially amenable [4].

————— ◦ —————

The authors’ stated goal was “to tell the story of the development of complex
dynamics in the first half of the 20th century”, but they have done more than
that. Their narrative traces the origins of the subject back to Schröder, and it
explores the aftermath of Siegel’s result. One consequence of their meticulous work
is dispelling the myth that a few scattered papers set the foundation of complex
iteration. In fact, the story is much more complicated than what I have sketched
here, and there are multiple connections between the main characters. For instance,
Lattès is best known today for the function

(z2 + 1)2

4z(z2 − 1)
,



510 BOOK REVIEWS

whose Julia set is the full Riemann sphere. Earlier, Böttcher had studied other
functions with this property, but as noted before, his work was not well known. I
find it a bit of a mystery how he did come to be eventually recognized and given
due credit. The first to describe his work in detail was Joseph F. Ritt, who together
with Pfeiffer led the community of American mathematicians interested in iteration
before 1920.

Another group whose work is reviewed in detail is the Italian School. The book
makes an interesting case for the claim that Pincherle was the first person to de-
scribe iteration diagrams, Julia sets, and the Mandelbrot set. Pincherle’s was the
third submission to the Academié’s Grand Prix (there, I said it).

A good portion of the book is related directly or indirectly to the Grand Prix.
The drama of this story makes for interesting reading, and it has already been
explored in detail in books by Michéle Audin [2] and by the first author of the
present book [1]. The focus here is different and complements well the earlier
works. The authors discuss many curious sources, such as the letters that Julia
deposited with the Academié to support his priority claims, or some correspondence
that shows the concern to provide financial help to Lattès’ wife after he died (six
months before the Prix was awarded).

More than a third of the book is taken by sixteen appendices. Eleven of these are
contributions written by other authors and are an attempt to “underscore the con-
nections between current research and its history”. The other appendices contain
a translation of the Academié’s Grand Prix report, extensive biographies of Fatou
and Julia, biographical sketches of other nineteen mathematicians, and remarks on
computer graphics.

This last point brings out what is perhaps the only major drawback of the book.
Although the numerous portraits of mathematicians bring them to life and add
charm to the story, other illustrations are not so fortunate. The color slides in
particular leave much to be desired. Some screen-shots have the wrong aspect
ratio; a Julia set that is totally disconnected fails to look so because of insufficient
iterations, and some other figures simply do not illustrate the phenomenon they
are supposed to.

I am also irked a bit by the discontinuity in the narrative which jumps too
often between the mathematical and historical discussions. The presentation seems
disconnected, and some facts are repeated in different sections, perhaps due to
having been written by different authors. Nevertheless, this does not seriously
affect the quality of the exposition. All in all this is an authoritative reference, and
quite entertaining. I can only hope to read one day a history of complex dynamics
after 1942 that is as thorough as this book.
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