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Preface

In late 1917 Pierre Fatou and Gaston Julia each announced several results regarding
the iteration of rational functions of a single complex variable in the Comptes rendus
of the French Academy of Sciences. These brief notes were the tip of an iceberg.
In 1918 Julia published a long and fascinating treatise on the subject, which was
followed in 1919 by an equally remarkable study, the first installment of a three-
part memoir by Fatou. Together these works form the bedrock of the contemporary
study of complex dynamics.

This book had its genesis in a question put to me by Paul Blanchard. Why did
Fatou and Julia decide to study iteration? As it turns out there is a very simple
answer. In 1915 the French Academy of Sciences announced that it would award its
1918 Grand Priz des Sciences mathématigues for the study of iteration. However,
like many simple answers, this one doesn’t get at the whole truth, and, in fact,
leaves us with ancther equally interesting question. Why did the Academy offer
such a-prize?

This study attempts to answer that last question, and the answer I found was
not the obvious one that came to mind, namely, that the Academy’s interest in
iteration was prompted by Henri Poincaré’s use of iteration in his studies of celestial
mechanics. While this may have played a part in the Academy’s decision, it also
turns out that there was a longstanding French interest in the iteration of complex
maps, beginning with the studies of Gabriel Koenigs in the mid-1880’s. However,
he was not the first to become intrigued by the dynamics of complex maps. That
honor seems to belong to a German mathematician, not unknown by any means,
but one who deserves more renown than he seems to have at the present moment,
Ernst Schréder, who in 1870 articulated the following theorem.

Let ¢"(z) denote the n-fold composition of ¢(z) with itself. If ¢(z) is a
complex analytic map satisfying ¢(z) and |¢'(z)| < 1 for some point ,
then there exists a neighborhood D of £ on which ¢"(z) converges to z
for all z in D.

This book traces the history of the iteration of complex maps from Schréder’s
first paper to the studies of Fatou and Julia. I have tried to keep myself focused
on that development, and as a consequence decided not to include a number of.
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interesting topics that I judged off that beam. Schréder’s work in particular is
worthy of a more detailed treatment than I have given it here.

The one area where I did let myself wander a bit was with regard to the de-
velopment of Paul Montel’s theory of normal families, without which the studies
of Fatou and Julia would have been significantly different. In fact, a glimpse of
what complex dynamics might look like without this theory is offered in the work
of Samuel Lattés and Joseph Fels Ritt, each of whom also investigated the itera-
tion of complex maps around the end of World War I, but without the benefit of
Montel’s theory. The theory of normal families is such an important component of
the studies of Fatou and Julia that I indulged myself and included a brief outline of
its development since I had found so little information on it elsewhere. In order to
stay on track, however, I did not say as much about Montel as I might have liked,
a situation I hope to soon remedy.

Before getting underway, I would like to thank several people who have provided
help and inspiration. First of all, I want to thank my advisor, Tom Hawkins,
whose encouragement and advice have been an immeasurable benefit. I am also
greatly indebted to those at Boston University who helped me develop an interest
in this most beautiful subject, especially Paul Blanchard, Bob Devaney and Dick
Hall: John Erik Fornzss and Tom Scavo, reader extraordinaire, have made many
valuable comments regarding my manuscript during its various stages. My deep
gratitude is also extended to Brigette Débert and Klas Diederich at Vieweg, to
Pierre Lelong and Pierre Dugac for their help in obtaining archival information
from the French Academy of Sciences, as well as to the mathematies departments
of Boston University, Colby. College and Drake University for their generous support
during the preparation of my manuscript. Nor do I wish to forget Jerry, Bobby and
Phil for the tunes which have often provided a much needed escape.

I have saved the best for last: my deepest thanks go to Rebecca and Caroline for
tolerating my frequent absences, and to my wonderful parents, to whom I dedicate
this work.

Chapter 1

Schroder, Cayley and
Newton’s Method

1.1 Introduction

The body of work on the iteration of complex analytic functions which culminated in
the major studies of Fatou and Julia has its origins in two detailed examinations of
Newton’s method. The first was a remarkable paper by the German mathematician
Ernst Schroder (1841-1902), published in two parts in 1870 and 1871, and the
second, written by the British mathematician Arthur Cayley (1821-1895), appeared
in 1879. o

Newton’s method, probably the oldest and most famous iterative process to be
found in mathematics, can be used to approximate both real and complex solutions
to the equation f(z) = 0. Picking an initial value 2z near a root of the equation,
Newton’s method produces an nth approximation of the root via the formula

f(zn) (1)

Zn4l = 2n — fl(zn).

Replacing 2z, by zn41 generates a sequence of approximations {z,} which may or
may not converge to a root of the equation f(z) = 0. )

Versions of Newton’s method had been in existence for centuries previous to the
studies of Cayley and Schroder. Anticipations of Newton’s method are found in an
ancient Babylonian iterative method of approximating the square root of a,

) 1 a
Zny1 = E(zn + -z—),

n




4 CHAPTER 1. SCHRODER, CAYLEY AND NEWTON’S METHOD

which is equivalent to Newton’s method for the function f(z) = 72 — a, as well as
in Frangois Viéta’s (1540~1603) use of an iterative method equivalent to Horner’s
method.

,Despite its name, Issac Newton (1642-1727) did not present the algorithm known
as Newton’s method in the form given at equation (1.1). Indeed, Newton himself
may be said to have anticipated equation (1.1), since his explicit formulation was
not the one usually associated with Newton’s method. Both Ypma in his paper
[1993] and Kellerstrom in [1992] observe that although the procedure Newton gave
was equivalent to (1.1), it was not formulated in terms of fluxions but instead given
algebraically.

Joseph Raphson (1648-1715) also described a method equlvalent to (1.1), which
he claimed he developed independently of Newton. Like Newton, however, his
formulation did not explicitly involve the calculus. The first to bring the derivative
into the picture was Thomas Simpson (1710-1761). Ypma gives sound reasons for
calling (1.1) the Newton-Raphson-Simpson method, but as Kellerstrom points out,
Joseph Fourier (1768-1830) evidently was the first to express this method exphc1tly
as (1.1), and some therefore refer to it as the Newton-Fourier method. For the sake
of brevity, I will refer to it simply as Newton’s method.

All told, by the mid-1800’s several mathematicians had already examined the
convergence of Newton’s method towards the real roots of an equation f(2) = 0, but
the investigations of Cayley and Schrdder are distinguished from their predecessors
in their consideration of the convergence of Newton’s method to the complex roots
of f(z) =0.

Schroder and Cayley each studied the convergence of Newton’s method for the
complex quadratic function, and both showed that on either side of the perpendicu-
lar bisector of the roots, Newton’s method converges to the root on that particular
side. Schroder established this theorem in the second of his two papers on iter-
ation, the paper [1871]. Despite this fact, Cayley is often credited with the first
proof of this result even though his proof—which he evidently accomplished without
knowledge of Schroder’s work—did not appear until 1879.

The scope of Schroder’s study was quite a bit wider than was Cayley’s work.
Schréder’s treatment of Newton’s method was one part of a general discussion of
iterative equation solving algorithms, which included an investigation of the process
of iteration itself wherein he discovered several fundamental concepts regarding the
iteration of complex functions. Cayley’s aims were far more modest, and he confined
himself entirely to the study of Newton’s method.

1.2 Schréder’s Study of Iteration

Ernst Schroder received his doctorate in mathematics from the University of Hei- -
delberg in 1862. Among those he studied under was Ludwig Otto Hesse (1811-74).
He studied both mathematics and physics at the University of Kénigsberg for the
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next two years and subsequently taught at various secondary schools. Beginning in
1874 he began teaching at the college level, first at the Technical Institute of Darm-
stadt and then in 1876 at the Technical Institute of Karlsruhe, where he evidently
remained for the duration of his career.

Schroder’s principal fields of research were logic and set theory, and he was an
early proponent of the works of Georg Cantor (1845-1918). However, early in his
mathematical career he became quite interested in the iteration of complex functions
and published two important papers on the subject, {1870] and [1871]. These two
works comprise his entire research output on the iteration of complex functions.

Although he was speaking primarily of Schréder’s research in logic and set the-
ory, the historian Wussing observed a certain “prolixity” [1980:216] in Schroder’s
work, a word which can well be applied to portions of his papers [1870] and {1871].
Moreover, Wussing noted that Schroder’s work in logic and set theory, although “in
the mainstreamn of the conceptual development of mathematical logic” did not meet
with immediate acceptance, due in part to difficulties in his style and in part to the
fact that he spent most of his life away from the centers of German mathematlcal
research teaching in technical colleges [1980:216].

Nonetheless, his Vorlesungen dbe die Algebra der Logik, a multi-volume work
published between 1890 and 1905, came to be considered a classic and remains in
print to this day. Another indication of his accomplishments in set theory is the
fact that an important set theoretic result bears his name. Along with Cantor and
Felix Bernstein (1878-1956) he independently discovered the Schréder-Bernstein

. Theorem which asserts that sets A and B are of equal cardinality if there exists a

one-to-one map from A into B and another from B into A.

Schroder’s work in the study of iteration, like his work in logic and set theory,
was not fully appreciated by his contemporaries. Cayley was evidently unaware of
Schrdder’s work and made no reference to him. Although many of those who studied
iteration in the late nineteenth century were familiar with him, as is indicated
by the fact that the Schréder functional equation bears his name, little was said
regarding his investigation of Newton’s method. For example, both Gabriel Koenigs
[1884:540-41], the central figure in the nineteenth century study of iteration, and
Julia [1918:232] refer only to Cayley when discussing Newton’s method.

The lack of recognition afforded Schroder’s accomplishments with respect to
Newton’s method continues in much of the present day literature. Schroder’s work
regarding certain generalizations of Newton’s method has, however, caught the eye
of some contemporary numerical analysts (see, for example, Householder [1970]).

Schroder’s research into the iteration of complex functions is predicated upon
his particular conception of Newton’s method. Where previously the -application
of Newton’s method to the solution of the equation f(z) = 0 had been gener-
ally regarded as the discrete, real-valued numerical algorithm given above at (1.1),
Schroder viewed it as the iteration of the complex analytic function

NEz)=z~- ]{,((z))
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on a neighborhood of a root of the function f(z).! Coo-

While this distinction may seem unnecessary to some contemporary readers, it
is actually quite important. In order to gain insight into the workings of Newton’s
method, which Schréder realized was tantamount to the iteration of a particular
analytic function, namely, N (2), Schroder felt that it would behoove him to study
the iteration of arbitrary complex functions, which he did to great profit via the
application of the theory of analytic functions. The insights that Schréder gained
were consequently a direct result of his novel conception of Newton’s method, and
it is precisely because of this that his work signals the beginning of the trend which
resulted in the studies of Fatou and Julia.

1.3 Schroder’s Fixed Point Theorem

Schroder’s examination of iteration led him to the discovery of the following funda-
mental result:

Theorem 1.1 (Schréder’s Fixed Point Theorem) Let ¢(2) be a function which
is andlytic on a neighborhood of a point = which satisfies ¢(x) = z with |¢'(z)| < 1.
Let ¢™(z) denote the nth iterate of ¢(z), that is, the n-fold composition of $(z) with
itself. Then for all z in some neighborhood D of =

lin;o " (2) = a.

Although I have stated the result in a slightly more contemporary form than did
Schroder, I have in no way distorted its content, as is indicated by Schréder’s own
summary of the result:

All points z in an area around z have as a limit, under the unceasing
iteration of the function ¢(z), the root # of the equation ¢(z) = z
[1870:322).2

A point & which satisfies ¢(z) = = for a given function ¢(z) is usually called
a fized point of ¢(z). If, in addition, the fixed point  also satisfies |¢'(z)| < 1,
then z is called an attracting fized poini. A more contemporary summary of his
theorem would therefore be that all points in an arbitrarily small neighborhood of
an attracting fixed point z of an analytic function ¢(z) converge under iteration by

¢(2) to =.

1That N(z) is analytic around simple roots of an analytic function f(z) is trivial; as Schréder
pointed out N(z) is also analytic around multiple roots of f{z), since these points are what would
later be called removable singularities of N (z), as one can easily see by considering the expression
1)/1(2). :

?In the interest of clarity I have changed the Schréder's functional notation to conform to my
own. For example, where he used “F(z2)," I use “¢(z)."

1.3. SCHRODER'’S FIXED POINT THEOREM 7

In order to apply his fixed point theorem to Newton’s method, and consequently
explain why Newton’s method works near a solution z of the equation f(z) =0, it
is necessary to show that the Newton’s method function for f(z),

W) === 75

satisfies the hypotheses of his theorem.

That any root = of f(z) = 0 satisfies N(z) = z is trivial if z is a simple root of
f(z). i z is a multiple root of f(z), then the singularity which then appears in the
quotient f(z)/f'(z) is removable, and it can be casily shown that N(z) = z in this
case as well.

It is also quite easy to see that the modulus of N'(z) is strictly less than one.
If z is a simple root then

N1y < £

=TreR (12

and N'(z) = 0. If z is a root of multiplicity p, then it can be shown via direct
calculation that N'(z) =1-1/p.

Since the Newton’s method function is analytic on a neighborhood surrounding
the root z, Theorem 1.1 asserts that there must exist a neighborhood D of z on
which iterates of the function N(z) converge to z for all points in D.

At this point in his investigations, Schroder made another observation which
he evidently believed was very important: the Newton’s method function is by no
means the only iterative root finding function for a given equation f(2) = 0. Any
function analytic on a neighborhood of a root z of f(z), which has z as an attracting
fixed point satisfies the hypotheses of Theorem 1.1 and therefore converges to z
under iteration on some neighborhood of z. As will be seen in the next section,
Schroder showed that such functions can be constructed with ease.

Schroder’s proof of his fixed point theorem relied on infinitesimal arguments.
This is somewhat surprising because Schrdder was a rather innovative mathemati-
cian, but it is perhaps symptomatic of his isolation from the German mathemati-
cal mainstream, since it suggests that Schrdder was unaware of Karl Weierstrass’
(1815-1897) rigorous delta-epsilon approach to mathematics. Although Schroder’s
theorem is true, as Koenigs proved in the 1880’s, Schroder did not provide a fully
rigorous explanation for it.?

The argument Schroder did provide is in essence the following. Suppose first
that Taylor expansion for ¢(z) about z is of the form

$(2)=z+¢'(0)z+ -,

where 0 < |¢'(z)] < 1. Let ¢ = 2z — z and z be sufficiently close to z so that
#'(z)(z — =) “outweighs all the succeeding terms, thus one can for infinitely small €

3Koenigs’ work is discussed in Chapter 3.
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set [1870:321)” T
#(z) — 2 = ¢'(z)e.
Therefore
$%(2) — 2 = ¢'(2)[9(2) - 2]
= ¢'(2)[¢'(2)e]
= ¢'(z)%.

If the argument above is extended to ¢™(2), then
"(2) — 2 = ¢(z)".
Since |¢/(z)| < 1 the right hand side goes to 0 as n approaches 0o, hence
g
nlinggqﬁ (z) =~z =0,

and ¢(z) converges to z.

Schréder’s argument suggests that iteration by ¢(2) near the fixed point z acts
linearly, .that is, it is well-approximated by the iteration of the mapping z
¢'(z)(z — z). As will be seen, much of what happened in the study of iteration
in the 1880’s can be viewed as an attempt to linearize the iteration of complex
functions.

No doubt motivated by the fact that the derivative of the Newton’s method
function N(z) is 0 at simple roots of f(z) = 0, Schroder investigated the special
case where the derivative of a function #(z) is equal to 0 at a fixed point z. For
convenience the quantity ¢'(z) will be referred to as the multiplier of ¢(z) at the
fixed point z. Schréder asserted that a function whose multiplier at an attracting
fixed peint 2 is 0 in general converges to its fixed point under iteration much more
quickly than does a function whose multiplier at z is non-zerc; moreover, the higher
the order of the first non-zero derivative at z, the quicker ¢"(2) converges to z.

Schréder gave no explicit justification of these claims, but probably believed
they followed immediately from the infinitesimal approximation

#z)—z = ¢—:nm!—)(:c)e"' < Ae,

where the higher order terms ¢(z) are ignored, ¢ = z — 2, A is constant and mis
the order of the first non-zero derivative at z.

In light of the above, he defined the order of convergence of ¢™(2) to a fixed point
z as follows: if $0)(z) = 0 for 0 < i <mbut ¢(™)(z) #£ 0, then the convergence of
#(z) under iteration is of the m¢h order. - ‘

" Before closing this section, it is worthwhile to observe that Schréder’s Theorem

1.1 is strictly a local result because it says nothing about what happens beyond

the neighborhood of an attracting fixed point. .As such, it set the tone for those

1.4. A GENERALIZATION OF NEWTON’S METHOD 9

who directly followed him since it was the early twentieth century before anything
substantial was known regarding the behavior of an arbitrary point in the complex
plane under iteration of a given function. One of the triumphs of the theory estab-
lished by Fatou and Julia was its sweeping description of iteration away from the
vicinity of attracting fixed points.

1.4 A Generalization of Newton’s Method

The following quotation from the beginning of [1870] suggests that Schréder was
intrigued with the notion that there were other root finding iterative functions
besides the Newton’s method function.

As will be shown there is a wide, even infinite, diversity of methods,
all of which possess a common character, namely, that one can begin
one’s calculations with an almost arbitrary number, subject to ‘certain
laws, and through an incessant series of operations [i.e., iteration] pass
to the desired result, that is, come as close as one wishes to the root. ...
To develop these solution methods is the subject of the following study
(1870:318-19). ‘

Armed with his fixed point theorem, Schréder turned his attention towards this
“infinite diversity.” His theorem asserts that if a function M (#) satisfies the following
two properties,

1. M(2) = 2, where z is a simple root of a given function f(z), and
2. |M'(z)| <1,

then it will converge under iteration to z on some neighborhood of z, hence it can
be used to solve the equation f(z) = 0.

Schréder’s interest in generalizing Newton’s method was probably motivated by
his observation, discussed at the end of the previous section, that the convergence
of a function under iteration on a neighborhood of a fixed point z increases with
the order of the first non-zero derivative at 2. Roughly speaking, this means that a
function whose first { derivatives at the fixed point are 0 converges to z more quickly
the larger i is. Schroder therefore sought to improve on the rate of convergence of
Newton’s method for the equation f(z) = 0 by producing a family of functions
N (2) which satisfy the following conditions:

1. Nm(z) = ¢ where f(z) = 0, and

2. NS (z) = 0 for i < m, and N™)(g) 0,
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- In order to get the flavor of his construction, I will construct N;(z) for the
equation f(z) = 0 with a simple root . Set

Na(2) = z — f(2)é(2) (1.3)

where ¢(2) is an analytic function which will be chosen in such a way to ensure that

2(z) = 0. Since f(z)¢(z) = 0, it is immediate that z is a fixed point of Ny(z),
hence Ng(:c) = z is satisfied regardless of the choice of ¢(z). To find ¢(z) so that
Ni(z) = 0 is also satisfied, take derivatives of both sides of equation (1.3), set z
equal to the fixed point z and solve the resulting equation for ¢(z):

Ny(e) =1 - f(2)¢'(z) - f'(z)¢(z) = 0. (1.4)
Since f(x) = 0 but f/(z) # 0, the above equation implies that

1
é(z) = o) (1.5)

Thus any function ¢(z) satisfying both ¢(z) # 0 and (1.5) will produce a function
Na(z) with the desired properties. Of course, if ¢(z) = 1/ f/(z) then Ny(z) is just
Newton’s method.

The computations involved in finding Ny, (z) increase in complexity as m grows.
In a remarkable display of computational agility, Schréder found a series form for
Nm(2) [1870:330] as well as a formal series expression for limy, 0o Ny (z) [1870:329) 4
Since the expression of this series requires some rather involved notation of Schréder’s
own invention, it will be omitted here. As an indication of the complexity of these
expressions, Schréder’s generalized Newton’s method Ng(2) is [1870:330]:

2 _..[__1_ N Q)__.L g__)_S(f”)n f f”l gmlS(f")a—10f’fl'fl“+(f')2f("")
1y =y 7y a an

14 HND g1t 1143 132 11 p(iv) ¢ g13\3 g (v)
_Qs)!_ 205(/ ")~ 105£'(f )/ +10(f(}'()‘f; VHSEPTIUNY  (1.6)

Schréder followed his first generalization of Newton’s method with two more
families of iterative algorithms, which he denoted .A and B.> He generated 4 from
the Newton’s method function N(z), and B from yet another generalization of
Newton’s method, the function M(z), where M(z) is the Newton’s method function
for f(z)/f'(2) =0, that is

_,_Jf& ( f(2) ) ___ @)
MA=2=5\Fe)) =" For-fore 1
4Schréder indicated that, as m — co, the function Nin(z) approaches the constant function

G(z) = z at v. The real question is whether the sequence {N;m(2)} actually converges to the
constant function G(z) = z on a nelghborhood of-the root. Although Schréder addressed this

issue in the special case where f(z) is a quadratic polynonual he had little to say about this

matter in the general case.
5These families are of interest in certain areas of numerical analysis, see for example Householder
(1970}
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The term f(z)/f'(z) has the effect of converting the multiple roots of f(z) to simple
ones, hence M(z) is a variant of Newton’s method which is particularly useful when
f(z) has multiple roots. In this instance M(z) = z and M’(z) = 0 regardless of
the multiplicity of the root, thus the convergence under iteration of M(2) to z is,
like that of N(z) in the case of a single root, of the second order. Moreover, the
function M(z) plays a pivotal role in Schréder’s examination of the convergence of
Newton’s method for the complex quadratic, which will be discussed below.

A second element of Schrder’s treatment of Newton’s method for the quadratic
is the idea of a conjugacy, which he explored in the second of his two papers on
iteration, the paper [1871]. Where his first paper [1870] concerned the study of
iterative root solving functions such as the generalizations of Newton’s method
discussed above, Schréder in his second paper delved more deeply into the study of
iteration of arbitrary complex analytic functions.

1.5 Schroder’s Paper [1871]

Having established the motivation for the study of iteration in his first paper—
namely, the study of equation solving functions such as Newton’s method—Schréder
turned his energies in his second paper, [1871], towards the study of iteration in
general. He evidently felt, with some justification, that he was a mathematical
pioneer, for he began his second paper with the following remark:

I.consider herein the study of a field in which I have encountered very
few collaborators [1871:296].

One of his principal concerns in this paper was the practical problem of how to
represent the nth iterate of a given function ¢(z). He suggested that one method
of doing this would be to derive a direct formula for its nth iterate. In general he
realized that obtaining such a formula would be difficult, if not impossible.

However, he did produce such a formula (see (1.9) below) for the linear frac-
tional transformation by modifying a similar formula for the nth iterate of L(z)
found in the famous textbook Cours D’Algébre Supérieure written by the French
mathematician Joseph Alfred Serret (1819-85).°

In order to present Schroder’s version of this formula, let

az+4b
ez+d

L(z) = (1.8)

8Serret’s formula for a linear fractional transformation was evidently not motivated by an inter-
est in the general properties of iteration. That it followed a discussion of the group theoretic prop-
erties of substitutions on n letters suggests that he was interested in exploring similarities between
groups of linear fractional transformations and substitutions of n letters [Serret 1866/1885:356-57).
Not only did Serret’s formula give him the precise form of the nth iterate of a linear fractional
transformation, it allowed him to determine whether the nth iterate of a given linear fractional
transformation L(z) equals the identity function.
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have distinct fixed points £; and £;. Schréder showed that [1871:299]

E+Er+Y =+ I (Ez+d)
G+GE-)- G+ -&)

Reflective of his interest in finding the limit of an iterative process, Schréder
deduced that if

L) = (1.9)

d d
1+ 21> 1z + <, (1.10)
which is equivalent to assuming that ¢; is the attractive fixed point, then
. brz+ 2
n —_ [
nlLIEoL (2) = Pr (1.11)

Equation (1.11) leads to an interesting result concerning the convergence of the
iterates of L(z) which, surprisingly, Schréder neglected to investigate. According
to his fixed point theorem, the fact that £; is an attracting fixed point implies that
there is a neighborhood of §; on which L(z) converges under iteration to £;. Setting

[}
lim 82Fe _ g
n—oo 2 —¢§2
and solving for z to find the values for which z converges to &; under iteration,
yields the identity :

—6162 = g. (1.12)

From this it follows that under the conditions stated above at equation (1.10) L(z)
converges to the fixed point £; on the entire plane save the fixed point £;.

Given Schroder’s interest in the convergence properties of a function under iter-
ation, it seems odd that he did not take note of this fact, for it would have provided
an interesting example of a family of functions which converge to a single attracting
fixed point on virtually the entire plane. It is possible that his intention in present-
ing formula (1.9) was only to provide an example of a function whose nth iterate
could be nicely expressed.

1.6 Schrdder and Functional Equations

Schréder’s belief that in general he would not likely find a formula for the nth iterate
of a given function ¢(z) led him to consider the notion of conjugation. A function
#(z) is said to be analytically conjugate to a function 3(z) on a disc D if there
exists an analytic function F(z) such that the following diagram commutes:
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¢
D D’
F F
F[D) L4 F[D')

Many important iterative properties, such as convergence to a fixed point under
iteration, are preserved by conjugation. For example, if z is a fixed point of ¢(z),
then F(z) is a fixed point of ¢(z). If F(z) is also invertible on D then the diagram
implies that

: ¢"(z) = F7roy" o F(2),

which reduces the iteration of ¢(z) to that of ¥(z). If ®(z) is in addition easier
to iterate than ¢(z), then this reduction greatly simplifies the study of ¢(z) under
iteration. For this reason, the notion of conjugation is of great use in the study of
complex dynamics.

Schroder’s discovery of conjugation was prompted by his desire to find a fune-
tion ¥(z) which is not only easier to iterate than a given function ¢(z) but, more
importantly, to which the iteration of ¢(z) easily reduces.

That Schréder had the concept of conjugation in mind is made clear by his
posing of the following problem [1871:310]: given a function ¢(z), find an invertible
function G(z) and a function ¥(z) which satisfies

¢(z) = Gop o G71(2). (1.13)

In a detail lacking elsewhere in his work, which suggests he was dealing with ideas
he judged unfamiliar to his audience, he carefully demonstrated the trivial fact that
if (1.13) is satisfied by a function ¢(z) then

$"(2) = Goy" 0 G71(2). (1.14)

Schréder was not the first mathematician to consider the notion of conjugation.
The British mathematician Charles Babbage (1792-1871) did so much earlier in his
paper [1820]. However, Babbage’s study of functional equations was not “dynamic”
in the sense that he did not consider notions such as that of an attracting fixed
point, nor was his interest in functional equations motivated by an interest in it-
eration. Moreover, there is no evidence that Schréder drew upon Babbage’s study
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of functional equations, and it is quite likely that Schroder came™to the notion of
conjugation independently. Nonetheless, there was some interest in Babbage’s work
among those who contributed to the subsequent development of complex dynam-
ics (see the paper [Lean 1898], which concerns the so-called Babbage functional
equation, F"(2) = F(z)).

As examples of functions ¥(z), he suggested y(z) = zh or ¥(z) = z + h, where

h is a complex constant. If equation (1.14) is satisfied by 1(2) = z + A then
$"(2) = G(G™1(2) + nh),

and iteration reduces to repeated addition of h. If, on the other hand, ¥(z) = hz,
then iteration reduces to repeated multiplication by A since [1871:303]

#"(z) = G(h"G~1(2)).

Schroder therefore reduced the iteration of an arbitrary given function ¢(z) to
that of either z ~ hz or z — z 4 h via the solution of either of the following
functional equations:

$(G(2)) = G(z+ h) (1.15)

#(G(2)) = G(hz). (1.16)

The functional equations (1.15) and (1.16) are nowadays usually stated in the equiv-
alent forms

F(¢(2)) = F(z)+h (1.17)

and
F(¢(2)) = hF(2), (1.18)
where F(z) = G™1(2), and are7 generally referred to, respectively, as the Abel and

Schréder functional equations.
The existence of a function F(z) solving the Abel equation implies that the
following diagram commutes:3

TThe Abel functional equation is found in Abel [18247], a somewhat obscure, posthumous
fragment of uncertain date, included in the collected works of Niels Abel published in 1881 (see
[1881,11:37])). Abel's treatment of the so-called Abel equation is discussed in detail in the next
chapter. It is doubtful that his interest in this equation stemmed from an interest in the iteration
of arbitrary functions. It is also doubtful that Schréder was familiar with Abel [18247]. Not only
does he not cite it, but there were evidently very few copies of this paper in circulation before
1881, In any event, Schréder's treatment of thm equatxon had nothing in common with that of
Abel.

8The use of a commutative dlagram is not meant to suggest that Schréder, or anyone else

whose work is discussed in this study, used commutatxve diagrams. Although -the implicit use_

of conjugacies via the functional equations given by Schrider became pervasive in the study of
the iteration of complex analytic functions, such conjugacles were usually expressed as functional
equations and not, until recently, as commutative diagrams.
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A solution of the Schroder equation would likewise provide a conjugacy between
¢(z) and z — hz.

Both of these functional equations are fundamental in the contemporary study
of complex dynamics, and a particular version of the Schroder equation at (1.18),

F(4(2)) = ¢'(z)F(2)

where, ¢(z) = z and 0 < |¢'(z)| < 1, has become one of the most widely used
functional equations in complex dynamics. The existence of a solution F(z) on a
neighborhood of the fixed point z to this version of Schréder’s equation implies that
#(z) is conjugate to multiplication by its derivative in the neighborhood of a fixed
point, which suggests in turn that near an attracting fixed point of ¢(z), iteration is
equivalent to multiplication by the derivative at the fixed point. Although Schréder
never stated this particular version of the Schroder equation explicitly, it was sug-
gested in his proof of the fixed point theorem, Theorem 1.1 above, where he reduces
the iteration of ¢(z) near z to repeated multiplication of ¢'(z).

Schroder had great difficulty developing a general approach to the solution of
functional equations (1.17) and (1.18). The instances where he solved either the
Abel or the Schréder equations for a particular function ¢(z) amount to little more
than special case solutions and do not involve methods which generalize to the
solution of either equation for arbitrary functions. Schroder readily conceded these
shortcomings:

In general, given functions ¢(z) and ¥(z), the search for the function
F(z) [that is, a solution to the Abel or Schroder equation] is a difficult
task, and one should instead take the opposite approach [1871:302].

Schréder’s “opposite approach” was to fix an arbitrary function (z) and then
consider functions of the form

Floyo F(2)
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as F(z) varies. With a bit of luck, an interesting function ¢(z) may emerge which,
for a given F'(z), satisfies

¢(z) =F~loyo F(z),
which then implies that
F($(2)) = 9(F(2).

For example, if ¢(z) = 2z and F(z) = arcfan(iz), where arctan(z) is a fixed
inverse of the tangent function, Schroder showed that

2z

T3~ —itan(2arctan(iz)). (1.19)

Schréder generated (1.19) from the well-known trigonometric identity

2z
=7 = tan(2 arctan(z)), (1.20)
by letting z — iz in both sides of equation (1.20).

It will be seen later that the French mathematician Samuel Lattés (1873-1918),
whose work will be discussed in Chapter 10, approached the solution of a particular
functional equation along lines reminiscent of Schréder’s “opposite approach.”

1.7 Schroder and Newton’s Method for the Quadratic

Schréder proved the following theorem regarding the convergence of Newton’s method
in the paper [1871)].

Theorem 1.2 (Schréder) Let ¢(z) be a complez quadratic with distinct roots. Let

q(z)
N(z)=z -
) ()
be the Newton’s method function for q(z), and let L be the perpendicular bisector of
the line segment connecting the roots of q(z). Let Hy and Hy be the open half-planes

into which the line L divides C. If oy is the root of q(2) in H, and ay the root in
Hy, then for all z in H;, Newton’s method converges under iteration 1o o5, that is,

lim N"(z) = o.

For all z on L, however, N(z) does not converge under teration to either oy or ag.

He proved the above theorem indirectly, since he viewed it as.a consequence of _
the following theorem with which he concluded his second paper in iteration, the
paper [1871}:
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Theorem 1.3 (Schroder) Let g(z) = 22 — 1. For g(2) the generalized Newton’s
method function

9(2)¢'(2)
(@'(2)? = ¢(2)¢"(2) (1.21)

z -

is the function
2z
M(z2) = ~——0-.
(5)= 50y
On the left open half-plane M(z) converges under iteration to —1. On the right
open half-plane M(z) converges to 1, while on the imaginary azis, M(2) converges
to neither root.%

The reason that Schroder reduced Theorem 1.2 to Theorem 1.3 involves the
fortuitous circumstance discussed at the end of the previous section, namely, that

M(2)= lizzz = —itan(2arctan(iz)).

This in turn implies that
M"™(z) = —itan(2" arctan(iz)). (1.22)

After a-long calculation which drew upon algebraic facts regarding the application
of Newton’s method which he had established in his previous paper [1870], Schroder
showed that

lim —itan(2” arctan(z)) =1
=+ 00
for z on the right half-plane and —1 for z on the left half-plane.
Schréder was then able to reduce the iteration of N(z) to that of M(z) because
both of these functions share the property that

6r=4(1). (1.23)

z

Such a function has the unusual property that it is conjugate to its reciprocal, which
is seen by observing that the following diagram commutes: )

9As was mentioned at the end of Section 1.4 at equation (1.7), Schrider defined M(z) for
arbitrary functions in the same manner as he did for the function ¢(z) = 22 — 1 in the above
theorem. Along with the Newton's method function N(2), he used it to generate two families of
iterative, root-finding functions, A and B.
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1 1
z z
¢—1
Thus, since
1
NG =3
it follows that M(z) and N(z) are conjugate to one another, hence
1
. nros
g, V() = lim 7y

As noted above,
"lim M™(z) = +1,

the sign depending on the half-plane from which z is taken, and consequently

lim N"(z) = %1,
n—oo
where, again, the sign depends on z.
Despite the good fortune that, for ¢(z), the generalized Newton’s method func-
tion M (z) happens to be
—itan(2 arctan(iz)),

which in turn is the inverse of N(2), Schroder’s proof is impressive, and his reduction
of the iteration of M(2) to repeated multiplication by the constant 2 indicates that
his faith in iteration as a mathematical tool was not misplaced.

Schroder followed his evaluation of this limit with a brief investigation of the
iteration of M(z) = 2z/(2%+1) on the set of points which converge to neither root,
which happens to be the imaginary axis. Using the form of M(z) given in equation
(1.19) he showed that if M™(z) = z with » > 1, then z must be of the form

z =itan L
- ’m—-1/

He observed as well that there exist points z on the imaginary axis such that the
set S = {M"(z)} takes on infinitely many values yet has no discernible order.
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Consistent with the virtual non-existence of a theory of sets in 1870, Schroder made
no topological observations regarding either the set S or the set of points which
satisfy M"(z) = z. .

Before discussing Cayley’s treatment of Theorem 1.2, which is quite different
from Schroder’s, a few words concerning Schréder’s proof are in order. First of all,
Schroder’s justification that the special case g(z) = 22 — 1 is representative of the
general case occurs at the end of his first paper. Rather than supply it, I will note
only that it is not too hard to show that the Newton’s method functions for any
two quadratics with distinct roots are linearly conjugate. Since convergence to a
fixed point is a property preserved by conjugation, the argument in the special case
of g(z) = 2% — 1 implies the general case.

It is also important to bear in mind that Schroder wrote in the leisurely and
discursive style prevalent in pre-twentieth century mathematics. This style certainly
has its charms, but, at least in Schroder’s case, it can also present difficulties. For
example, these proofs were by no means executed in an orderly fashion. The various
stages are interspersed throughout both [1870] and [1871]. During the final phase of
his proof of Theorem 1.3 he at times seems to pull things out of nowhere, but upon
reflection it is realized that Schrdder is drawing on something he had considered in
an earlier section of his work.

These sorts of problems are more of an annoyance than a particularly major flaw,
but it can make his line of thought difficult to follow. Cayley’s treatment of Theorem
1.2'is much more concise and, as was noted at the outset, is often cited as the first
proof of this theorem, although it appeared almost ten years after Schroder’s. This
could be attributed to many things, including the fact that mathematical papers
often did not circulate widely in Schrdder’s day, but it is also possible that the sort
of stylistic problems just discussed account for it. That many of the nineteenth
century mathematicians who studied iteration were aware of some aspects of his.
work, but apparently not Theorem 1.3, suggests such a possibility.

It is a bit ironic that Cayley’s proof of Theorem 1.2 is nowadays generally better
known than Schroder’s, since the latter’s view of Newton’s method as the iteration
of an analytic function near an attracting fixed point is much closer to the con-
temporary spirit than is the view held by Cayley, who adhered to the traditional
conception of Newton’s method as a discrete process. Consequently, Cayley did not
connect Newton’s method to the theory of functions, which perhaps explains why
Cayley’s interest in Newton’s method did not engender a concomitant investigation
of the process of iteration, as it did with Schroder.

1.8 Arthur Cayley and Newton’s Method

Cayley presented two proofs of Theorem 1.2, a geometrically flavored proof in his
paper [1879a] and an algebraic refinement of his earlier proof which appeared in
Comptes rendus of the French Academy of Sciences in 1890. He also wrote two
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short notes [1879b] and [1880], where he discussed his investigalion of Newton’s
method. Aside from differences in approach there are no substantial differences in
Cayley’s two proofs of Theorem 1.2. Because of its intriguing geometric flavor I
will, in what follows, focus on his proof from his paper [1879a].

Like Schroder, he felt free when convenient to reduce the case of the general
quadratic to that of g(z) = 22 — 1. Moreover, :Cayley’s treatment of the quadratic
case was ad hoc— as was Schréder’s in some respects—since his methods generalized
neither to the study of iteration nor to the study of Newton’s methods for higher
degree polynomials.

In the introduction to his 1879 proof of Theorem 1.2, Cayley derived Newton’s
method for the special case p(z) = 2% — a2, where a is complex. His derivation
is reminiscent of the sort of non-rigorous use of infinitesimals favored by Schroder.
Cayley began by choosing an initial approximation g of the root a and set a = zg+h,
where h is a small quantity. He obtained the approximation

L
220 ’

by expanding the expression
a?= (z0 + h)?,

ignoring the higher order term h? and then solving for h. Adding z to both
sides of the above expression for h and writing z; = z, + h, he produced the first
approximation zy:

zi=z+h
2 2
_, _#-—a
%o 220
_, _ P2)
P/(Zo). (1.24)

He concluded by remarking that

...the question is, under what conditions do we thus approximate to
one determinate root (selected out of the roots at pleasure), say a, of
the given equation [1879a:114].

Cayley’s answer came in the form of a geometric construction of Newton’s
method in the quadratic case, which he also justified algebraically in the second
half of his paper. For the geometric phase of his proof, Cayley used the quadratic
p(z) = 2° — a?; in the algebraic phase he switched to q(z) = z% — 1. T will present
his geometric construction for Newton’s method in the case where g(z) =22 — 1.

Cayley’s examination of Newton’s method for the quadratic began with the
construction of a family of circles, Cj, where k is a positive real constant. He
defined the circle C}, as the set of points z satisfying )

_lz=1 .

p=12
lz+1]

(1.25)
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which is the circle

14 k2\? 4k2
(- 755) +7 = oy (1.26)
where z = z + 1y. The radius and center of C are
2k 1+ k?

The heart of Cayley’s geometric representation is his demonstration that New-
ton’s method carries the circle Cy to the circle Cy2. Once this was done, he picked
an arbitrary z from the right half-plane, which forces k < 1 since the segment con-
necting z to 1 is shorter than the segment connecting z to —1, and constructed
the sequence of circles {Cyan }, which represents successive applications of Newton’s
method. In an informal induction, he concluded that since Newton’s method carries
Cj to Cya, it also carries the circle Cyan to Cpansr.

Equation (1.26) implies that the radius and center of this sequence -of circles
respectively approach 0 and (1,0) as n goes to infinity, consequently Newton’s
method limits on the root z = 1. Similar arguments apply to points in the left
plane to the root z = —1, and, as Cayley noted in a later paper, points on the
imaginary axis do not converge to either root [1890:897].

Cayley intended his description of Newton’s method for the quadratic to be the
first step of an investigation into the convergence properties of Newton's method
for polynomials of arbitrary degree. Cayley’s plan, however, stalled with the degree
three case. Unfortunately, nowhere in his published writings did he specify the sort
of problems he faced except to remark that

... the problem is to divide the plane into regions, such that, starting
with a point P; anywhere in one region we arrive at the root A; anywhere
in another region we arrive ultimately at the root B; and so on for the
several roots of the equation. The division is made without difficulty
in the case of the quadratic; but in the succeeding case, that of a cubic
equation, it is anything but obvious what the division is: and the author
has not succeeded in finding it [1880:143].

It is not too difficult to speculate on the nature of the difficulties Cayley en-
countered. Let ¢(2) denote a cubic with three distinct roots, and let N.(z) denote
the corresponding Newton’s method function. Fatou and Julia showed some forty
years subsequent to Cayley’s investigation that, unlike the quadratic case, where
the imaginary axis divides the plane into two convergence regions, the set of points
which divides the convergence regions of N (z) is an extremely complicated fractal
curve which partitions the extended complex plane C into infinitely many compo-
nents. Moreover, in any neighborhood of a point from this curve, there are points
which will converge to each root of ¢(z).

Cayley no doubt experimented with the cubic and probably expected that in
the general degree n case there would be finitely many convergence regions which
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depended on 7 in an orderly fashion. However, the difficultiés outlined in the pre-
vious paragraph would have made it virtually impossible for Cayley to decipher the
behavior of Newton’s method for higher degree polynomials via direct calculation.

Chapter 2

The Next Wave: Korkine

and Farkas

2.1 Introduction

Schroder developed several notions which are central to the study of complex dy-
namics. Despite his failure to rigorously establish his fixed point theorem, it is a
fundamental result, and his belief that iteration of an arbitrary function ¢(z) could
be reduced to the solution of the so-called Abel and Schroder functional equations
was prophetic. Not only was the next phase in the development of complex dynam-
ics ushered in by an interest in the solution of the Schréder and Abel equations, but
the study and solution of functional equations is fundamental in many contemporary
studies of iteration.

Several papers addressing the same issues Schroder raised appeared in various
Parisian mathematical journals in the early 1880’s. The first of these papers was
written by the Russian mathematician Alexandr Korkine and appeared in 1882 in
the Bulletin des Sciences Mathématiques et Asironomiques, also known as Darbouz’s
Journal. Korkine’s article was followed by a paper from the Hungarian Jules Farkas
(1847-1915), [1884], which was published in Liouwille’s Journal, the Journal de
Mathématiques Pure et Appliquées, and by three papers written by the French
mathematician Gabriel Koenigs, [1883], [1884] and [1885). The first of Koenigs’
articles was also published in Darbouz’s Journal, the other two in the Annales de
L’Ecole Normale. Korkine’s and Farkas’ work will be discussed in this chapter,
Koenigs’ in the next.

Besides a shared interest in functional equations, these papers also evidenced an
interest in a problem that Schroder raised concerning the definition of non-integer
iterates of a function, that is, the definition of the wth iterate of an analytic function
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¢(z), where w is a non-integer real, or even complex, number. To"distinguish non-
integer iterates from integer iterates, the letter w will be used when the index of
iteration is not necessarily an integer.! The generalization of iteration to non-integer
values is often called continuous iteration or the problem of analytic iteration.
Although the subject of analytic iteration is not in the mainstream of contem-

porary complex dynamics, there is some interest in the subject in contemporary .

mathematics (see, for example, [Erdés-J abotinsky 1960] and [Kuczma 1990]). How-
ever, the problem of analytic iteration interested most of the nineteenth century
mathematicians who investigated the iteration of complex functions. Although my
interest in Korkine and Farkas lies in their treatment, respectively, of the Abel and
Schrdder functional equations, the problem of analytic iteration was a principal
concern of both men.

Before reviewing the responses of Korkine and Farkas to Schréder’s. study of
functional equations it will be useful to first say afew words about analytic iteration,
and then to briefly outline the respective -approaches of Schréder, Korkine and
Farkas to this problem.

2.2  Analytic Iteration

Given an arbitrary analytic function ¢(z),the problem of analytic iteration is to find
a function ®(w, 2) from A x C to €, where A is either real or complex, which is
analytic in the complex variable z, continuous in A and satisfies the following two
conditions:

®(w+u,z) = &(w, B(u, 2)) (2.1)
®(1,2) = ¢(2). (2.2)
For positive integer w, such a function can always be found, namely, the function
Q(w:‘z) = ¢"(2).

In fact, condition (2.2), together with condition (2.1), implies that if ®(w, z) exists,
then ¢*(z) = ®(w, z) for positive integer w. If a function ®(w, z) can be found which
satisfies both the conditions at (2.1) and (2.2) for non-integer or even complex w,
then the wth iterate of #(2) can be defined as

$v(2) = &(w, 2).

A function ®(w, z) satisfying the conditions at (2.1) and (2.2) for a given analytic
function ¢(z) will be referred to as an analytic iteration function; the problem of
analytic ileration will refer to the attempt to find such a function &(w, z).

! Although the situation did not arise in the previous chapter, it is quite common to speak of
the nth jterate when n is a negative integer. In such a case ¢™(z) denotes, depending on the™
context, either the nth iterate of a particular inverse of #(2), or the set of the nth preimages of

#(2).

2.2. ANALYTIC ITERATION 25

Schroder proposed finding such a function, where w and z are both complex, in
the beginning of his second paper on iteration, the paper [1871]:

[For a given analytic function ¢(z)] find a function ®(w, z) of two com-
plex arguments w and z, which is continuous in both the w plane [and]
in the z plane, [and] which furthermore satisfies the functional equation

Q(w,z) = B(w - 1, ¢(2)) (2.3)
including the initial condition ®(1,2) = ¢(z) [1871:298].2

Schréder’s version of the problem of analytic iteration is thus similar to the
one given above, except that in the former, (2.3) is replaced by the more general
condition (2.1). '

As will be shown shortly, Schréder in effect showed that if ®(w, z) can be defined
for a positive real number w, then there is a canonical continuous curve which
contains the integer iterates of ¢(z). Indeed, this seems to be one of the principal
reasons that Schréder introduced the problem of complex iteration, although he
also seemed interested in the formal aspects of the problem.

Immediately after completing his proof of Theorem 1.3, discussed in the previ-
ous chapter, which asserts that the function M(z) = 2z/(2* + 1) converges under
iteration to the roots of g(2) = 22 —1 except on the imaginary axis, Schrder defined
a curve on which, for a given z, the integer iterates of M (2) reside.

In order to define this curve it is helpful to recall from the discussion preceding
Theorem 1.2 that

M (z) = —itan(2 arctan(iz)),

which in turn implies that the nth integer iterate of M (2) is
M™(z) = —itan(2" arctan(iz)) (2.4)

(see equation (1.22)). Schréder fixed  in (2.4) and let n take on positive real values,
which generates what he termed a “continuous curve” on which lie “the consecutive
approximations” of M(z).
Although he offered no explicit expression for this curve, it was defined implicitly
as the function
®(w, z) = —itan(2" arctan(iz)) (2.5)

with z fixed and w restricted to positive real values, in which case positive iterates
of M(z) would be of the form

M*(z0) = —itan(2" arctan(iz)).

2 Although Schréder used the word “stetig”, which translates as continuous, to describe the iter-
ation function he sought, it is apparent from the context that Schréder sought an iteration function
which was actually analytic, that is, has a power series expansion. This suggests that Schréder,
like almost all mathematicians at the time, did not distinguish sharply between continuous and
differentiable functions.
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Schrdder then proceeded to let both z and w vary, with w still real, and described
the set of curves thus produced as a “peculiar fabric or net of curves [1871:321}.”
Although he did not return to it in [1871), he suggested that this set of curves was
worthy of closer investigation.

'Schréder gave other examples of non-integer iteration. It is surprising, however,

that he did not explicitly state a general method for finding the analytic iteration .

function based on the solution of functional equations, since his construction of the
curve defined by equation (2.5) suggests such an approach. Suppose that for a given
analytic function ¢(2) an invertible complex analytic function F(z) is found which
satisfies the Schroder functional equation

F(¢(2)) = hF(2),

where A is a complex constant. Then the analytic iteration function ®(w, z) can be
defined as follows:

®(w,z) = F-l(hWF(z)). (2.6)

An invertible complex analytic solution f(z) of Abel’s functional equation

f(#(2)) = f(2) + A,

if one exists, likewise yields a function ®(w, z), which can be defined formally as
B(w,2) = F1(f(z) + wh). @7)

Korkine and Farkas in fact took this very approach. Korkine reduced the prob-
lem of analytic iteration to the solution to the Abel equation in the manner sug-
gested immediately above, and Farkas in his paper [1884] likewise used solutions
of the Schroder equation to define an analytic iteration function. Both approaches
were, however, inherently flawed.

Korkine offered two constructions of the analytic iteration function ®(w,z).?
The difficulty with each is rooted in a tendency to assume the existence of certain
functions without first proving that they do in fact exist. I will discuss his work in
more detail in Section 2.5.

In his paper [1884] Farkas rigorously proved the existence of a convergent power
series solution to the Schroder equation

' F(4(2)) = ¢'(2)F(2),

on a neighborhood of z provided the complex anzﬂytic function ¢(z) satisfies the
fixed point conditions ¢(z) = z and 0 < {¢'(z)| < 1, as well as a peculiar set of

3Korkine did not specify the precise nature of the variables w and z. He remarked, in effect,”
that there were no restrictions of the variable w, and from context he seems to treat both f(z)
and ¢(z) as complex functions.
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conditions dictated by his proof (see Theorem 2.1 below). Farkas then used his
solution F'(z) to the Schréder equation to define the analytic iteration function

®(w,z) = FTYH(hY F(2))

where w is real and z is complex on the neighborhood of the fixed point z.
Farkas’ definition of the function ®(w, z) is equivalent in spirit to the analytic
iteration function

®(w, z) = —itan(2" arctan(iz))

implicitly defined by Schréder and given above at equation (2.5). That Schréder
may have influenced Farkas’ approach is indicated by the following quotation:

From [F(#(z)) = hF(z)] one can easily deduce that
F(¢%(2)) = h*F(2),

a formula Schroder suggested as well, but without realizing its generality,
in his memoir on iterative functions [1884:107).

Farkas’ comment regarding Schréder’s alleged unawareness (which should, by the
way, be taken with several grains of salt) probably refers to the fact, noted above,
that Schroder did not explicitly state an approach to analytic iteration based on
the solution of the Schréder equation.

In any event, Farkas’ approach does not generalize completely to the case where
w is complex. As Farkas knew—and as Schroder argued almost fifteen years earlier
in his paper [1870]—if ¢(z) = z and 0 < |¢/(x)] < 1, then there exists a disc D
surrounding z such that for integer n,

nli‘r{.lo " (z) =z, (2.8)

for all z in D. Thus, if the concept of iteration is to be extended to allow for complex

iterates, it is reasonable to expect that the following limit should converge to « for
all zin D:

H w — T _ 1 -l/pw
' wll_{l(';¢ (z) = wll»rr;o &(w,2) = wlergoF (kY F(z)).
However, this limit is not well-defined for complex w since w = oo is an essential
singularity of the function g(w) = h¥. ’

Many of the mathematicians who followed Schréder, Korkine and Farkas treated
the analytic iteration problem via the solution of the Abel or Schréder equations,
and consequently either encountered the difficulties outlined above, or restricted
the variable w in such a way as to avoid them.
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2.3 Korkine and the Influence of Abel -

Alexandr Korkine (1837-1908) figured prominently in the so-called “Petersburg
School” which was a group of Russian mathematicians centered around Pafnuty
Chebyshev (1821-1894) who were connected with the University of Saint Peters-
burg. Korkine was a pupil and mathematical disciple of Chebyshev’s and received
his doctorate from the University in 1867. Korkine earned renown as both an educa-
tor and a researcher. With his frequent collaborator Egor Zolotarev (1847-1871), he
often ran seminars for advanced pupils. Among Korkine’s students numbered many
famous Russian mathematicians including Andrei Markov (1856-1922). Korkine’s
research interests included partial differential equations and quadratic forms. With
Zolotarev, he found the upper limit for the minima of positive quadratic forms of
four and five variables for a given discriminant.*

The impetus for Korkine’s interest in both the Abel functional equation and
the problem of analytic iteration came not only from the work of Schroder but also
from Niels Abel (1802-1826) himself. In fact, it seems quite likely that Abel’s work
was a greater motivation for Korkine than was Schroder’s work. That this may be
the case is suggested by the fact that while Korkine featured Abel prominently in
his paper [1882], he cited Schréder only fleetingly, and despite Korkine’s explicit
interest in the problem of analytic iteration, nowhere did Korkine mention that
Schréder had first posed the problem.

One possible reason for Korkine’s interést in Abel is that immediately prior
to the publication of Korkine’s paper [1882], Abel’s work had for various reasons
attracted the attention of the French mathematical community. In 1881 the Qeuvres
Complétes d’Abel, edited by Sophus Lie (1842-1899) and Ludwig Sylow (1832~
1918), was published in two volumes. In Abel’s Oeuvres were a number of articles
on functional equations which were published while Abel was alive. The second
volume also contained the manuscript [1824?] in which he treated the functional
equation®

f(¢(z)) = f(z)+ 1. (2.9)

Although the manuscript [1824?] went unpublished during his life, Abel’s teacher
Brendt Holmbde (1795~ 1850) included [18247] in an earlier collection of Abel’s
works which he published in 1839. Copies of the paper [18247] were evidently diffi-
cult to obtain in the years prior to the publication of [Abel 1881].5 According to Lie

4For more detmled information on Kork.me, consult the works by Posse and Ozhigova listed in
the bibliography. These works are written in Russian.

5Although Abel treated many functional equations, when I refer to either Abel’s functional
equation or the Abel equation I refer to the equation f(#(z)) = f(z) + k. The reference [18247] is
used because it is not entirely certain when Abel wrote this manuscript. In his book [1966] Azcel
dates the manuscript to 1824. Lie and Sylow date it"to the period prior to Abel’s travels to France

and Germany which commenced in 1825. Since it appears to be a follow-up to Abel’s first paper

on functional equations {1823], Azcel's dating does not seem unreasonable.
6Despite this, the Italian Carlo Formenti wrote a short paper, [1875], concerning [18247], the
Abel functional equation and another functional equation Abel considered. It appears, however,
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and Sylow, copies of Holmbde’s collection had become “very rare,” so much so that
many mathematicians, including Alfred Clebsch (1833-1872), Leopold Kronecker
(1823-1891) and Weierstrass, as well as the Société mathématique de France, had
called for a new edition of Abel’s work [Abel 1881,I:i]. Their pleas resulted in the
Lie-Sylow edition.

Korkine might also have been familiar with Abel’s work in functional equations
through Lie’s discussion of Abel’s work in a review of his own theory of transfor-
mation groups in Darbouz’s Bulletin in 1877. Lie pointed out that the symmetric
functional equation f(z,y) = f(y, 2) which Abel had treated in [1826a] was a special
case of a functional equation which was central to Lie’s-study:

f(f(zl a)! b) = f(I, ¢(a) b)),

where ¢(a, b) and f(z,y) are both unknown [Lie 1877:383].

As will be seen shortly, the solution Abel presented [18247] to equation (2.9) was
incomplete because he reduced it to that of a difference equation without explammg
how the difference equation might be solved. One can well imagine that because
of the renewed appreciation of Abel’s work, the possibility of remedying a problem
in one of his rediscovered papers was considerably more enticing to Korkine than
solving a problem posed by Schroder.

2.4 _Abel’s Study of Functional Equations

Abel’s first paper on functional equations outlined a general method of solution
involving

two independent quantities z and y, given functions a, 8, v, 5, etc. and
[unknown functions] ¢, f, F, etc....[1823:1].

The method he gave in his paper [1823] is more of an indication of how one might go
about solving a functional equation than an algorithmic procedure. Abel suggested,
in essence, that one should attempt to reduce a functional equation to either a differ-
ential equation or a difference equation involving just one of the unknown functions
whose solution would then yield the other unknown functions. Abel cautioned that
it might not be possible to solve the reduced equation,

In his paper [1823] Abel illustrated his method by reducing several*functional
equations to differential equations, including

d(z) + d(y) = d(z+y) + d(z — p) (2.10)

that this paper had little or no influence on either Korkine's paper or subsequent developments in
the study of iteration.
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which had been considered previously by Jean Le Rond D’Aleribert (1717-83),
Siméon-Denis Poisson (1781-1840) and Augustin-Louis Cauchy (1789-1857).7 Abel’s
papers [1826a] and [1827] are illustrative of the method outlined in [1823] since the
solution of the functional equations therein involved the reduction of the given
functional equation to a differential equation. Only in [18247] did Abel reduce a
functional equation to a difference equation. This is significant because in [1823]
he noted that time considerations prevented him from showing how the reduction
to a difference equation could be used to solve a functional equation, therefore
it could very well be that Abel’s intention in presenting the functional equation
f(#(z)) = f(z) + 1 was to provide such an example.

Abel did not, in the various papers which comprise his study of functional equa-
tions, give any explicit motivation for his interest in the subject.? It is quite likely
that he was responding to existing studies of functional equations, but it is also pos-
sible that he saw the study of the solution of functional equations as the functional
analog of his researches into the study of the solution to polynomial equations of
one variable. -~

One mathematician to whom Abel seemed to be responding was Cauchy, who
in his Cours D’Analyse showed that the following functional equations, sometimes
called the Cauchy functional equations,

flz+y) = f(z) + f(y)

flz+y) = f(2)f(y)
f(zy) = f(z) + f(y)
f(zy) = f(2)f ()

are solved respectively by

f@) = az
f(@) = e
#(2) = aln(z)
f(z) = z°.

That Abel was influenced by Cauchy’s studies is underscored by the central role
which the last of the Cauchy equations played in Abel’s treatment of the binomial
function B(z) = (1 + 2)™ in his paper [1826b)].

The posthumous fragment [18247] consists of Abel’s treatment of the functional
equation . , ’
_ f(¢(2)) = f(z) + 1 (2.11)

"Both Aczel [1966] and Kuczma [1990] contain Comprehensive listings of the literature of func-
tional equations.

8There is no evidence suggesting that Abel was interested in the equation f(¢(z)) = f(z) +1 -

in order to iterate ¢(z), which, the reader will recall, was the source of Schrider’s interest in this
equation.
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where ¢(z) is an arbitrary, presumably analytic, function. Although Abel does not
make the fact explicit, it will be assumed that the functions involved are complex
functions.

Consistent with the goals of [1823], Abel reduced the solution of the Abel equa-
tion (2.11) to a difference equation. This is done by first setting g(z) = f~1(z) and
letting y = f(z), in which case g(y) = z. Equation (2.11) then becomes

feleg) =y+1.
Applying g(z) to both sides yields

$(9(v)) = 9(y +1). (2.12)

Abel suggested this last equation could be solved via “finite differences,” but
gave no indication of how to solve (2.12) in general [18247:37). It is likely that he
expected that the solution of the difference equation would vary with the nature of
¢(z). That he felt this way is indicated by his inclusion of a solution to the Abel
equation in the special case ¢(z) = 2", which he showed is satisfied by the function

f(z) = log log(:ic))g-(;;g log(a)

which he accomplished by first solving the difference equation (2.12).° His solution
method relied on the particular properties of the function ¢(z) = z" and thus did
not generalize.

As was the case with the particular functional equations Schroder solved, Abel’s
success in this example was due to fortuitous circumstance rather than to a general
approach. Perhaps it was because he did not develop a truly general solution to the
Abel equation that he left [18247] unpublished. As Darboux observed in his review
of Abel’'s Oeuvres in [Darboux 1881], Abel’s unpublished works were probably left
unpublished for a reason.

2.5 Korkine’s Solution to the Abel Equation

The chief goal of Korkine’s paper [1882] was the solution of the following version of
the problem of analytic iteration. Given an analytic function ¢(z), find a function
®(w, z), analytic in the two variables w and z, (assumed to be complex although
Korkine did not explicitly state this) which satisfies the following conditions:

®(w + u, z) = ®(w, (u, 2))
®(1, 2) = ¢(2).

9 Abel seemed unconcerned that his solution had singularities at z = 0 and z = 1.
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Korkine proposed two ways of finding the analytic iteration functiol ®(w, z), one of
which involved finding an invertible function f(z) which satisfies the Abel functional

equation
f(#(2)) = f(2) + 1. (2.13)

The analytic iteration function would then be deﬁned by setting

O(w, z) = (f(z) + w).

The second method of solution involved the direct calculation of ®(w, 2).

Both of Korkine’s approaches were flawed in that in each instance he assumed
the existence of certain single-valued functions without providing the necessary
existence proofs.

Much of Korkine’s paper was devoted to his first approach wherein “the search
for the function ®(w, 2) is reduced to that of the function f(z),” where f(z) is an
invertible solution to the Abel equation (2.13) {1882:233). Before embarking on his
solution of the Abel equation he remarked that

One can find the [Abel] equation in a memoir of Abel’s where he reduced
its solution to that of an ordinary finite difference equation [i.e., equation
(2.12)]. Therefore, since this new equation is no easier to solve than the
other ... I will assay to treat the [Abel] equation directly [1882:235].

Korkine attempted to solve the Abel equation by reducing it to the solution of
the functional equation

Q(4(2))¢'(2) = Q(2), (2.14)
a functional equation I will refer to as the Korkine equation. If an analytic solution

f(z) to the Abel equation exists, then its derivative f’(z) is a solution to the Korkine
functional equation. This can be seen by differentiating both sides of the Abel

equation, which yields,
F'(8(2))8'(2) = f'(2).

This suggests that if an analytic solution Q(2) to the Korkine equation (2.14)
exists, then a properly chosen anti-derivative of €(z) solves the Abel functional
equation. This is precisely the tack Korkine took, and there is merit to this line
of reasoning." Indeed, Kuczma in [1990] reduces the solution of the Abel equation
in the ¢'(z) = 1 case to finding an anti-derivative of a function satisfying equation
(2.14). Moreover, Leau in his thesis {1897] treats the Abel functional equation in
the ¢'(z) = 1 case by reducing it to the functional equation

G(¢(2)) = ¢'(2)G(2),

which is satisfied by the function

G(z) =

Q()
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where Q(2) is a solution of equation (2.14).

The principal defect in Korkine’s approach is that his solution of the functional
equation at (2.14) was by no means rigorous. It was predicated on the existence of
a mysterious function ¢(z) which was chosen so that the following series

400 d
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converges to the function (z). That this function Q(z) formally satisfies the Ko-
rkine equation (2.14), that is, without regard to its convergence, is verified by direct
calculation. Whether it is a convergent solution is another matter altogether, one
which Korkine did not address except to say:

As to the choice of the function ¥(2), we will not occupy ourselves here,
as this question depends on the nature of the function ¢(z) [1882:237].

The above quotation indicates that the function ¥(z) was to be chosen in an ad
hoc manner, just as Abel’s solution to the difference equation at (2.12) in the case
#(z) = z™ was peculiar to the nature of z = 2",

Korkine’s second approach to. the problem of analytic iteration was to directly
construct the function ®(w, z) by first assuming that it was of the form

®(w,2) = z+ ar(w)(z — 2) + az(w)(z — :c)2 4+,

where z is a fixed point of ¢(2) satisfying ¢'(z) # 0, and the ¢;(w) are unknown
functions. Without providing the requisite existence proof that the function ®(w, )
actually exists, he then deduced a recursive relationship among the o;(w) which he
used to explicitly determine them. The relationship among the a;(z) is predicated
on the existence of an invertible single-valued solution f(z) to the Abel equation
f(#(z)) = f(z) + 1 with a pole at the fixed point z. 10

The problem with this approach, however, is that solutions to the Abel equation
in the complex case are multi-valued if |¢’(z)[ # 0,1, as Koenigs showed in his
paper [1884].11 If ¢/(z) = 1, Leopold Leau (1868-19407), a student of Koenigs,
stated necessary, but not sufficient, conditions that a single-valued solution of the
Abel equation at (2.13) exist, namely, that o2 — o3 = 0, where o; is the ith Taylor
coefficient of ¢(z) expanded about the fixed point = [1897:52]. Finally, also in the
case where ¢'(z) = 1, Kuczma used a result from [Erdos-Jobitinsky 1960/61] to
show that solutions of the form

£(2) = colog(z) + A(2)

10This is the first instance where the existence of a fixed point entered into Korkine's discussion.
However, he did not concern himself with the study of iteration near a fixed point, and there is
nothing akin to Schrdder’s fixed point theorem in Korkine's paper.

11 A multi-valued solution f(z) is said to satisfy a functional equation involving ¢(2), for example
the Abel equation, if for every z such that ¢(z) and z lie in the domain of definition of f(z), a
function element of f(z) can be chosen which satisfies the functional equation around z.
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oceur only if ¢(2) = (2 —z)/(2 +c), where ¢ and ¢ are constants and A(z) is
meromorphic on a neighborhood of = [1990:351-52).12

While Korkine’s solution may be valid away from the fixed point z, where a
single-valued function element of the solution may exist, it is certainly not valid on
a neighborhood of the fixed point.

Throughout Korkine’s paper are vestiges of an old style of mathematics, one
which is characterized by formidable insight into the problem at hand, yet one
which, due to its general lack of rigor can easily lead to mistaken conclusions, as
was the case with his treatment of the Abel equation. Korkine’s tendency to make
unwarranted existence assumptions was duly observed by Koenigs, who in his paper
[1885] remarked that

In admitting at the onset the possibility of a solution, as well as certain
hypotheses whose mutual dependence or independence remains prob-
lematic, this eminent geometer presented a solution in the form of a
series [1885:386). ‘

It will be shown in the following chapter that, in contrast to Korkine’s study,
Koenigs’ work is characterized by a high degree of rigor.

2.6 Farkas’ Solution to the Schréoder Equation

In many respects, Farkas’ paper serves as companion piece to Korkine’s paper
[1882].12 - Where Korkine approached the problem of analytic iteration through
his 'solution of the Abel functional equation, Farkas intended to use an invertible
solution F'(z) to the Schréder functional equation

F(¢(2)) = hF(2) (2.15)
to défine the analytic iteration function ®(w, z) by setting '
®(w,z) = F7YAYF(2)). (2.18)

Farkas’ approach to the Schréder equation is based on a version of the fixed
point theorem. Farkas’ proof of his fixed .point theorem is, however, not entirely
satisfactory since he assumed without sufficient proof that a particular decreasing
monotonic sequence converged to 0. Aside from this problem, his solution to the
Schréder equation, stated below as Theorem 2.1, is rigorous, if not entirely general.
It’s lack of generality is a result of a number of strict hypotheses he placed on the
function ¢(z) which are dictated by the nature of his solution.

Despite the fact that Farkas’ reliance on the Schroder equation parallels Kor-

kine’s usage of the Abel equation, Farkas showed a curious disregard for Korkine

12 A function is meromorphic on D if it has a pole bn D.
13Bjographical information about Farkas can be found-in Ortvay [1927], written in Hungarian.
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and did not even mention his name. Farkas noted that Schréder’s papers [1870] and
[1871] were the only studies he had encountered on the “general theory of iterative
functions [1884:101].” It is unlikely that he was unaware of Korkine’s work since
it was published in a widely circulated Parisian journal just two years previous to
his own work. Perhaps he did not consider Korkine’s work a “general study” of
iteration since it was not based on an attracting fixed point theorem.

In any event, Farkas’ interest in the problem of iteration motivated the first
rigorous solution of the Schroder equation:

Theorem 2.1 (Farkas) Let ¢(z) be a complex analytic function on a disc D cen-
tered at an atiracting fized point z of ¢(z), that is, a fized point satisfying 0 <
|¢'(z)| < 1. Suppose further that the radius of D is greater than 1. Then if
$(z)=z+ai(z—z)+axz—2z)*+...,

with

[>2]

Z |a,~| <1,

i=1

where a; are the Taylor coefficients of #(z) expanded aboul z, there exists a solution
F(z) on D to the Schréder functional equation

F(¢(z)) = ¢'(2)F(2). (2.17)

Although Farkas did not seem to realize it, his theorem actually implies the
existence of analytic solutions to the Schréder functional equation (2.17) under the
more general hypotheses that

¢(x)=z and 0<|¢'(z)| < 1. (2.18)
To see this let ¢(z) be an analytic function satisfying conditions (2.18), and let

¢(Z) = '¢_(r'{)_v

r

where r < 1 is chosen so that on one hand

b .
Z laslri=t < 1,
i=1

while on the other, ¥(z) converges on a disc of radius greater than 1 centered at
z/r.

As. can be easily verified, the function #(z) has a fixed point at z/r and in
addition satisfies all the hypotheses of Farkas’ theorem, consequently an analytic
solution G(z) exists to the Schréder equation

G(¥(2)) = ¥'(2)G(2).
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By setting F'(z) = G(z/r), G(z) can be used to define an analytic solution F(z) to
the corresponding Schréder equation for ¢(z).

Koenigs, whose work will be discussed in the next chapter, in his paper [1884]
relaxed the hypotheses of Farkas’ theorem, requiring only that ¢(z) be an analytic
function satisfying conditions (2.18). Because his own solution of the Schréder
equation utilized an entirely different approach, it is unclear whether or not he was
aware that Farkas’ theorem could be generalized in the manner suggested above.
Koenigs, however, in remarking that

a character which I have assayed to imprint upon my researches, either
previous or current, is the reduction to a necessary minimum the number
of diverse hypotheses which have served as the basis of the works of my
predecessors [Koenigs 1884:s4],

gently chided Farkas for his reliance on such a restrictive set of hypotheses. His own
solution to the Schroder equation on a neighborhood of a fixed point z, in contrast,
required “only a single condition,” namely, that 0 < |¢'(z)| < 1 [1884:s4].

Despite its apparent lack of generality, Farkas’ solution of the Schroder equation

F(4(2)) = ¢/'(2)F(2)

expresses a local conjugacy between ¢(z) and multiplication by ¢'(z), which makes
rigorous an implicit assertion Schroder made during his proof of the fixed point
theorem, Theorem 1.1, namely, that iteration in the neighborhood of an attracting
fixed point satisfying 0 < |¢’(z)| < 1 acts like repeated multiplication by ¢'(z).

Chapter 3

Gabriel Koenigs

3.1 Gabriel Koenigs

Gabriel Koenigs was the dominant figure in the nineteenth century study of the
iteration of complex functions. Drawing on the papers of Schroder, Korkine and
Farkas, Koenigs turned the study of the iteration of complex functions into a coher-
ent and rigorously established body of work. His influence on the study of iteration
continued throughout the 1890’s. Not only did two of his students, Leopold Leau
and Auguste Grévy (1865-1930) each examine a special case which he did not treat,
but his work also stimulated papers by Paul Appell (1855-1930), Ernest Lémeray
(1860-7) and others. In this chapter I treat Koenigs’ own work. In the next two, [
discuss the responses to his work.

Koenigs was born in Toulouse in 1858 and died in Paris in 1931. From 1879 to
1882 he studied at the Ecole Normale Supérieure and received his doctorate from the
University of Paris in 1882. He is often linked mathematically to Gaston Darboux
(1842-1917). The historian Taton, in fact, referred to Koenigs as a “disciple” of
Darboux [1980:446].

Darboux taught at the Ecole Normale in Paris until 1881, and Koenigs wrote
his doctoral thesis, entitled “Les propriétés infinitésimales de éspace réglé,” under
Darboux’s direction. The relationship between Koenigs and Darboux evidently
evolved to a collaborative one, and Darboux appended Koenigs’ “Sur les géodésiques
a intégrales quadratiques” to the fourth volume of his Legons sur le théorie_générale
des surfaces. There is, however, nothing in Koenigs’ work to suggest that Darboux
influenced his interest in the iteration of complex functions. Nonetheless, Darboux’s
insistence that French analysis should be practiced with greater rigor than was
customary at the time had a profound effect on Koenigs’ approach to the study of
iteration, and it is in no small measure due to his adoption of Darboux’s standards
of rigor that Koenigs was able to fashion the work of his predecessors into a unified
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theory of iteration. -

After receiving his doctorate, Koenigs enjoyed a distinguished career as a math-
ematician. His chief fields of interest were differential geometry and applied me-
chanics. He lectured on mechanics at the University of Besangon from 1883 to 1885,

and it was during this time that he published the three papers [1883], [1884] and

[1885] which comprise his research on the iteration of complex functions. He then
served as professor of mathematical analysis at the University of Toulouse for a year
before returning to Paris in 1886 as an assistant professor at the Ecole Normale.

In 1896 he was appointed professor of mechanics at the Sorbonne, after which he
became increasingly drawn towards applied and experimental mechanics. Although
his interest in mechanics sparked some interesting mathematics, his mathematical
output waned over the years as his interest shifted towards laboratory work. Near
the beginning of World War I, he founded a laboratory which played an important
role in the development of French military technology. After the war, he received
a commendation from the French government in recognition of his contributions to
the military effort.

Over the course of his career, Koenigs was awarded several prizes by the French
Academy of Sciences, and in 1892, along with Paul Appell and several others, he
was nominated for the vacant seat in the Academy’s mathematics section occasioned
by the death of Ossian Bonnet (1819-1892). The seat was awarded to Appell, but
in 1918 Koenigs was honored with membership in the mechanics section of the
Academy.

3.2 Koenigs and Darboux

Darboux’s interest in the foundations of analysis represents something of a departure
from his principal concern, the study of differential geometry, and was evidently
motivated by his conviction that French analysis was not practiced with sufficient
rigor. His study of foundational issues, which consists of the three papers [1872],
[1875] and [1879], is characterized by an artful blend of precise, carefully argued
proofs -and insightful counter examples.

Essential to Darboux’s approach to analysis is the concept of uniform conver-
gence. In his paper [1875] he established several important facts regarding the
uniform convergence of a series of single variable real-valued functions, including
the theorem which asserts that the sum of a series of uniformly convergent con-
tinuous functions is itself continuous. Uniform convergence also animated many of
the counter examples Darboux provided. For instance, one of the most interesting
examples from (1875] is that of a continuous real function g(z) which is nowhere
differentiable. Darboux proved the continuity of g(z) by showing that it is the sum
of a uniformly convergent series of continuous functions.

In comparison with the situation in Germany and Italy, the French were late in
developing a rigorous approach to analysis. Consequently, Darboux’s contributions
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in this direction were largely ignored for quite some time. According to the historian
Gispert, it was not until the latter half of the 1880’s that Darboux’s approach to
analysis began to take hold in France [1983:63).

Koenigs was evidently one of the first French mathematicians to respond fa-
vorably to Darboux’s new approach, and in his paper [1884] he adapted two of
Darboux’s theorems on the uniform convergence of real functions to the study of
complex functions. Concomitant with his incorporation of Darboux’s innovations
came an increased attention to rigor. Koenigs’ first work on iteration, his paper
[1883], is characterized by a certain vagueness and lacks the precision and clarity
of his paper [1884]. There is considerable overlap between these two papers, and
virtually without exception ideas which are discussed in both papers are subject to
a more rigorous treatment in the 1884 paper.

That Darboux was responsible for this change in approach is indicated by the
following quotation from Koenigs’ introduction to his paper [1884]:

The nature of the topic demands the use of the most general the-
orems from the theory of functions. I was principally inspired by the
excellent memoir Sur les fonctions discontinues which Darboux pub-
lished in Volume IV of the second series of Annales de I’Ecole Normale.

An easy extension of the results from this memoir to complex quan-
tities ... yields the following theorems, which serve as the base of my
work [1884:s4].

The two theorems which Koenigs then listed can be summarized as follows.

Theorem 3.1 (Koenigs-Darboux) Let the functions u;(z) be analytic in a region
D. Then, if the infinite series Y u;(2) is uniformly convergent in D, its limit
Junction u(z) is continuous on D. If, in addition, I ul(z) converges uniformly in
D then it converges to u'(z), and u(z) is thus analytic in D.

As Koenigs himself indicated, his theorems are routine extensions of those Darboux
proved for real functions in [1875].

Although Koenigs did not seem to realize it, the application of the Cauchy
integral formula leads to the stronger result that if a series of analytic functions
>_ui(z) converges uniformly on D to u(z), then u(z) is analytic on D.1

1Weierstrass first published a proof of this theorem in his paper [1880]. Weierstrass proved it
initially, however, in the manuscript [1841] which went unpublished until the 1890's. That neither
Koenigs nor Appell, who used Koenigs’ two theorems in his paper [1891:285), realized that these
theorems could be condensed into one is indicative of the lack of communication between French
and German mathematicians. It may also refiect a lack of emphasis on complex function theory
within the French mathematical community of the time.
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3.3 The Background to Koenigs’ Study of Itera-
tion

In his introductions to both [1884] and [1885] Koenigs discussed his work in the
context of his predecessors. He noted that he grounded his work on a fixed point
theorem in spirit equivalent to Schroder’s fixed point theorem, Theorem 1.1. How-
- ever, in contrast to Schréder who never applied Theorem 1.1 to the study of func-
tional equations, Koenigs used his own fixed point theorem to rigorously treat both
the Schréder equation

: F(¢(2)) = ¢'(2)F(2)
and the Abel equation

H(¢(2) = f(z) +1

in a neighborhood of a fixed point z satisfying 0 < |¢/ (2)] < 1. Moreover, he
revealed a connection between the Abel aiid Schréder equations, to be discussed
below, that had previously escaped notice.

In his introductory remarks Koenigs also noted that his approach repaired de-
fects in the work of both Korkine and Farkas. As was discussed in the previous
chapter Koenigs criticized Korkine’s treatment of the Abel equation because it is
grounded on unsubstantiated, and in general incorrect, existence claims, and also
observed that the hypotheses Farkas required for his solution to the Schréder equa-
tion are not of sufficient generality.

That Koenigs’ interest in iteration evidently grew out of strictly mathematical
concerns rather than physical ones is interesting, since the folk history of mathemat-
ics often has it that complex dynamics grew out of Henri Poincaré’s (1854-1912)
study of celestial mechanics. While it is true that Poincaré iterated real-valued
solutions of certain differential equations as early as his paper [1881)], a number of
factors augur against his being a principal influence on Koenigs, the most salient
of which is that although Koenigs referenced Poincaré’s work involving linear frac-
tional transformations, nowhere did he cite Poincaré’s studies of mechanics,?

Given Poincaré’s prominence by the mid 1880’s, and given Koenigs’ proclivity
to discuss the work of his predecessors, it seems likely that, had he thought an
important connection existed with Poincaré’s use of iteration, Koenigs would have
been eager to point it out. Moreover, Koenigs’ use of iteration was quite different
from that of Poincaré. Not only did Koenigs iterate complex analytic functions
while Poincaré iterated real functions, but in contrast to Koenigs’ highly formalized
study of iteration, Poincaré’s early use of iteration was relatively unstructured.

Perhaps it is the case that Poincaré’s work in celestial mechanics did influence
Koenigs’ study. There is, however, nothing in Koenigs’ work which suggests this.
Nor is there anything in the works of Fatourand Julia which suggests that Poincaré’s

2In his paper [1885], Koenigs noted that Poi#cq.r_é had shown the existence of a 'fa.mily of-

circles passing through the fixed points z, z’ of a linear fractional.transformation L(z) which were
invariant under iteration [1885:404], :
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study of mechanics influenced their own studies of iteration. When they do refer
to those mathematicians who paved the way for their studies, it is Koenigs’ name
which figures most prominently.

3.4 Koenigs’ Study of Fixed Points

The fundamental object of Koenigs’ study is the set of accumulation points of the
sequence

{20, $(20), *(20), .. .}, (3.1)

where zp is fixed, and ¢(z) is an analytic function defined on a domain G, that
is, a connected open subset G of the extended plane C. The sequence at (3.1) is
nowadays called the forward orbit of 29.3
Koenigs focused on two cases, the first, where sequence (3.1) has a unique limit
point z, and, the second, where the set of the accumulation points of (3.1) is the
finite set
{10,21,---,%—1}-

If sequence (3.1) has a unique limit point z, then ¢(z) = z since the continuity of
#(z) in conjunction with the limit :

Jim °(20) =
implies that
#(2) = 9(lim ¢"(20)) = lim §"+(z0) = .

In the second case it can be shown that
. np
Jim_ ¢°"(20)

equals one of the z;, and that ¢(z;) = z;4;, with zp = o

The point z is called a fized point and the points @; are called periodic points of
period p, or, more succinctly, period p points. The formal definition of a period p
point is as follows:

Definition 3.2 A point z; is a periodic point of period p, p > 1, if p is the small-
est positive integer such that ¢P(x;) = z;. Such a point is often referred to as a
period p point. A fized point is thus a period 1 point. A periodic orbit is the set
{2o,...,2p-1}, where &; = ¢*(z0) for0<i <p and z, = zp.

3The backward orbit of 20 under ¢(z) is the set

{z:67(20),67%(0), ...},

where ¢1(z) is, depending on context, either the total inverse of #(z) or a fixed inverse.
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Since period p points of ¢(z) are fixed points of ¢? (2), any theorem regarding
a fixed point of ¢(z) also applies to periodic points via the function ¢?(2), and
Koenigs therefore reduced the study of periodic points of ¢(z) to the study of
the fixed points of ¢$P(z). Although Schréder examined periodic points in specific
instances, for example, in his investigation of the Newton’s method function for the

quadratic, they played a significant role neither in his work nor in that of Farkas or

Korkine, and Koenigs was the first to treat such points systematically.

As has been noted, one of the characteristics of Koenigs’ study is its rigor. This
is-especially the case with the definition from his paper [1884] of the convergence of
a sequence {an} towards a limit . This definition is presented far more precisely
than anything found in the papers of his predecessors—or, as the following quotation
suggests, anything from his earlier paper:

I recall in terms more general than I used in my preceding memoir,
and in a more complete and precise fashion [the following]: The sequence
«,03,03,...,0n,...,issaid to converge regularly towards a limit z when
for all positive €, as small as one wishes, it is possible to find a number
N, large enough so that under the sole condition that n > N, one has
lan — 2] < € [1884:55-6].4

The reason that Koenigs was interested in the convergence of {|a, — z|} is
that, as Schroder asserted in his paper [1870], and Koenigs verified in [1884], the
convergence under iteration of ¢(z) to a fixed point & satisfying |¢'(z)| < 1 is such
that there exists a disc D centered at z such that the sequence

{¢7(2) — <}

converges to 0. Because of this, the fixed point z is usually referred to as an
attracting fixed point.

Koenigs built his entire study of iteration on the case where sequence (3.1)
converges to a periodic p orbit, where p > 1. It may seem a little surprising that
Koenigs limited himself to this particular case. However, it can be shown that if the
set of accumulation points to this sequence is finite, then the accumulation points
are period p points. It will be seen in later chapters that in general the above
sequence has only finitely many accumulation points for all z in C'— J, where J
is a certain subset of C called the Julia set. The case where z € J , that is, where
the sequence (3.1) has infinitely many accumulation points is very difficult, and the
first systematic study of this last case did not occur until Fatou’s note [1906a).

If the sequence

{2,9(2),6°(2),.. }

4Koenigs' use of the term regular was not intended to suggest monotone convergence, but
rather meant that the o, had a unique limit. In [1883]he-also spoke of irregular convergence, by
which he meant that the ay, had more than one subsequential limit, as was the case when " (20 )
converges to a periodic orbit. He later dropped irregular convergence in favor of the term periodic
convergence [1884:56]. .
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is the fundamental object in Koenigs’ study, then the following theorem, Koenigs’
version of the fixed point theorem first articulated by Schroder in his paper [1870],
is his fundamental theorem:

Theorem 3.3 (Koenigs’ Fixed Point Theorem) If ¢(z) is analytic on a do-
main G contained in C which contains a fized point z of ¢(z) satisfying

' (2)] < 1,
then there exists a disc D surrounding ¢ such that

lim ¢"(z) ==z

n—00
for all z in D.
Koenigs also proved the following partial converse:

Theorem 3.4 (Koenigs) If on the other hand, the sequence {¢™(2)} remains in-
terior to @ domain D for all z € D, and in addition converges to a fired point
which is not necessarily in D, then |¢'(z)| < 1.

The partial converse implies that the fixed point z must be on the boundary of
D if it is not in D, although it should be noted that Koenigs did not use any set
theoretic terms other than domain, by which he meant what we would call an open,
connected set.

Koenigs gave two proofs of his fixed point theorem, one in [1883] and another in
[1884]. He proved the partial converse only in [1883], merely restating it in [1884],
although the equal part of the inequality |¢'(z)] < 1 was inadvertently- left out,
probably due to a typographical error [1884:56]. The reason that Koenigs proved
his fixed point theorem again in [1884] was evidently to repair a defect in his earlier
proof.

Koenigs began the proof in [1883] by correctly showing that if ¢(z) = z and
|#'(2)| < 1, then there exists an open disc D of radius 7 centered at the fixed point
z such that for all z in D,

@) =2l (3.2)

|z - =
This implies that for all z in D, ¢(z) is closer to z than z , since |¢(2) —z| < |z —z|.
Substituting ¢(z) for z in the inequality at (3.2) implies in turn that $?(2) is closer

to z than ¢(z), since $(62) |
#(¢(2)) — =
() -2l <

and in general, that ¢™(z) is closer to the fixed point = than is ¢”~!(2). Koenigs
evidently disregarded the possibility that ¢"(z) could continually get closer to = yet
remain bounded away from z and ended his proof with a brief remark to the effect
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that since the ¢”(z) were getting closer to ¢ “without ceasing,” the ¢"(z) “had
for its limit [1883:345).”

In his paper [1884], he gave a stronger inequality than the one at (3.2), namely,
that for all 2z in D,

f |¢(2) — =

BEE
This observation gave him the means to rigorously prove Theorem 3.3. I will outline
his argument, since it typifies a sort of convergence proof often used in the study of
complex dynamics.
Since |¢’(z)|, D can be chosen so that

b=zl _,
=]
on D, that is,

{6(2) — 2| <Az — z|.

Substituting ¢(z) for z in this last inequality implies that
16(2) = 2| < X(2) - | < M|z — z].
Hence, continually substituting ¢(z) for z yields
" (2) — z| < A"z — 2| (34)

Since A < 1 the convergence of ¢™(z) to « is immediate.

Koenigs’ proof also shows that the convergence under iteration to z is uniform
on D: since all z in D satisfy |2 — &} < r, where r is the radius of D, inequality
(3.4) implies that

[¢7(2) — 2] < A®|z — 2| < rA"
for all z in D. Thus, for any given ¢ > 0, n can be chosen so that for all z € D,
|¢™(2) — =| < €. The increased attention to detail seen in the proof from [1884] is
evident throughout [1884], and it attests to the influence of Darboux.

Koenigs extended Theorem 3.3 to the case where & is a period p point, that is,

where p is the smallest positive integer such that ¢P(z) = z. As noted above, he
reduced the study of period p points to that of fixed points because a period p point
of a function ¢(z) is a fixed point of ¢P(2). An-attracting period p point z of ¢(z)
is therefore one which satlsﬁes |4 £¢°(z)| < 1. According to Theorem 3.3, for each
point z; of the form z; = ¢‘(:co) (with 2o = xp), there exists a disc D; centered
at z; such that the function ¢’(z) converges under iteration to z; for all z on D;.
Finally, since repeated application of the chain rule implies that

M= %(xo) = ¢'(z0)¢'(z1) -+ ¢'(zp-1),

the quantity M is independent of the choice of x;.
This reduction of a periodic p point to a-fixed point leads to the following
definition, which is based on one given by Koenigs in [1883].

<A<l (3.3)
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Definition 3.5 A point z; from a periodic orbit {¢*(z)} is an attracting period
p point if |%;Lp(z.~)| < 1. The orbit P is called an attracting periodic orbit or an
attracting period p orbit since, by Theorem 3.3, for each z; there exists a disc D
centered at x; such that the function ¢P(z) converges under iteration to z; for all
points on D;. Therefore given any point z in D; the accumulation points of the
forward orbit of z consist of the periodic orbit {z;}.

Koenigs also realized that the Riemann sphere C is the natural place to study
iteration of complex functions, and consequently extended his study so as to allow
for the possibility that the point at oo may be a fixed point. For example, for any
polynomial ¢(z), the point at co acts just like an attracting fixed point outside a
sufficiently large neighborhood of the origin. To see this, consider the special case
#(2) = z2. Since ¢"(z) = 2%", any point z exterior to the unit disc is attracted to
oo in the sense that as n approaches co so does ¢"(z).

To make the study of iteration near a fixed point at infinity rigorous, Koenigs
used the coordinate change z — 1/z, which maps the fixed point at infinity to the
origin, and which has since become the standard way to treat fixed points at 1nﬁn1ty

Using this coordinate change, the derivative at infinity is

Hoo) = — L
#(2) = S
where

which is analytic in a neighborhood of the origin. For a polynomial ¢(z) = a,2"™ +
-+ + ag, the map ¥(z) is

zﬂ

ap?™ 4+ +ay

The relationship between ¢(z) and 1(z) is given in the following diagram:

D# Dt

™ -
I
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where D is a neighborhood of infinity, that is, the set {z": |z["> r} for some
sufficiently large r, and D* is the corresponding neighborhood of the origin {z :
|z] < 1/r}. Just as in the case where z is finite, under this coordinate change
oo is an attracting fixed point if |¢'(c0)| < 1. Koenigs’ comments on the matter
are interesting, if only as an indication of what he thought might be shocking to a
nineteenth century mathematician: :

The expression of regular convergence towards infinity is thus explained
easily by the preceding, and it is not anything very shocking if one makes
use of the sphere for representation [1883:351].

That Koenigs’ careful treatment of the fixed point at infinity is contained in [1883) is
noteworthy since it indicates that not everything in [1883] was treated heuristically.

The extension of the study of iteration to the Riemann sphere also accounts for
the emphasis on rational maps seen in the work of Fatou and Julia since rational
maps are the only functions which are analytic on the entire sphere.

3.5 Koenigs’ Solution of the Schréder Equation

As noted at the conclusion of the previous chapter, Farkas proved that if an analytic
function ¢(z) has an attracting fixed point z such that 0 < |¢/(z)] < 1, and, in
addition, satisfies some rather strict hypotheses (see Theorem 2.1), then an analytic
solution B(z) to the following Schroder functional equation exists on a neighborhood
of z:

B(4(2)) = ¢'(2)B(2). (3.5)

One of Koenigs’ major accomplishments was to simplify Farkas’ hypotheses con-

siderably and show that a sufficient condition for the existence of an analytic solution”

to (3.5) on a neighborhood of the fixed point z is that 0 < |¢(2)| < 1. He deduced
from this that a solution also exists if |¢'(z)| > 1.

Koenigs found the study of the Schréder equation in particular and iteration
in general very difficult when ¢/(z) is zero or one in modulus. Consequently, he
produced no results in either of these cases. The study of these two cases, however,
was taken up in the 1890’s by Koenigs’ students. His student Leau, and another
French mathematician, Ernest Lémeray (1860-7) each produced some preliminary
results in the case where ¢'(z) is a root of unity. Grévy, another of Koenigs’
students, studied several generalized versions of the equation (3.5) in the case where
#(z)=0.

In what follows, I will adopt a convention.to which I will adhere in the sequel,
namely, I will take the fixed point  to be 0, which can be accomplished via a change
of coordinates. The Schréder equation at (3.5) will be expressed as

B(é(2)) = #(0)B(2), C 36)
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and will be referred to as the canonical Schroder equation.
Koenigs’ solution to the canonical Schrdder equation is defined as follows:

N A C)
B(z) = nlin;o O 3.7

That B(z) formally satisfies the Schrdder equation at (3.6) is seen by direct calcu-
lation:

M= L £
B(#(:) = Jim oo
= lim ﬂ(i
n—oo (¢/(0))"+1

= ¢'(0)B(x).

¢'(0)

Koenigs in his paper [1884] demonstrated the analyticity of B(z) by reducing
the convergence of the limit (3.7) on a neighborhood D of the fixed point to that of
a certain series of functions, 3~ f;(z). He then proved that both series 3~ 8;(z) and
Y B!(2) converge uniformly on D, and deduced the analyticity of 3 8;(z) from the
theorem he borrowed from Darboux, Theorem 3.1 above. This theorem asserts that
if a series of functions 3 u;(z) converges uniformly on D, and if ¥ u!(z) does as
well, then the series 3 u;(2) converges to an analytic function G(z) on D. Finally,
Koenigs demonstrated that the function B(z) also satisfles B(0) = 0 and B/(0) = 1,
hence, the function B(z) is invertible on D.®

Koenigs’ treatment of the Schréder equation serves as another example of the
increased precision which accompanied his second work, {1884]. Koenigs’ first paper,
[1883], featured a somewhat imprecise proof that the limit converges pointwise on
D. Although he did not explicitly say that this pointwise convergence implied that
the limit was analytic, the feeling lingers that he thought this was so.

=

3.6 Koenigs and Functional Equations

The most extensive use to which he put the theory which he developed was the

-application of his solution B(z) of the canonical Schréder equation

B(¢(z)) = ¢'(0)B(2), : (3.8)

to the solution of other functional equations. As Koenigs noted in his introduction
to [1884}:

5Koenigs' proof from [1884] is quite long (see [1884:57—s16)). A short proof of the convergence
can be found in Chapter 6 of Milnor's preprint [1990].
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There exist, moreover, infinitely many functional equations towhich my
method extends and to which the function B(z) yields a general solution
[1884:s4].

Koenigs in fact devoted the latter portion of [1884] and virtually all of [1885] to this
pursuit. _
The first functional equation to which he applied his method, was the general
Schroder equation
F(¢(2)) = hF(2), (3.9)
which, in the event that h = (¢'(0))*, for integer k, is solved in the neighborhood
of a fixed point 0 satisfying 0 < [¢'(0)| < 1 by the function

F(z) = ¢(B(2))*, (3.10)

where ¢ is arbitrary, as can be verified by direct calculation. Koenigs showed as
well that the general Schroder equation at (3.9) has an analytic or meromorphic
solution near x only if & = (¢/(0)).

In his paper [1885], he reduced the solution of the Schréder equation

F(#(2)) = ¢#(0)F(2),

where 0 is 3 repelling fixed point, that is, 1 < {¢/(0)] < oo, to the solution of the
canonical Schréder equation at (3.8). In this event, let 1(z) be the local inverse of
() which satisfies (0) = 0. Since $'(0) = 1/¢’(0) and is therefore strictly between
zero and one in modulus, there exists a locally defined function B(z) which satisfies
the canonical Schréder equation

B(z) = g,%ff(z).

Letting z — ¢(2), and multiplying both sides of the above equation by ¢’ (0) yields
B(¢(2)) = ¢'(0)B(2).

Although Koenigs did not do so, an equivalent way of treating the case where
[#(0)] > 1 is to study the equation

F(4'(0)2) = ¢(F(2)).

This method was favored by both Samuel Lattés and Joseph Fels Ritt (1893-1951)
in their respective studies of iteration circa 1918, which are discussed in Chapter
10. = o ’

Koenigs also discovered an important link between the function B(z) and th

Abel equation L . '
b(d(z)) =b(z) +1 -
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on a neighborhood D of 0, where 0 < {¢/(0)| < 1. Let log(z) denote an appropriate
branch of the logarithm and define b(z) formally as follows:

_ log(B(z))
(z) = Tog(#(0))’ (3.11)

where B(z) is the solution of the canonical functional equation for ¢(z). Then

bo(z)) = E2ELD
_ log BE'(0)B(2))
~ log¢(0)
_ log B(z) + log¢/(0)
B log ¢'(0)
= b(z) + 1

Since B(0) = 0, b(z) is multi-valued near the origin and can only be thought of
as a solution in-the sense that it is possible to find a single-valued locally analytic
function which satisfies the Abel equation on simply connected subdomains D* of
D which do not contain the origin, provided that care is taken in choosing D* so
that equality )

log(AB) = log(A) + log(B)

holds. Koenigs, in addition, pointed out that 5(z) is the best possible solution to
the Abel equation since there are no analytic or meromorphic solutions to it in a
neighborhood of an attracting fixed point 0 satisfying 0 < |¢'(0)} < 1.

The major concern .of the paper [1885] was Koenigs’ application of B(z) to
various problems including analytic iteration and the solution of new functional
equations, among them,

FP(2) = (),
F(4(2)) = $(F(2)),
F(4(2)) = $(F()) B CT)

where ¢(z) and ¥(z) are given analytic functions.

In the next section I will discuss the principal shortcoming of Koenigs’ study, his
failure to develop a.global study of iteration. However, it is important not to lose
sight of the fact that Koenigs’ study was very successful. He discovered heretofore
unknown connections between the various strands of his predecessors’ work— in
particular Schrdder’s fixed point theorems and the study of the Abel and Schréder
equations—and established a unified, rigorous local theory regarding the iteration of
complex analytic functions which he then applied to.the study of various functional
equations. As will be seen in subsequent chapters, Koenigs influenced the study for
quite some time.
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3.7 Koenigs and the Global Study of Iteration

Koenigs based his entire study of iteration, as well as his related study of functional
equations, on his fixed point theorem, Theorem 3.3, which states that if $(0)=0
and {¢'(0)] < 1, then there exists an open disc D centered at 0 on which é(z)
converges under iteration to 0 for all z in D. Due to the fact that his fixed point
theorem holds only on the disc D, the scope of Koenigs’ study is local rather than
global since his results say nothing about the behavior of the iterates of an arbitrary
point z in C under a given function ¢(z).

Koenigs, not surprisingly, was clearly not satisfied with the local nature of his
theory of iteration, and at the end of his paper [1884] he suggested a way to extend
the study of iteration beyond the neighborhood D. His method in essence is as
follows.

Let D be the disc surrounding 0 on which all points converge under iteration by
é(2). Choose this disc so that the solution B(z) to the canonical Schréder equation
exists on D. Suppose as well that there are points which converge to 0 under
iteration by ¢(z) but are not in D, and let Z be one such point. There will then be
a small disc' D surrounding Z on which points converge to 0 under iteration and to
which his theorems could be extended [1884:540).

Although Koenigs did not explicitly prove the existence of such points as , it is
not unreasonable to suppose they exist since the function ¢(z) is generally a many-
to-one mapping. However, he used the fact that B’(0) = 1 # 0 to define D so that
B(z) is one-to-one on D, which implies that ¢(z) is also one-to-one on D. Thus, in
the event that ¢(z) is not globally one-to-one, there are points in the preimage of
D under ¢(z) which are not in .D.

The following quotation indicates that Koenigs understood the problems in-

volved in extending his study of iteration beyond the neighborhood of a fixed point.® :

If one envisions all the points which [iterate] to the interior of D and
consequently [converge] to the point 0, one can extend general theorems
to this region. But one knows nothing of the general manner in which
this region is limited, and one cannot affirm a priori that the mode of
delimitation is not of a nature which restricts this extension [1884:540].

The pessimism expressed in the above quotation stems from another problem
which seems to have frustrated Koenigs, namely, to partition € into regions 4;
according to the behavior of the iterates of points in Ag. For example, given an
attracting fixed point 0, or any attracting periodic orbit {;}, one such A; would
be the entire set of points which converge to 0,.or to the orbit {z;}.7 He expressed
this desire explicitly in his earliest paper (see [1883:35)), and referred to it again in
the following quotation: ~ :

6 As is the ¢ase with many of the quotations used, notation has been adjusted to conform with -
my own notational conventions.
"For the definition of an attracting periodic orbit, see Definition 3.5 above,
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‘The importance of the division of the plane into regions according to
the limit points to which these points [converge under iteration] has thus
come to the fore. But the difficulty attached to the problem is evident
when one realizes that there are an infinity of circular limit groups [that
is, period p points], since the index [that is, p] to which they belong is
arbitrarily large.

Cayley was the first to pose this problem, in the case of Newton’s
method; but even in the case of a simple entire polynomial, the number
of these limit groups can be, infinite, and even though the problem has
been solved for the equation of the second degree, the [period p points]
are not limited in this case, and they all lie on the line made up of points
equidistant from the root points, a line which, as one knows, divides the
plane into two regions such that all points on one side of the plane are
led to the limit point on that side [1884:540-41].

The above quotation indicates that Koenigs was troubled by the fact that as n
goes to infinity so does the number of solutions to ¢™(z) = z. This in turn suggested
to Koenigs that not only were there in general infinitely many periodic points, but
that there may well be infinitely many attractive periodic orbits, hence division of
the extended plane into. the regions Ay would be quite complicated, and perhaps
even impossible. The reference to Cayley in the quotation above-is rather telling
since, in characterizing the behavior of all points in C according to whether or
not they converge to a root of the quadratic under iteration by Newton’s method,
Cayley did solve the problem of “the division of the plane,” and thereby set a model
of perfection which Koenigs was unable to duplicate. Koenigs’ remarks regarding
Newton’s method are interesting as well in their neglect of Schréder.

Koenigs’ belief that the existence of infinitely many periodic points precluded
an easy understanding of the global behavior of iteration is right on the mark, since,
as will be shown in the sequel, the key to such an understanding lies precisely in
sorting out the entire set of periodic points.

Koenigs’ failure to understand this set, however, was more a function of history
than a failure of mathematics since the mathematical tools he needed were not
extant in his time. In order to achieve a thorough understanding of the set of all
periodic points an understanding of set theory—in particular totally disconnected
perfect sets—is needed, and, as the studies of Fatou and Julia indicate, an under-
standing of Montel’s theory of normal families of complex functions is particularly
helpful.

At the time of Koenigs’ papers on iteration the rigorous study of sets. was in its
infancy, and examples of totally disconnected perfect sets were only just beginning
to circulate within the mathematical community. Moreover, Montel’s first results
on normal families would not be published until the early years of the next century.
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Although Fatou published a paper concerning the global solution of Schréder’s
equation for a limited class of functions in his paper [1906a}, it wasn’t until 1917 that
Fatou and Julia began to establish general results concerning the global behavior
of the iterates of arbitrary rational functions.

Chapter 4

Iteration in the 1890’s:
Grévy

4.1 A Brief Survey of Iteration in the 1890’s

Although Koenigs contributed no new works to the study of iteration of complex
functions during the 1890°s, he nonetheless remained its central figure. The infusion
of new mathematical ideas—in particular Montel’s theory of normal families—which
would prove so useful to the studies of Fatou and Julia did not occur until after the
turn of the century. Consequently, the developments of the nineties consisted largely
of either the application of Koenigs’ theory into other branches of mathematics or
in the extension of Koenigs’ local study into two special cases he did not examine,
namely, the case where the derivative at the fixed point £ = 0is 0 or 1 in modulus.

Two of Koenigs’ students, Leopold Leau and Auguste-Clémente Grévy, each
investigated one of these special cases. Grévy investigated the ¢'(0) = 0 case,
often called the superattracting case, in his doctoral thesis [1894], and Leau in his
dissertation [1897] studied the |¢'(0)] = 1 case, often referred to as the neutral case.

The study of the neutral case actually began with Ernest Lémeray, who treated
the |¢’(0)| = 1 case in several short articles in the latter half of the 1890’s. He and
Leau each produced theorems which anticipate the so-called Flower Theorem (see
Theorem 5.1 below). Like Leau and Grévy, Lémeray was influenced by Koenigs,
a fact he readily acknowledged in the opening paragraphs of his first paper on the
subject [1895)].

Carlo Bourlet (1866-1913) also wrote a few articles concerning the iteration of
complex functions towards the end of the 1890’s, among them his papers [1899a]
and [1899b]. Although his works were important to the development of the study
of functional analysis, his works made no significant contributions to the march of
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ideas which led to the work of Fatou and Julia. In Bourlet’s work, as in most of the
works cited above, the study of funetional equations went hand in hand with the
study of the iteration of complex functions, just as it did in the 1880’s.

. Applications of Koenigs’ work in other areas of mathematics while not plentiful
were by no means non-existent. Notable were Bourlet’s study of iteration as a
functional operator in his paper [1899a] and Paul Appell’s paper [1891] in which
he used a function defined by Koenigs to solve a special case of the Hill differential
equation

2
ddu_z(:) —u(z)f(z) = 0. (4.1)

Although Koenigs confined himself to the iteration of single variable complex
functions, several late nineteenth and early twentieth century mathematicians in-
cluding Leau, the Polish mathematician Lucyan Bottcher, the American Albert
Bennett and the French mathematician Samuel Lattés drew on Koenigs’ research
in their studies of iteration of functions of more than one variable (see Chapter
VI and VII of [Leau 1897], {Bottcher 1897], [Lattés 1907] and [1908], and [Bennett
1915a]). Since the purpose of this work is to trace the development of the body of
study which led to the works of Fatou and Julia concerning the iteration of complex
functions of a single variable, the iteration of multi-variable functions will not be
discussed.

4.2 Appell’s Application of Koenigs’ Work to Hill’s
Differential Equation

The Hill equation was considered by the American mathematician George William
Hill (1838-1914) in the 1870’s in connection with the orbit of the moon. Hill stip-
ulated that f(z) be periodic and sought periodic solutions u(z). Although Appell
made no such restriction on either u(z) or f(z) in his paper [1891], he required that
F(2) satisfy a particular functional equation, stated below. He made no mention of
the relation of the Hill equation to celestial mechanics in [1891] and instead treated
it as a purely mathematical object.

Appell’s work [1891] is noteworthy not only because it applies Koenigs’ ideas to
the study of differential equations, but also because it demonstrates that Appell had
an active interest in the study of iteration. This is of import because Appell was a
member of the commission of the French Academy of Sciences charged with judging
the 1918 Grand Priz des Sciences mathématigues, which was to be awarded to the
best paper the Academy received regarding the iteration of complex functions.

Appell relied extensively on.Koenigs’ [1884] for his solution to the Hill differential
equation. In fact, he wrote his particular solution to the Hill equation entirely
in terms of the function B(z), where B(z) is Koenigs’ solution to the canonical
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Schroder equation

B(¢(2)) = ¢'(0)B(2), (4.2)
where ¢(z) satisfies the fixed point conditions
#(0)=0 and 0<|¢'(0)] < 1. (4.3)

Consistent with its dependence on Koenigs’ fixed point theorem, the function B(z)
is defined only on a neighborhood of the fixed point 0 (see Theorem 3.3).

Appell obtained the following fundamental set of solutions to (4.1), namely, the

functions
B(z)

1
provided that the function f(z) from the statement of the Hill equation at (4.1)
satisfies the functional equation

1 f(z) d? 1

Z) = —_— e — —— —
HD= G Ve~ v

where ¢(2) is an arbitrary function which in turn satisfies the fixed point conditions
at (4.3). As Appell noted, Koenigs proved that B’(0) = 1, thus the fundamental
set of solutions are analytic in a neighborhood of the fixed point. However, due
to their strict dependence on Koenigs’ function B(z), Appell’s solutions to the Hill
equation are locally defined.

Appell’s high regard for the work of Koenigs is evident throughout [1891]. Not
only did he explicitly mention the dependence of his approach on Koenigs’ “im-
portant theorems concerning the existence and general expression of holomorphic
solutions to certain functional equations [1891:282],” but in several ancillary re-
marks he applied other ideas from Koenigs’ work to the study of the Hill equation.

4.3 Grévy and the Superattracting Case

Grévy was born in 1865 and died in 1930. The four papers he wrote on functional
equations, published between 1892 and 1897, comprise virtually his entire research
output. He studied at the Ecole Normale Supérieure and, under the supervision
of Koenigs, presented his paper [1894)] as his doctoral thesis. From 1897 until the
time of his death he taught at the Lyceum Saint Louis in Paris. His thesis [1894]
and his paper [1897] form the core of his research on functional equations, and his
treatment of the superattrécting case, that is, the case where ¢'(0) = 0, is largely
confined to [1894].

The principal subject of [1894] was not the iteration of complex functions but
rather the solution of functional equations, in particular the following one:

po(2)f(2) +pr(2) f(8(2)) + - + pa(2) (6" (2)) = 0, (4.4)
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where the complex analytic functions p;(z) and ¢(z) are given, and where ¢(z) has
a fixed point at 0 satisfying 0 < |¢'(0)| < 1. Since it may provide insight into its
genesis, it is worthwhile to point out that this functional equation is a generalization
of the Schréder functional equation

B(¢(2)) = hB(2), (4.5)

which Koenigs solved on a neighborhood of 0 assuyming that h = (¢/(0))*, where &
is an integer, and |¢(0)] # 0, 1. Setting n = 1, po(z) = h, and p;(z) = —1, equation
(4.4) reduces to the general Schréder equation (4.5).1 .

Grévy used the functional equation (4.4) to treat the ¢’(0) = 0 case, and in
addition applied it to the solution of several other functional equations. He also
observed interesting similarities between the solution of (4.4) and the solution of
certain differential equations, a link which Bourlet explored further in his paper on
functional operators, [1899a). i}

The following theorem served as the foundation for Grévy’s study of the func-
tional equation (4.4).

Theorem 4.1 (Grévy) Let ¢(z) be a compler function which is analytic on
neighborhood of 0 and which satisfies both ¢(0) = 0 and 0 < |¢’(0)| < 1. If the
function po(z) is non-zero at z = 0, if

P0(0) + P1(0) + - - + pa(0) = 0,
and if, in addition, there ezisis no positive integer m such that
Po(0) +p1(0)(¢'(0))™ + p2(4(0))*™ + - - - + pa(0)(¢'(0))"™ = 0,

then the functional equation (4.4) has an analytic solution f(z) in the neighborhood
of 0 which is non-zero at z = 0.

That the hypotheses of this theorem allowed ¢’(0) to be 0 gave Grévy the wedge
he needed to treat the ¢/(0) case. .
Grévy’s treatment of the functional equation (4.4) is on the whole rigorous,

and the heuristic approach seen in Koenigs’ paper. [1883], as well as in the work of

Schréder and Korkine is absent from Grévy’s thesis. One vaguely troubling aspect
of his work is its reliance on multi-valued solutions to functional equations. .For
example, using the above theorem, Grévy showed that the function

O(z) = Blog z +iiﬁ;z" - (4.6)

i=0

!Functional equations which have the Schroder equation f(8(2)) = hf(z) as a special case
were common in the nineteenth century study of iteration. Grévy considered several generalized
Schréder equations, and Leau considered a series’of simultaneous functional equations, a s’peéia.l
case of which is the vector equation #(¢(z)) = AZ(z), where A is a constant » by n matrix and
#(z) an n-dimensional complex vector [1897:3]. -~ . ¢ .
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satisfies the Schréder equation
C(é(2)) = kC(2) (4.7)

where ¢'(2) = 0, and k is the order of the first non-zero term in the Taylor expansion

of ¢(z) about 0, that is,
#(z) = Za.‘z"
i=k

with &£ > 1. He defined the function C(z) via a path integral on a deleted neigh-
borhood of 0 of a function with a pole of order 1 at the origin.

As was the case with Koenigs’ solution to the Abel equation in the event that
0 < [#(0)] < 1 (see equation (3.11)), Grévy’s solution is multi-valued and satisfies
equation (4.7) only in the sense that there is a deleted neighborhood D of the
origin such that for each point zy in D, a determination of C(2) exists such that
equation (4.7) is satisfied at zo. Just as Koenigs correctly observed that analytic or
meromorphic solutions to the Abel equation do not in general exist, Grévy likewise
proved that generally no analytic or meromorphic solutions of (4.7) exist.

In the latter portions of his thesis, Grévy applied the function C(z) to the dif-
ferential equations in much the same manner that Appell applied Koenigs’ function
B(z) to the study of the Hill equation.

Grévy’s function C(z) also can be used to define an analytic solution to the
following functional equation which Grévy did not examine, the so-called Bottcher
equation

F(8(2)) = (£(2)), (4.8)

where, as in equation (4.7), k is the order of the first non-zero derivative of ¢(2) at
z = 0. The solution f(z) to the Bottcher equation is obtained from equation (4.7)
by defining

. f(z) - CC(Z),

in which case

F(9(2)) = SN = ¢OC) = ()

This equation was discussed by Fatou and Julia, who attributed its solution
to the mathematician Lucyan Béttcher in the paper [1904), written in Russian.
‘Béttcher was born in Warsaw in 1872. He attended the University of Warsaw
but his studies there ended abruptly in 1894 when his participation in a centenary
march commemorating the 1794 Polish rebellion against Russia resulted in his ex-
pulsion from the university. He then enrolled in a polytechnical institute to study
the construction of machines. He evidently kept up his interest in mathematics,
however, for he soon moved to Leipzig and received his doctorate from the Univer-
sity of Leipzig in 1898. He subsequently published several works in both Polish and
Russian journals.




58 CHAPTER 4. ITERATION IN THE 1890°S: GREVY

.Contemporary studies of complex dynamics treat the ¢’'(0) = 0 case via the
conjugacy expressed in the Bottcher equation since it presents a better description
of iteration near a superattracting fixed point than does Grévy’s equation

C(¢(2)) = kC(2).

To see this observe that
C(¢"(2)) = k"C(2),

which suggests that iteration near the attracting fixed point 0 of ¢(2) acts like
iteration of the map kz near oo since |C(2)| grows without bound as iterates of ¢(z)
approach the fixed point 0.

This is not a bad model of iteration: k is the order of the first non-zero higher
order derivative of ¢(z), hence it is greater than 1, and points near infinity get
closer to infinity under iteration by the linear map z + kz, ¥ > 1. However,
Grévy’s equation is not the best possible model for iteration near a superattracting
fixed point. As Schrdder pointed out in his paper [1870] (see the end of Section
1.3), if ¢'(0) = 0 then iterates of ¢(z) converge to the fixed point 0 not linearly,
but rather on the order of z¥, which is precisely the information conveyed by the
Béttcher equation

F(8(2) = (f(2))",

which asserts that ¢(z) is conjugate to z*.

It is curious that Grévy’s investigations did not lead him to discover the Béttcher
equation. Not only is it, for the reasons outlined above, the natural functional
equation to consider in this case, but its solution follows readily from a functional
equation Grévy considered. Moreover, given the many parallels between Koenigs’
approach and his own, it seems reasonable that Koenigs’ realization that the Abel
equation could be solved by taking the log of the solution B(z) to the Schréder equa-
tion might have suggested to Grévy that the reciprocal technique of exponentiating
solutions of known functional equations might yield solutions to other interesting
functional equations.

It is important to keep in mind the fact that the aim of Grévy’s thesis [1894] was
not the definitive treatment of the superattracting case but the definitive treatment
of the functional equation (4.4). For this reason it is possible that Grévy did not
necessarily intend the functional equation (4.7) as an expression of a conjugacy
which accurately modeled iteration. It is more probable that he was following a
lead set by Koenigs—perhaps to an extreme—and treated the ¢'(0) = 0 case by
first solving a Schroder equation and using it in turn to solve other functional
equations. As was noted at the end of the previous chapter, Koenigs viewed the
extension of his solution of the canonical Schréder equation to the treatment of
other functional equations as one-of the primary applications of the theory he had
developed. That Grévy solved several functional equations regarding the ¢’(0) = 0
case, applied them to the study of functional equations and even used Koenigs’
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solution of the canonical Schroder equation along the way, no doubt led him to
believe that he had treated this particular case comprehensively.

Grévy’s emphasis on functional equations underlines a dichotomy common in
the nineteenth century study of iteration: some mathematicians gravitated towards
an interest in functional equations as the primary object of interest, while others
evidenced a stronger interest in iteration itself. Grévy certainly falls into the former
category. As will be seen in the next chapter, Lémeray falls into the latter category
while Leau, like Koenigs before him, balanced the two approaches.




Chapter 5

Iteration in the 1890’s: Leau

5.1 Basic Results in the |¢/(0)] =1 Case

The most troublesome behavior involving fixed points occurs when the derivative
at the fixed point, often called the multiplier of the fixed point, has modulus one.
Consequently, Koenigs made no headway with this case, and it was not until the
mid-1890’s that any progress was made.

As the reader will recall, an iterate of a point sufficiently close to a fixed point
either eventually moves closer to (i.e., is attracted to) or further away from (i.e.2 is
repelled from) the fixed point according to whether the modulus of Fhe deri\{atn{e
is, respectively, strictly less than or strictly greater than one. This behavior is
summarized in figure 5.1.

When the modulus of the multiplier is equal to one the situation is not so clear
cut, and a number of different things may occur. I will assume as before that the
fixed point is 0. If the multiplier ¢/(0) is a root of unity, then on any neighborhood
of the origin ¢(z) exhibits both attracting and repelling behavior, that is, there are
some points which under iteration move closer to the origin, and there are some
which move away. A more precise description of this behavior appears below in
Theorem 5.1 and its corollary.

If, on the other hand, ¢'(0) is one in modulus but not a root of unity then, pro-
vided a certain number theoretic condition is satisfied (see Theorem 5.4), iteration
acts just like an irrational rotation of the disc in the sense that iteratefs of a given
point sufficiently near the fixed point lie on a topological circle surrounding, but m?t
including, the fixed point. In this event ¢(z) is conjugate to the map z — ¢'(0)z in
a sufficiently small neighborhood of the fixed point. When this particular number

theoretic condition is not met, iteration does not necessarily act like an irrational-

rotation, and in fact, it is generally very difficult to predict the behavior of iterates
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Figure 5.1: On the left is a representation of an attracting fized point and on the
right, a repelling fized point. The arrows indicate the direction of movement of
tterates near the fized point. Thus, in a sufficiently small neighborhood of a fized
point z, ileration moves points closer to z if it is attracting and further away tf ¢
is repelling.

near such a fixed point. As of this writing, open questions remain in the case where
the multiplier is one in modulus but not a root of unity.

The investigations of both Fatou and Julia regarding the case where the multi-
plier equals a root of unity were both foreshadowed and influenced by the studies
of Leau and Lémeray, although Lémeray’s impact on Fatou and Julia was evidently
indirect. In what follows, I will first give contemporary renderings of some stan-
dard results. I will then review the contributions of both Lémeray and Leau and
will conclude my discussion with an analysis of the respective approaches of Fatou
and Julia to the ¢'(0) = 1 case. A discussion of their work regarding the case where
the multiplier is one in modulus but not a root of unity will take place in Chapter
11.

Although their approaches differed, both Fatou and Julia proved equivalent
theorems regarding the root of unity case. Their results are summarized below in
what is nowadays generally referred to as the Flower Theorem.!

Theorem 5.1 (Flower Theorem) Let the Taylor ezpansion for ¢(z) around 0 be
#(2) =24 ampr 2™ 4.0,

There ezist m disjoint attracting regions, Ay, ..., Am, and m disjoint repelling re-
gions, Ry, ..., Rm.? These regions allernate so that A; intersects only with R; and

1Although both Julia and Fatou proved or recognized the individual claims of the Flower
Theorem, neither gathered them into a single theorem but rather stated them in a sequence of
separate propositions.

2A region A is attracting if it is.open and connected, and if for all z € A, limp— o ¢™(2) = 0.
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Rii1. The union of all of these regions and the origin forms a neighborhood of the
origin. Each of these regions A; satisfies ¢[Ai] C A;. Moreover, each of the A;
is bisected by a ray emanating from the origin through an mth root of ~ 1/am+1
Analogous statements hold for the repelling regions.

The directions given by the rays in the above theorem are called attracting
directions. Iterates of all z in a given A; approach the origin asymptotic to the
attracting directions contained in that particular A;, in the sense that if 6; is the
argument of the attracting direction in A;, then arg(¢™(z)) approaches 6; as n
approaches co. The iteration schema for various cases of the Flower Theorem is
given in figures 5.2 and 5.3.

Figure 5.2: The Flower Theorem in the m = 1 case. The arrows indicate the
direction of the iterates of $(z); iteration under ¥(z) proceeds in a direction conirary
10 that indicated by the arrows. The repelling petal is outlined with dotied lines.

The regions A; or. R; are sometimes called Fatou petals. The use of the terms
repelling and attracting, although standard, may be cause for some confusion. Ac-
cording to the Flower Theorem, the intersection of adjacent petals R; and A; is
not empty, hence a point may be in both a repelling region and attracting region,
which suggests that such a point both moves away from the origin and eventually
converges to it at the same time. Such a thing can, in fact, happen since iterates
of a point z in the intersection of R; and A; generally leave R; before converging
to the origin along a path which is asymptotic to the attracting direction in A;.

The following corollary to the Flower Theorem describes iteration in the case
where the derivative at a fixed point is an nth root of unity:

An open and connected region R is repelling if, for all z € R, ¢y™ (z) converges to 0, where 1/;(2) is
a local inverse of ¢(z) satisfying 1(0) = 0.
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Figure 5.3: A representation of the Flower Theorem in the m = 2 case.

Corollary 5.2 When ¢(2) is of the form.
#(z) = Az + amapr 2™+

where \* =1, ¢(z) is conjugate to a function of the form g(z) = Az + 2"+l ...
Thus ¢"(z) is conjugate to g"(2) = z + Bar+12™*+1. There are nk attracting Fatou
petals and nk repelling Fatou petals for ¢(z). Finally, each of the attracting petals
is fized by ¢"(z), and the set of nk attracting petals are permuted by ¢(2). If this
permutation is denoted by T, then T is composed of k cycles of length n.

The thrust of the corollary is that the petal structure for #(z) is identical to
that of g”(z). However, the iteration of ¢(2) is slightly different from that of g"(z),
since ¢[A;] C 4; no longer holds. Instead, if z € A; then ¢(z) € A;;x, for some
integer j. Thus, iterating by ¢(z) is, roughly speaking, akin to first iterating by

g"(z) and then followmg it with a rlgld rotation.

As noted above, if |¢'(0)] = 1 but ¢’(0) is not a root of unity, then the situation

is-a bit more complica.ted In some cases ¢(z) acts like an irrational rotation of the

-disk and in others it does not. The criterion for determining whether or not ¢(z)

acts like a rotation is number theoretic, and was first established by Carl Siegel
(1896-1981) in his paper [1942):

Definition 5.3 The quantity 8/2xr is not well-approzimated by rationals if there
ezist positive constants a,b such that for all rational numbers p/q
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Theorem 5.4 (Siegel) Let $(0) = 0 and ¢'(0) = €*. If8/27 is not well-approzimated
by rationals then there exists a locally defined enalytic function f(z) solving the

Schrider equation
£(8(2) = $(0)f(2).
The set of such 6/2x is of full measure on the unit circle.

This theorem implies that if the quantity /27 is not well-approximated by
rationals then ¢(z) does indeed act like an irrational rotation of the disk. It should
also be noted that in the event that ¢’(0) is a root of unity, no solutions to the
above Schréder equation exist. For a more detailed discussion of the standard
results consult Blanchard [1984], Milnor {1990] or Beardon [1991].

5.2 Lémeray

Leau’s thesis [1897] contains the definitive nineteenth century treatment concerning
the case where ¢/(0) is an nth root of unity. Indeed, it is the only such study cited
by Fatou and Julia. Lémeray, however, treated the ¢’(0) = 1 case two years earlier
in his paper [1895] and first announced results concerning the root of unity case
in his note [1896b]. There is little doubt that he influenced the subsequent study
of iteration in the ¢’(0) = 1 case, since his work was reviewed and announced in
various French mathematical publications in the mid-1890’s, and cited in Leau’s
thesis [1897] as well.

Lémeray, like almost all of those who wrote about the iteration of complex func-
tions in the 1890’s, was French. Early in his life he worked as a maritime engineer.
He also served as a calculator at an observatory in Algeria and later taught at the
College of Dieppe, where he was appointed professor at the age of 32. Besides
investigating the case where the derivative of the fixed point is one in modulus,
“Lémeray published several other short papers on various aspects of iteration includ-
ing analytic iteration [1898d] and numerical equation solving methods [1898b]. His
work also contains an early instance of a technique called graphical analysis which
is often used to treat iteration of real functions of one variable (see figure 5.4). In
figure 5.4 is a diagram from [1897c¢] in which he used this technique to illustrate the
iteration of & real function f(z) near a fixed point @ satisfying f'(a) = 1.

Lémeray began his paper [1895] by remarking that in studying the ¢'(0) = 1
case he was treating what was, after Grévy’s thesis [1894], the last of the cases
Koenigs excluded. Lémeray’s paper consisted entlrely of a demonstration of the
following theorem: =

Theorem 5.5 (Lémeray) Let ¢(z) be a complé:r function of the form

(2) = 24+ apmpr 2™ 4.
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NV 1
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o x e ol
Figure 5.4: An ezample of graphical analysis from Lémeray’s paper [1897c]. Here,
f(z) is real function, f(a) = a, f'(a) =1 and f"’(a) = 0. To follow iterates of x
(or z'), follow the vertical line emanating from x (or z').

If there exists a region A in which all points converge to the fized point 0 under

iteration, then
—-m

Jim (e ()" = (5.1)

- Am41
for all poinis z in A.

Most of Lémeray’s work was carefully argued. However, he occasionally failed
to rigorously ground his arguments. For example, the existence of the limit (5.1)
is predicated on the existence of an attracting region A, that is, one in which all
points converge to 0 under iteration by ¢(z). However, in his paper [1895] he did
not bother to prove that such a region actually exists, a shortcoming he did not

~fully remedy in subsequent papers.

Although Lémeray did not make explicit note of the fact, the limit at (5.1)
implies that, if A exists, then for large n

—-m

¢n(z) ~ T

) 5.2
y— (5.2)

which in turn suggests that iterates of points in A approach the fixed point asymp-
totic to the fixed directions given by the mth roots of —1/a,,41, which are the
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attracting directions given by the Flower Theorem (Theorefn 5.1). For example, for
the function ¢(z) = z + 2%, the fact that m = 1 and a3 = 1 (5.2) implies that

-1
¢n(Z) ~ T

Consequently, iterates of ¢(z) approach 0 asymptotically to the negative real axis.

Although Lémeray made no explicit mention that (5.1) implies that orbits ap-
proach the fixed point asymptotically to the directions given in (5.2), he hinted at
the implication by remarking that (5.1) was independent of the choice of z in an
attracting region A. Moreover, given the geometric bent of his later papers, it is
doubtful that this implication was lost upon him.

Although he still exhibited some carelessness in establishing the existence of
regions on which iterates of ¢(z) converge to 0, Lémeray showed in [1897¢] that in
the case where -

$(z) = 2+ amprz™t

a sufficiently small neighborhood D of the origin contains m distinct regions on
which ¢"(z) converges to the fixed point. These regions alternate with m regions
on which a local inverse of ¢(z) fixing 0 also converges under iteration to 0. The
diagram he used to represent D is given in figure 5.5. Unlike the decomposition
given by the Flower Theorem, Lémeray depicted adjacent regions as disjoint, so it
is unclear whether he realized in [1897¢] that most points in the repelling regions
also converge to 0 under iteration by ¢(z), a fact which Leau explicitly recognized.
Nonetheless, Lémeray’s papers collectively anticipate the Flower Theorem.

In his articles [1896b], [1897¢] and [1898a], Lémeray broadened his investigation
to include the case where the derivative at the fixed point is a complex root of unity
and anticipated the Corollary to the Flower Theorem. He announced in [1897¢] a
result he proved in [1898a], namely, that if

Boms
$(2) = e" ™z + agqr 29t 4o

then
¢"(2) = 24 Bappr2™H 4+

for some integer k. This result enabled him to use the iterative properties of ¢"(z)
to deduce those of ¢(z).

Contrary to the prevailing tradition, Lémeray considered no functional equa-
tions in his study of the case where #'(0) is d root of unity, although he-did study
functional equations in a somewhat different context in [1899a). In further contrast
to the majority of those who studied iteration in the 1800’s, Lémeray often sprinkled
his papers with diagrams, two of which I have included.
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Figure 5.5: A diagram from Lémeray’s paper [1897c] depicting the division of a
disc surrounding ¢ fized point a into disjoint regions of convergence and divergence
where ¢'(a) = 1 [1897¢:913]. According to Lémeray, iterates converge to the fized
point a on the non-shaded regions.

5.3 Leau’s Work

Leau studied at the Ecole Normale Supérieure and received his doctorate in April
1897. He spent most of his professional life teaching at the University of Nancy
and served there as Dean of the Faculty of Science from 1931-34. He published a
modest number of research papers over the course of his life, none of which were as
influential as his thesis.

Leau’s thesis [1897] was the most important work on iteration of complex func-
tions to appear in the 1890’s. In answering many of the remaining questions about
iteration near a fixed point, Leau’s thesis is also the last major French work to
concern itself with the local study of iteration. Although Lémeray and Grévy also
explored aspects of iteration that Koenigs did not, neither influenced further study
to the extent that Leau did. Leau’s thesis is also impressive for its breadth. Not
only did he study iteration in the case where ¢'(0) is a root of unity, but he also
investigated analytic iteration, iteration of functions of more than one variable, as
well as systems of simultaneous functional equations. Leau’s thesis, unfortunately,
offers a few problems along with its delights. His reasoning is occasionally obscure,
and his descriptions of results are sometimes confusing. These defects are present
in his treatment of what is the most important theorem of his thesis, Theorem 5.6,
a nascent version of the Flower Theorem.
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Although much of Lémeray’s work predated Leau’s thesis,"Leau’s influence
quickly eclipsed that of Lémeray, whose contributions to the study of complex dy-
namics have been largely forgotten. Neither Fatou nor Julia mention Lémeray, and
both incorrectly credit Leau with having initiated the study of the ¢’(0) = 1 case.
Perhaps the reason that Lémeray has faded into obscurity is that Leau’s work not

only duplicated and extended Lémeray’s studies, but is also closer to the prevailing -

trends of nineteenth century iteration theory since it included treatments of various
functional equations. Moreover, in contrast to Lémeray, who worked in Dieppe,
Leau worked amidst the French mathematical mainstream in Paris, and the fact
that his thesis was written under the guidance of Koenigs certainly did little to
hinder its dissemination.3

5.4 Leau’s Anticipation of the Flower Theorem
Like Lémeray before him, Leau treated the case where
é(z) = ewimiy 4 amy1 2™ 4.

by showing that
)=z + a,,k+lz"k+1 4+

As noted in the discussion following Corollary 5.2, this effectively reduces the case of
a complex root of unity to that of ¢'(0) = 1, followed by a rotation. Consequently,
in the remainder of this chapter, only the ¢/(0) = 1 case will be considered.

Leau’s anticipation of the Flower Theorem (Theorem 5.1) is equivalent to the
following:

Theorem 5.6 (Leau) Let ¢(z) have a Taylor expansion of the form
#(z) = 24 oy 2™ 4 -

Let y(z) be a local inverse of ¢(z) satisfying ¥(0) = 0. There exists a disc D
surrounding 0, such that all z € D converge to 0 under iteration by ¢(2), ¥(z) or
both functions.

The statement of this theorem has little of the geometric richness of the Flower
Theorem. In his proof, however, Leau claimed that in the m = 1 case, that is,
where

$(2) =24 az2® 4+,

3 Appell was the chairman of his examination committee while Emile Picard and Koenigs were
the other members. Picard and Appell, it is worth noting, served on the commission of the French
Academy of Sciences that awarded the 1918 Grand Priz de Mathématigues to Julia. Koenigs’
influence on Leau is underscored by the fact that Leau dedicated his thesis to him. -
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A and R are both cardioids, which is precisely the decomposition given by the
Flower Theorem (see figure 5.2). He included a sketch of such a cardioid in [1897],
which is reproduced in figure 5.6. Leau said little about the structure of these
regions in the general case except to remark that they may consist of disjoint pieces
“and may have a greater extent than one might realize [1897:33].”

Nonetheless, in his justification of Theorem 5.6, Leau treated a special family of
functions, F, given below at equation (5.3), whose properties under iteration might
well have suggested to Fatou and Julia the decomposition summarized in the Flower
Theorem. It was Leau’s intention to use functions from the family F to approximate
iteration by arbitrary functions. Although he failed to state his case with sufficient
detail and clarity, a fully detailed proof could be based on his approach. Indeed,
Julia’s proof of the Flower Theorem is in many respects a modification of Leau’s
approach (see Section 6.1).

Figure 5.6: Above is a diagram from [1897:32]. Leau claimed that the function ¢(z)
converges to 0 under iteration inierior o the cardioid OLM L', Ierates of ¢~ 1(2)
converge to 0 inierior to the cardioid OT'NT'. The arrow indicates the direction in
which forward iterales of ¢(z) travel for points in the upper-half of the interior of
the cardioid LOML'.
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The family of functions F referred to above consists of the functions A(z) deter-
mined by
m zm
A = — .
A =2 (5.3)
where m is a positive integer and h a non-zero complex constant. Leau resolved the
ambiguity involved in determining A(z) by requiring that A’(0) = 1. This constraint
is quite reasonable since a routine calculation shows that the derivative at 0 of any
of the mth roots of (A(z))™ must be a root of unity.
Given a fixed function of the form

#(2) = 24 amp 2™ 4,

Leau in essence set h = ma,, 41, where the m in (A(z))™ is the same m used in the
above expression for ¢(z). The function A(z) is ther analytic as long as 2™ # 1/h,
hence there exists a neighborhood D of 0 on which A(z) is analytic. Leau then
approximated iteration of ¢(z) in D by iterating A(z) and analytically perturbing
h slightly as the iterates ¢™(z) vary over D in order to refine his approximation.
Although Leau did not fully explain his reasons for using this approximation,
three reasons suggest themselves. First of all, both ¢(z) and A(z) are of the form

z+ Az™ 4

where A is a non-zero constant. Moreover, since b = mam41, A(z) and ¢(z) have
the same attracting directions, that is, iterates of both functions approach the origin
asymptotic to the directions ’

1

)
am41

m

which are given by the Flower Theorem and implied by Lémeray’s Theorem 5.5.%
Finally, the iteration schema for the functions in F is relatively simple. As will be
seen below, if m = 1 and % is held constant, then A(z) fixes a certain family of
circles; that is, for a circle v in this family of circles, A[y] C . Therefore, for a
point z on 7, iterates of A(z) remain on 7. In the general case, again for fixed h,
A(z) leaves invariant a certain family of 2m-leaf roses (see figure 5.7).

To create the cardioild OLM L' pictured at figure 5.6 for the function

#2)=z+4a2 4.,

Leau, in essence, set
z
M=) = el (5.4)

4Leau was aware of Lémeray’s theorem as well as the existence of attracting'directiona. He not
only gave an improved proof of Lémeray's theorem, but explicitly acknowledged that this result
implied that iterates must travel towards the origin along “certain lines [1897:34].”
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and perturbed a3 slightly in order to approximate iteration of ¢(z) by iteration
of A(z). Leau’s discussion of his perturbation is both obscure and complicated.
In order to indicate how he constructed the cardioid and at the same time avoid
burdensome detail, I will refrain from perturbing a; and show how to construct a
cardioid interior to which all points converge to 0 under iteration by (5.4).

Using properties of linear fractional transformations, it is not hard to show that
the function A(2) fixes a family of circles tangent at the origin to the line through
the attracting direction —1/a3, which in figure 5.6 is the line through M, A,0 and
N, hereafter denoted M A. Since both ¢(z) and A(z) share the same attracting
direction, points on these circles converge under iteration by A(z) to 0 along a path
tangent to M A.

The circle OL, which is the circle formed by the union of the solid semi-circle
OLE and the dotted semi-circle EO in figure 5.6, is one such circle, as is the circle
OL’ formed by the solid semi-circle OL’G and the dotted semi-circle GO. Since all
circles fixed by A(z) are themselves foliated by such circles, points interior to these
circles also converge to 0 under iteration by A(z). Iterates A"(2) of points 2 on one
of the fixed circles above M A converge to 0 in a clockwise manner; iterates of points
below M A do so in a counterclockwise direction.

The cardioid OLML’ (and its interior) is then formed by first rotating the
circle OL clockwise until it sits atop OL’, and then taking the union of all these
intermediary circles (as well as their interiors) between OL and OL’. Each point
interior to OLM L' converges to 0 under iteration by A(z) since it lies on one of
the circles tangent to M A which are fixed by A(z). The cardioid OTNT" is formed
analogously, and all points interior to it converge to 0 under iteration by A~!(z).

It was Leau’s intention to perturb h slightly and use the functions A(z) so created
to approximate iteration by ¢(z) and thereby demonstrate that all points interior
to the cardioid OLM L' also converge under iteration by #(z), to 0. Unfortunately,
he did not justify his contention with the detail and clarity one might wish.

One of the ways in which Julia’s proof of the m = 1 case improved upon Leau’s
investigation was to dispense with the latter’s technique of using iterates of the
function A(z) to approximate iteration by ¢(z) and offer a direct proof that points
interior to an equivalent family of circles converges to 0 under iteration by ¢(z).
Moreover, Julia carefully and explicitly generalized his own argument to the m > 1
case whereas all Leau did was briefly describe how the family F behaved and then
make the debatable claim that his argument “extends by itself” to arbitrary m

_[1897:31).

When m >1, Leau observed that for fixed &, the function A(z) 1>aves invariant a
family of 2m-leaf roses.® This family of roses, denoted R, foliates a sufficiently small
neighborhood of the origin, as indicated in figure 5.7. Each family of leaves from

®This follows from the m = 1 case, wherein A(z) fixes a circle, because z/(1 — hz) is conjugate
to z" /(1 — hz") via the map z — 2" and sets which are invariant under iteration are preserved by
conjugation. Although he did not explicitly note this conjugation, it is perhaps because of it that
he felt his argument extended “by itself.”
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Figure 5.7: The functions A(z) leave a family of 2m-leaf roses invariant under
iteration. The m = 2 case is presented here. The arrows indicate the direction in
which. the iterates travel along the leaves of a particular rose. The family of leaves
v referred to in the text is the family of leaves in the upper-right quadrant, and the
family 41 is the family in the lower-right quadrant.

R is sandwiched between an attracting direction of A(z) and a repelling direction.
These roses can also be decomposed into m pairs of adjacent leaves, each of which
is separated by an attracting direction. In figure 5.7, the family of leaves in the
upper-right quadrant, which will be referred to as v, and the family in the lower-
right' quadrant, called ¥;, form such a pair. Moreover, points on both v and v,
converge to 0 under iteration by both A(z) and an appropriately chosen-inverse.

While Leau did not do so, the attracting and repelling Fatou petals given by the
Flower Theorem can be obtained without too much difficulty from the family R.
For example, an attracting Fatou petal A; for the function A(2) can be formed by
first selecting one of the pairs of adjacent families of leaves from the roses R which
are separated by an attracting direction (for example, the leaves v and 41) and then
enclosing the pair with a curve I as indicated in figure 5.8. Since all points interior
to T lie on a leaf in R, all points inside T' converge to 0 under iteration by A(z).
Therefore the interior of I' is an attracting Fatou petal A; for A(z). A repelling
petal is formed in an analogous manner from adjacent families of leaves separated
by a repelling direction. .

It is not unreasonable to suspect that Fatou and Julia each deduced the structure
of the attracting and repelling petals from Leau’s discussion in much the same
manner, and then went about their respective ways developing a proof. As in the
m = 1 case, Julia’s proof, although along the same lines as Leau’s, dispensed with
the approximating functions and directly formed the attracting and repelling petals
given in the Flower Theorem. Fatou’s proof, on the other hand, does not appear
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Figure 5.8: The families referred to in the text as v, and v can be enclosed in a
curve I' whose interior is an attracting Fatou petal for A(z)

to be rooted in Leau’s approach, yet he nevertheless depicted the attracting and
repelling regions in the m = 1 case as cardioids and used a petal structure identical
to that given in the Flower Theorem for the general case. Before discussing Fatou’s
and Julia’s proofs, I will briefly examine Leau’s use of functional equations.

5.5 rLeau and Functional Equations

Although Leau at times seemed to solve functional equations in a pro forma bow to
tradition, he also used them in an attempt to obtain a geometric picture of iteration
in the neighborhood of a fixed point 0 in the general case where |¢/(0)] < 1. He did
this by constructing arcs y(¢) which are invariant under iteration by ¢(z), that is,
¢[¥(t)] C ¥(t). These arcs were implicitly defined via an analytic iteration function
®(t, z) of the sort used by Schroder (see equation (2.5) in Section 2.2), where t is a
non-negative real number and z is complex.

Leau constructed these arcs y(z) in all cases except the case in which the deriva-
tive of the fixed point was one in modulus but not a root of unity. He did so via
functional equations solved by Grévy in the ¢/(0) = 0 case (equation (4.7)), Koenigs
in the 0 < |¢'(0)| < 1 case (the canonical Schrder equation) and himself in the case
where ¢'(0) = 1. In the last case, Leau solved the Abel equation f(¢(z)) = f(2)+1,
not on a neighborhood of 0, but in sufficiently small neighborhoods of points near
0, thereby avoiding multi-valued solutions to the Abel equation.

In his construction of these arcs Leau was forced to confront the fundamental
shortcoming of the nineteenth century study of iteration, namely, its local nature.
In each instance, he defined the arc ¥(t) in terms of solutions to functional equations




74 CHAPTER 6. ITERATION IN THE 1890°S: LEAU

which, without exception, were defined locally. As Leau explicitly hoted, the curves
7(t) could therefore only be constructed locally [1897:67]..

Leau’s failure to establish a global approach, like Koenigs’ failure before him,
did not stem from a lack of interest. -As was noted during the discussion of his work,
Koenigs lamented his inability to divide the plane into regions of convergence, that
is, into regions where each point converges under iteration by ¢(z) to the same
attractive orbit, and expressed doubts that such a division was even possible. In
sentiments which echo the pessimism of Koenigs, Leau noted that

The problem of extending the solutions [to functional equations] reduces
to the problem of the division of the plane into regions which are trans-
formed into one another [which is] without a doubt impossible in the
general case ... [1897:55].

Chapter 6

The Flower Theorem of
Fatou and Julia

6.1 The Approaches of Fatou and Julia

Julia studied the case where ¢'(0) = 1 in his lengthy Mémoire sur Iiteration des
fonctions rationnelles published in 1918, which was his principal work on the theory
of iteration. Fatou discussed this case in the even longer Sur les équations fonction-
nelles which was published in three parts in 1919 and 1920. Each of these works
represents a fresh and innovative approach to the study of iteration. Although the
work of Fatou and Julia will be discussed at length in Chapter 11, I will discuss
their contributions to the ¢’(0) = 1 case in the present chapter, somewhat out of
chronological order. However, before discussing their respective approaches to the
#'(0) =1 case, it will be worthwhile to say a few words regarding the scope of their
studies of iteration.

Unlike the works of their predecessors, Fatou and Julia were able to describe the
iteration of arbitrary complex functions beyond the neighborhood of a fixed point.
Their success in developing such a global approach was due in large measure to
their application of the theory of normal families, which Paul Montel (1876-1975)
articulated in a series of papers published in the second decade of the twentieth
century (see Chapter 8). Their reliance on Montel’s work also accounted for a
certain similarity of approach, despite their considerable stylistic differences.

One instance where this similarity in approach did not hold was in their dis-
cussion of the ¢’(0) = 1 case. This difference is due not only to the fact that the
Flower Theorem does not call for the theory of normal families, but also because
Fatou and Julia looked at this particular case from substantially different vantage
points. Where Julia apparently drew upon Leau’s work, Fatou took an entirely
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fresh approach.

6.2 Julia’s Proof of the Flower Theorem

As noted above, Leau’s anticipation of the Flower Theorem, Theorem 5.6 above,
asserts that if

$(2) = 2+ amprz™ -
then a sufficiently small neighborhood of 0 can be decomposed ‘into sets A and R
such that all points on A converge to 0 under iteration by ¢(z}, and all points on
R converge to 0 under iteration by an appropriately chosen inverse of ¢(z).

As the Flower Theorem asserts, Julia rigorously showed that A and R are car-
dioids in the m = 1 case, and that when m > 1, A and R each consists of m petals.
His construction of A in the m =1 case is as follows.

Given a function ¢(z) of the form

d(2) =24+ g2+,

Julia constructed the region A by finding sufficient conditions that a point 8 near,
but not equal to, 0 is surrounded by an open disc on which all points converge to
0 under iteration by ¢(z). All points in the union of these discs taken over all such
f consequently converge to 0. It will be seen that this union forms a cardioid-like
region.

Julia’s first step was to define the open disc

Ap={z:]z- 8| < 18]},

and seek conditions on B for which ¢[Ag] C Ap. To this end, he proved the following
theorem.

Theorem 6.1 (Julia) Let arg(a;) = 0. Then there exists a p > 0 such that if
18| < p and arg(B) = w satisfies
T 3
—_—— — =0, 6.1
2 f<w< ) (6.1)

then ¢[Ag] C Ag.

Julia next used the following generalization of Schwarz’s Lemma, which he also
proved in [1918], to show that if $[As] C Ag, then all z € Ay converge to 0 under
iteration by ¢(z) {1918:150-52]: :

Theorem 6.2 Let ¢(z) be an analytic function such that on a disc D,
¢é[D] C D.

Suppose as well that in the closure of D, there is a unique fized point z of ¢(z) such

that 0 < |¢'(x)] £ 1. Then all poinis in D converge lo z under iteration by ¢(z).
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Figure 6.1: Taking the union of the discs Ag, indicated by the dotted curves, Julia
formed a cardioid-like region A on whick iterates of ¢(z) converge to 0.

Julia actually used this generalization of Schwarz’s Lemma a number of times
-n [1918]. This generalization is not at all necessary to the study of iteration—for
example Fatou did not use it— but it is quite useful. Moreover, Julia’s use of it is
illustrative of his incorporation of general results from the theory of functions.

Julia observed that the union of the discs Ag, where 3 satisfies the hypothesis of
Theorem 6.1, forms a figure which he termed “reminiscent of a cardioid,” interior to
which all points converge to 0 under iteration by ¢(z) [1918:288]. This construction
is indicated in figure 6.1.

It certainly seems quite likely that Julia’s approach was influenced by Leau’s
construction. Not only did Julia cite Leau’s work, but both constructed their car-
dioids by taking a union of a family of discs. Of course, the families involved differed,
and Julia’s construction was far more direct and precise. Nonetheless, the actual
cardioids are virtually identical and their method of construction quite similar.

This similarity persists in the m > 1 case. Let arg(om41) = 0 and let w satisfy

T 3r
-2——0<mw<7—€.

Julia then showed that in each of the m sectors so defined, a family of open ovals
bisecting the ray arg(z) = w can be constructed interior to which all points converge
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to 0 under iteration by ¢(z). The union of these ovals taken over'all w in a given
sector forms one of the m attracting petals called for by the Flower Th.eorgm (see
figure 6.2). The repelling regions are constructed analogously by considering the

inverse (z) rather than ¢(z).

Figure 6.2: Julia formed an atiracting petal A; in the m = 2 case by taking the
union of a family of ovals.

6.3 Fatou’s Proof of the Flower Theorem
Fatou constructed the attracting petals A; for the function

$(2) = 24+ ampr 2™+

by mapping a certain sector of angle 27/m from a nei.ghborhc?od N ‘of Fhe fixed
point 0 onto a neighborhood of N* of co via the following conjugacy which maps

the fixed point 0 to co:
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¢
N N
L 1
zm zm
N~ ¢ N*

Fatou then showed that iterates of #*(2) converge to oo on a subset D* of N~
and formed the attracting petal 4; of #(z) by mapping D* back to the origin via
an appropriate inverse of 1/z™. The technique of treating a fixed point at co by
mapping it to 0 via the map z — 1/z had been suggested by Koenigs in his paper
[1883]. Fatou’s proof thus relied on a novel twist of this old technique.

In the m = 1 case Fatou mapped a neighborhood N of the origin to a neighbor-
hood N* of co via the map z + 1/z. Hence if ¢(z) is of the form

#(z) =z 40z + .-,
then the function ¢*(z) is of the form
. 1
7)) =
Y= 5w

which yields

¢*(z)=z_a2+%+:i§.+...
=z+4+a+g(z),

where @ = —a3, and g(z) is the function

It may be assumed without loss of generality, by rotating the plane by arg(az) if
necessary, that a is a positive real quantity.

Since lim; o g(z) = 0, the function g(z) is analytic on N* of 0o, and the
maximum modulus u of g(z) occurs on the boundary of N*. Shrinking N* if
necessary,-it can be assumed that [g(z)| < u < a for all z € N*.
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ez

Figure 6.3: The disc pictured has center z + a and radius u. Since ¢*(2) = z+a+
9(2), and |g(z)| < u < a, ¢*(2) must lie in the interior of the disc. Thus, ¢*(z) is
always to the right of z for all z in N*.

The function ¢*(2) has a fixed point at co. Iteration by ¢*(z) on N* acts quite
a bit like horizontal translation by a. To see this, let z € N*. Since

¢"(2) =z +a+4(2),

and g(z) approaches 0 as z approaches co, the effect of the g(z) term is negligible
for large 2, in which case ¢*(z) ~ z + a.
If ¢*(z) is also in N*, then

$*%(2) = ¢"(2) + a+ 9(4"(2))
=z+2a+g(z+ a+ g(2)),

and the effect of g(z) is even less, since |z + a + g(z)| > 2z due to the fact that on
N*(z), a >|g(z)|. Continuing in this manner we get,

n
$"(2) = z+na+glz+(n—D)a+)_ g(¢" ()], (6.2)
i=1
provided ¢*!(z).€ N* for i < n. )

There is no guarantee however, that ¢**(z) is in N*. But by making a geometric
observation, a half-plane A* contained in N* can be found in which ¢*(z) is in A*
whenever z is. Since |g(2)} < u on N*(2), the fact that ¢*(2) = 2+ a + g(z) implies
that ¢*(2) is interior to a disc of radius u centered at z+ a (see figure 6.3). Since
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Figure 6.4: The region interior to the cardioid D is the image of the region D*
exterior to the parabolic curve under z — 1/z depicled in the previous figure. The
disc A interior to D is the tmage of the interior of A* under z — 1/z. The regions
D' and A’ are the corresponding repelling regions. This diagram is from [Fatou
1919:205].

u < a, it also follows that ¢*(2) is always to the right of z on the extended complex
plane. Using these facts, a complex quantity w € N* with Re(w) > 0 can be found
such that if Re(z) > Re(w) = r, then Re(¢*(2z)) > r. Thus if A* is defined as the
half-plane where Re(z) > r, it follows that if z € A* then ¢*(z) is as well, hence
¢*[A*] C A*. Mapping D* back to the origin via z — 1/z produces a cardioidal
region D with 0 as its cusp point. Fatou’s representation of D and A are given in
figure 6.4,

It can also be shown that the sum in equation (6.2) is negligible. Thus, since

- na goes to co with n, it follows that ¢*™(z) converges to oo for all z € A*. In other

words, for large n, ¢**(2) is approximated by z+na and iteration by ¢*(z) amounts
to repeated translation by a. )

The image under z — 1/z of the set A* with the point at co removed is an
open disc A with 0 as boundary point. Since points in A* converge to co under
iteration by ¢*(z), it follows that all points in A converge to 0 under iteration by
#(z). Fatou’s construction of A is therefore analogous to Julia’s construction of a
disc Ag on which ¢™(z) converges to 0.
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Figure 6.5: Fatou formed the atiracting region D by mapping the region D* exterior
to the parabolic curve M'B'BM into a neighborhood of the origin via the map
z+> 1/z. This diagram is from [Fatou 1919:194].

Unlike Julia, however, Fatou did not construct his cardioid by taking a union of
discs. Instead, Fatou observed that A* is actually a rather conservative estimate of
the set of points which converge to co under iteration by ¢*(z). He was therefore
able to extend this set from A* to a region D*. The region D* is depicted in figure
6.5.

Fatou generalized this approach to the case where m > 1. The principal differ-
ence in this instance is that D* maps back to an attracting petal A4; given in the
statement of the Flower Theorem.

Although Julia avoided functional equations in [1918], apparently as a reaction
to what he considered an undue emphasis on them in previous studies, Fatou’s
investigation of the ¢’(0) = 1 case led him to the Abel equation

f(8*(2)) = £(2) + a, (6.3)
where a is the constant used above in the expression
¢"(z) =zt a+g(2) ’ (6.4)

It is interesting that Julia avoided functional equations in this particular case since
he strove for a certain modernity in his work, and the Abel equation has turned out
to be very useful in the contemporary study of fixed points with multiplier one.
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In any event, Fatou’s treatment of the Abel equation is based on the approxi-
mation ¢*(z) & z+ a for large 2, which, as was noted above, suggests that iteration
of ¢*(2) is very much like repeated translation by a. This in turn suggests the Abel
equation, since an analytic solution f*(z) to equation (6.3) would reduce iteration
to repeated translation.

In equation (6.4) the function g(z) approaches 0 as z approaches co. This
enabled Fatou to construct an analytic function f*(z) satisfying equation (6.3) on
the interior of the set D* defined above. Mapping this solution back to the attracting
region D, he was able to solve

f(#(2)) = f(z) +a

interior to D.

In light of the attention given to the problem of analytic iteration in the nine-
teenth century study of iteration (see Section 2.2), it is worth noting that Fatou
observed that his solution of the Abel equation led to the solution of “the prob-
lem of analytic iteration” since on the disc A contained in D, the function f(z) is
one-to-one, and therefore [1919:203]

¥ (z) = f"l(f(z) + wa).




Chapter 7

Fatou’s 1906 Note

7.1 Introduction: Local Versus Global Studies of
Iteration

Previous to Pierre Fatou’s note “Sur les solutions uniformes de certaines équations
fonctionnelles,” which appeared in the Comptes rendus of the French Academy of
Sciences in 1906, studies of iteration focused on a given analytic function ¢(2) in the
vicinity of an attracting fixed point.! Although much was known about the behavior
of ¢(z) under iteration near a fixed point, little was known about the global behavior
of such functions, that is, the behavior of the iterates of an arbitrary point in the
extended complex plane.

What was known about the global behavior was limited to various special cases.
For example, Cayley and Schrdder independently classified the iterates of arbitrary
points for the Newton’s method function N(z) for the complex quadratic ¢(z). Both
men showed that if the roots of ¢(z) are distinct then all points on a particular side
of the perpendicular bisector L of the roots converge under iteration by N(z) to
the root on that side of L. They also showed that L is invariant under iteration by
N(z), that is, that N[L] C L.? In addition to the studies of Cayley and Schrdder,
the global iterative properties of a linear fractional transformation (LFT) are easily
determined and had been known for quite some time. The global description of the
behavior of an' LFT under iteration relied upon properties unique to linear maps,
such as the fact that the n-fold composition of an LFT with itself is still an LFT,
and consequently shed little light on the iteration of other functions.

1An attracting fixed point = satisfies [¢’(z)| < 1, and there exists an open disc D surrounding
z on which limp—oo ¢™(2) = z for all z in D. Koenigs studied the behavior of a function ¢(z) in
the vicinity of its fixed and periodic points in great detail in his papers [1883], [1884] and [1885).
His work is discussed in Chapter 3.7.

2See Chapter 1 for a detailed account of contributions of Cayley and Schroder.
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Fatou’s note [1906a] represents the first global study involving the iteration of a
general class of complex functions, namely, rational functions whose only attracting
orbit is a fixed point.? This restriction to the consideration of rational functions,
that is functions which are the quotient of two polynomials, is in keeping with his
emphasis on the global, since rational functions are the only functions which are
analytic on the entire extended plane.

Fatou showed that under certain hypotheses, the iterates of a rational function
with a unique fixed point converge to that fixed point on the entire extended complex
plane except for a totally disconnected perfect set J.* Fatou’s proof of this fact relied
heavily on set theory and signaled the introduction of sophisticated set theoretic
techniques into the study of iteration. It should be emphasized, however, that even
though this result completely describes the iteration of a wide range of functions,
the functions he studied are of a specific nature since they have a unique attracting
fixed point.

7.2 The Lack of Set Theory in Koenigs’ Work

The lack of knowledge in the late nineteenth century regarding the global properties
of iteration did not reflect a lack of interest. As noted in previous chapters, both
Koenigs and Leau expressed a desire to find the maximal set of points which under
iteration limit upon the fixed points or the periodic points of a given function.
Koenigs in effect held up Cayley’s success with Newton’s method for the quadratic
as a model to which studies of iteration might aspire [1884:541]. Koenigs also
observed, however, that while partitioning the plane into convergence regions is an
important problem, it is a very difficult one, and he confessed that he had made
virtually no progress on it [1884:540].

In order to discuss Koenigs’ attempt to divide the entire plane into regions
according to their behavior under iteration of a given function ¢(z), it is necessary
to introduce some notation. Let P = {zo,..., Zp—1} denote an attracting periodic
orbit. If there is more than one periodic orbit, denote them by P;. The maximal
set of points on the Riemann sphere converging to P under iteration by ¢(z) is
denoted Ap. The set Ap is often called the total domain of attraction or the basin
of attraction for the periodic orbit P. A point in Ap is said to be attracted to the
orbit P.

3A point z¢ is periodic with period p > 1 if p is the smallest integer such that ¢P(z¢) = zg;
such a ‘point is also often referred to as a period p point. A fixed point then is a petiod 1 point.
A periodic orbit is the set {o,...,7p_1}, where z; = ¢'(zp). The quantity f;(qbp(:c.-)) =Mis
independent of the choice of z;, as can be easily verified via a routine calculation involving the
chain rule. A periodic orbit P.is termed attracting if |M| < 1; likewise, a point z is said to be
attracted to a periodic orbit P if the limit points of the set {¢™(z) : n = 1,2,...} equals the set
P.

*A set is totally disconnected if its components are single points. It is perfect if it equals the
set of its limit points.
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The difficulties which Koenigs encountered in attempting to partition the sphere
into domains of attraction Ap, are twofold. First of all, determining the sets Ap,
in general requires sophisticated set theoretic techniques. It is no exaggeration to
say that Koenigs, and those who followed him in the nineteenth century study of
iteration, operated without a theory of sets. More will be said about this matter
shortly, but in Koenigs’ time at least, set theory was not a standard part of the
French study of mathematics.

The second difficulty Koenigs encountered came with his observation that as n
ranges from 1 to infinity, the set of equations

¢"(z) =2

may have infinitely many solutions, thus, the function ¢(z) might well have infinitely
many periodic orbits. Koenigs feared that the existence of infinitely many periodic
orbits implied that there would in general be infinitely many atiracting periodic
orbits, hence the division of the plane into regions Ap, would be quite complicated.
On one hand, such fears were largely unfounded since both Fatou and Julia later
showed that for a rational function ¢(z), the number of attracting orbits is finite
(see Corollary 11.10). ‘

On the other hand, Koenigs was correct in assuming that the division of the
Riemann sphere into regions of attraction might be quite complicated since Fatou
and Julia showed as well that a set Ap, can consist of infinitely many components.
Koenigs was also correct in assuming that the problem of classifying regions of the
sphere according to their behavior under iteration is an important one, since in
many respects this could be regarded as the ultimate goal of the studies of Fatou
and Julia, and of complex dynamics as a whole.

In illustrating the problems involved in delimiting the entire basin of attraction
for a fixed point, I will assume that the periodic orbit P consists of a single fixed
point  and will denote its basin of attraction by A;. The ideas discussed below
generalize to the case where P is an orbit of period p via consideration of the
function ¢°(z).

Recall that both Schroder and Koenigs showed that if a given function ¢(z) has
an attracting fixed point z, then an open disc D can be found such that for all z
in D, the orbit of z converges under iteration to z. One possible way to determine
the basin of attraction A; would be to consider the union of the preimages of D
under ¢"(z), as n goes to infinity. Indeed, Fatou’s 1906 note was based on such an
approach.

However, the determination of the set A, via this approach would have presented
tremendous difficulties to Koenigs and his nineteenth century compatriots because
of their unfamiliarity with set theory. Their work is devoid of all but the most
rudimentary set theoretic or topological notions. There is little use of the concepts
of open or closed sets, and the boundary of a set is never defined. The types
of sets considered are rather tame by contemporary standards, and there is no
mention whatsoever of nowhere dense or totally disconnected perfect sets. As will
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be indicated below, the latter occur naturally in the study of iteration. Finally,
nowhere in the studies of Koenigs and his nineteenth century successors are infinite
intersections or unions considered.

7.3 Fatou’s Application of Set Theory

Fatou was evidently the first to apply set theoretic and topological techniques to
the iteration of complex functions. It may seem surprising, in light of the fact that
modern set theory began with Georg Cantor’s work in the 1870’s, that it took so
long for someone to think to apply such notions to the study of iteration, but bear
in mind that around the turn of the century, the study of the dynamics of complex
functions was primarily a French activity, and the French as a whole were quite
slow to appreciate Cantor’s work.

This contrasted with the situation in other European countries, especially Italy
and Germany, where Cantor’s work was embraced and extended by many mathe-
maticians in the 1870’s.and 1880’s.5 Yet, despite the appearance of French trans-
lations of several of Cantor’s papers in Acta Mathematica in 1883, it was not until
the 1890’s that topology and set theory began to take root in France.

One of the earliest French examples of a set theoretic treatment of a mathe-
matical idea was Camille Jordan’s (1838-1922) concept of inner and outer content,
which he presented in the first volume of the second edition of his Cours d analyse
de VEcole Polytechnique, published in three volumes over the years 1893-96. As
the following remark indicates, Jordan evidently helped familiarize Henri Lebesgue
(1875-1941) as well as a number of other young French mathematicians, including
Emile Borel (1871-1965) and René Baire (1874-1932), with various set theoretic
notions:

.In having incorporated aspects of the theory of sets into his course at
the Ecole Polytechnique, Jordan, in a sense, rehabilitated this theory:
he affirmed that it was a useful branch of mathematics. He in fact did
more than affirm it, he proved it through his researches on integration
and on the measure of areas and sets, which along with his studies on the
rectification of curves, trigonometric series and analysis situs, prepared
the way for certain works, mine in particular {Lebesgue 1922:16).

Borel, in his Legons sur la théorie des fonctions published in 1898, was the first
French mathematician to systematically apply Cantorian notions to the theory of
complex functions. Indicative of the novelty of his approach is the following remark
taken from the introduction:

5 Among those influenced by Cantor's work were the Italians Ulisse Dini, Giulio Ascoli, Vito
Voltera and Giuseppe Peano, the Swede Ivar Bendixson, and the Germans Paul du Bois- Reymond
and Axel Harnack. See, for example, [Dini 1878], [Ascoli 1883], [Voltera 1881], [Peano 1887),
[Bendixson 1883}, [du Bois-Reymond 1882) and [Harnack 1881).
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. it seems to me that it would be useful to expound upon, in an
elementary way, certain relatively recent, but very important, advances.
Among these is the theory of sets with which I begin this book [1898:vi-

vii].
Borel’s subsequent discussion involved such notions as the cardinality of infinite
sets, derived sets, the Borel compactness thedrem and the concept of the measure
of sets. Moreover, it is clear from the way in which he discussed these matters that
he felt he was expounding upon a subject with which his audience might not be
very familiar.

Baire applied Cantorian notions to the study of real functions in three notes
published in Comptes rendus [1897], [1898a] and [1898b], as well as in his thesis
[1899]. Lebesgue, drawing in large part upon the work of Baire, Borel and Jordan,
created his theory of integration and measure, which he presented in his thesis
[1902], as well as in several notes in Compies rendus between 1899 and 1901.

However, the conviction that rigorous topological and set theoretic notions were
particulatly useful tools in the study of analysis was not shared. by all French math-
ematicians. Indeed, there was a certain reluctance among many of the old guard
to embrace the new ideas contained in the works of Baire, Borel and Lebesgue.
Reflective of this attitude is the famous remark Charles Hermite (1822-1901) made
in.a letter to Thomas Jan Stieltjes (1856—1894): “I turn away with fright and
horror at the lamentable plague of functions without derivatives [Hermite-Stieltjes
1905,11:318].”

This antipathy towards many of the strange and intriguing ideas contained in
the work of this new generation of French mathematicians is reflected in another
oft-quoted remark:

The horror manifested by Hermite is shared by nearly everyone, and 1
can scarcely take part in a mathematical conversation without encoun-
tering an analyst who says to me, “This will not interest you, it concerns
functions which have a derivative,” ... [{Lebesgue 1922:99-100].

Fatou was one mathematician who did not share the horror of Hermite. He had
the good fortune to be at the Ecole Normale in the first years of the new century
and was drawn to the new mathematical ideas being discussed there. Lebesgue
supervised his doctoral thesis [1906b], and Fatou spoke warmly about his advice
and encouragement [1906b:338]. The influence of Lebesgue is evident in Fatou’s
thesis, which treated the convergence of series from the point of view of Lebesgue’s
theory of integration, and included a proof of what is commonly referred to as
Fatou’s Lemma.

The fresh approach Fatou brought to the study of iteration is a favorable con-
sequence of the movement led by Lebesgue, Borel and Baire, and serves as confir-
mation that so-called pathological objects studied by Lebesgue and others do occur
in the normal course of events. Fatou’s note [1906a] not only demonstrated that
totally disconnected perfect sets occur naturally in the study of iteration, but in
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what was perhaps a rejoinder to the Hermitian point of view, he suggested that
curves which lack tangents at infinitely many points do as well. This suggestion
came in the form of an example, namely, the function

b= 225,
which has attracting fixed points at 0 and co.

Fatou claimed that the basins of attraction for these two fixed points were sep-
arated by what he termed a non-analytic curve, by which he presumably meant
a curve with no tangents on a dense set of points [1906a:548]. He claimed that
this situation was by no means exceptional and that for many functions, basins of
attraction were separated by such curves. He went on to state that the reasoning
he provided for the special case of ¢(z) could be applied to the general case. How-
ever, his argument for the special case was a bit unclear, and he gave no specific
indication of what the general case might be. He may well have been aware of
the defects of this early approach, because when he returned to this example near
the end of World War I, he approached it from a completely different viewpoint,
and gave sufficient conditions that the boundary curve of a basin of attraction be
non-analytic, thereby providing a convincing argument that such curves were quite
typical {1920b:240). :

In light of the above discussion, Koenigs’ evident unfamiliarity with set theory
is to be expected. Nor should it seem too surprising that Leau did not employ
set theory to his study [1897] despite the fact that he received his doctorate from
the University of Paris in 1897, at a time when revolutionary developments in the
subject were going on right around him. ‘Rather, it should reinforce the fact that
the study of set theoretic and topological notions was by no means a standard part
of the French mathematical canon in the waning years of the nineteenth century.

7.4 Pierre Fatou

Born in 1878, Fatou died in 1929. He studied at the Ecole Normale Supérieure
from 1898 to 1901 and received his doctorate from the University of Paris in 1907.
From 1901 until his death Fatou worked at the Paris Observatory and in 1928 was
appointed its Titular Astronomer. According to Nathan, the reason Fatou worked
at the Paris Observatory rather than at a university is simply that there were not
many positions in mathematics available in Paris around the turn of the century
[1980:547).

Despite his important contributions in several areas of mathematics, Fatou was
not terribly prolific, especially in the early years of his career. Perhaps due to
his responsibilities at the Paris Observatory, his mathematical output was rather
meager for a number of years following his thesis. For the years 1907-1916, the
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listing for Fatou in Poggendorff [1922] cites only his thesis and two short papers on
the convergence of series which apparently grew out of his thesis.

Fatou’s Comptes rendus note on iteration [1906a) was the only work Fatou pub-
lished on iteration until 1917. One wonders whether, as is the case with many notes
which appeared in Comptes rendus, Fatou intended to quickly follow [1906a] with
a research paper detailing and expanding upon the results sketched in his note.

Fatou’s return to the subject of iteration near the end of World War I seemed
to spark a creative burst. He published four notes in Comptes rendus on iteration
in 1917-1918, and shortly thereafter published a major work on iteration, his Sur
les équations fonctionelles, which appeared in three parts as [1919, 1920a, 1920b].°
Fatou’s mathematical output picked up considerably after the publication of these
last papers, and in the 1920’s he published several articles on a wide range of subjects
including the theory of iteration, algebraic functions, multi-valued functions and
astronomy.

7.5 Fatou’s 1906 Note

Several factors suggest that Fatou saw his note [1906a} as a continuation of Koenigs’
work in both iteration and functional equations. For example, in [1906a] Fatou r(.efers
to Koenigs’ fixed point theorem, as well as his solution to the canonical Schréder
equation

B(4(2)) = ¢'(0)B(2)

in the neighborhood of an attracting fixed point 0. Later, in his Notice sur les
travauz scientifiques, Fatou discussed what he referred to as Koenigs’ “remarkable”
work, and observed that, subject to ¢(z) satisfying certain hypotheses, he was able
in [1906a] to extend Koenigs’ local solution of the canonical Schroder equation to
the entire plane, except for a totally disconnected perfect set [1929:17].

Fatou also observed in [1929] that Koenigs based the solution of several other
functional equations on the Schroder equation, and that his own results extended
to those functional equations as well. This echoes sentiments expressed in [1906a],
where he remarked that his extension of Koenigs’ solution to the Schroder equation
applies to the Abel equation as well as to other “equations considered by Koenigs
[1906a:547}.” S

Fatou’s success with the Schroder equation in [1906a] turned upon his skills in set
theory which gave him the means to describe the global behavior under iteration of
a certain class of rational functions. Particularly useful was his familiarity with the
technique of taking infinite intersections and his knowledge of totally disconnected

8This work was most likely Fatou’s response to the French Academy of Sciences' announcement
in 1915 that its 1918 Grand Priz des Sciences mathématiques, as well as 3000 francs, was to be
awarded to the best work it received concerning the study of iteration. Julia was a.wardt'ad the
Grand Priz, but the Academy did award Fatou a prize of 2000 francs for his work in iteration.
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perfect sets, henceforth abbreviated as TDP sets. The TDP sets which Fatou
described in [1906a] are a complex analog of real, one dimension TDP sets which
are often called Cantor sets. Cantor’s middle-thirds construction was, however, by
no means the first TDP set. The first such set appeared in Henry J. Smith’s (1826~
1883) paper [1875], and in the early 1880’s, Paul du Bois-Reymond (1831-1889) in
his paper [1880] and Vito Voltera (1860-1940) in his paper [1881], each apparently
unaware of Smith’s paper, constructed real TDP sets. It was not until 1883 that
Cantor presented his famous middle-thirds construction.? Knowledge of these sets
was slow to disseminate, and there seem to be few, if any, examples of TDP sets
in French mathematics at the time of Koenigs’ work in iteration. With the work
of Lebesgue at the turn of the century, there were numerous examples of real, one
dimensional TDP sets by the time Fatou’s note on iteration appeared in 1906.

Two dimensional TDP sets were another matter altogether. Indicative of the
fact that not much was known about two dimensional TDP sets in the first years of
the twentieth century, is the following quotation from Ludvic Zoretti’s entry on set
theory in the 1912 French edition of the Encyclopédie des sciences mathématiques
pures et appliquées:

>

Totally disconnected sets have not been well studied until recently.
... Certain properties of these sets have a paradoxical allure. The most
simple examples are furnished by one dimensional nowhere dense perfect
sets. The two dimensional variety, however, constitute a very curious
grouping of points [1912:142].

Fatou contributed greatly to the knowledge of two dimensional TDP sets in his
note [1906a] where he showed that TDP sets turn up frequently in the study of the
iteration of complex functions. Fatou claimed that for a class of rational functions
typified by the family

¢i(2) =

z
2842’

_ the set of points J which iterate neither to an attracting fixed point nor to an

attracting periodic orbit form a TDP set.® Fatou, in fact, sketched a proof of the
following theorem, presented here in a somewhat more contemporary fashion than
what is found in [1906a).

Theorem 7.1 (Fatou) Let the function ¢(z) be a rational function of degree strictly

. greater than 1 which has a unigue atiracting fized point, which, without loss of gen-

erality, can be assumed to be 0. Suppose as well that there exists a neighborhood of
0 which contains all the critical values of #(z) and on which all points converge to
0 under iteration.® Then the set of points J on the Riemann sphere which do not

"The interest of Smith, du Bois-Reymond and Voltera in real, one-dimensional TDP sets was
motivated by their researches in integration. See Hawkins [1975] for more detail. Cantor, who was
aware of previous constructions of TDP sets, produced his middle-thirds set in [1883:590] as an
example of a perfect set that was not an interval. .

8For arbitrary functions, the set J is nowadays called the Julia set.

9 A critical value is the image of a critical point.
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converge to the fized point 0 under iteration by ¢(z) is a TDP setr

Sacrificing a bit of generality for clarity, I will apply the essence of Fatou’s
argument to an example he gave, namely, the function

22
#0)= 7
- This function has a unique attracting fixed point at 0, and all points in the open
\ihit,,disc D converge to 0 under iteration by ¢2(z).1° If an arbitrary point z in
C'converges to 0 under iteration by @3(z), there exists a positive integer N such
that for n > N, ¢3(2) is in D. Conversely, if a point z does not converge to 0
under iteration, there exists no n > 0 such that ¢3(z) is in D. In other words,
there is a dichotomy between those points which converge to 0 and those which do
not: a point z converges to 0 under iteration by ¢(z) if and only if an iterate of z
eventually lands in D. With this dichotomy in mind, Fatou constructed the set of
points J which do not converge to 0 under iteration by ¢2(z) by finding all points
z such that ¢3(z) is never in D.
In order to describe Fatou’s construction of the set J, it will be convenient to
denote the complement of the open unit disc D as E; and to let E, equal the

preimage of Ey,_1 under the function ¢2(z). Fatou claimed that

o0
J=() En
n=1

and suggested a geometric construction of J. Since many of the TDP sets which
occur in the study of complex dynamics can be constructed similarly, I will outline
his construction for the special case of ¢(z).

For n > 1, the sets E, described above have as their boundary 2"~2 figure
eights. For example, it may be shown that the preimage of the unit circle, denoted
by E\, is the hyperbola y? — z? = 1 where z = z + yi. This hyperbola is denoted T.
Since the branches of I' meet at co it is helpful to view T as a figure eight on the
Riemann sphere (see figure 7.1). The continuity of ¢a(z) implies in turn that the
preimage of Ej, denoted by Ej, is the closure of the region interior to ', hence F,
has the hyperbola I' as its boundary. ,

Since ¢2(z) is a two-to-one map, all points on T have two preimages interior to
T, hence the preimage of I' consists of two figure eights, 4; and ¥2, each inside a
distinct branch of T', as shown in figure 7.2. The set E3 is the union of the closures
of the interiors of the v;. Each v; has as its preimage two more figure eights, and
the set E4 is thus bounded by four figure eights.

Continuing in this manner it is apparent that the set J is the infinite intersection

of the closures of the interiors of a nested sequence of figure eights. Althoughﬁ»

10 An easy way to see this is to first show that ¢[D] C D and, since ¢}(0) = 0 < 1, apply the
version of Schwarz’s Lemma proved by Julia (see Theorem 6.2).
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Figure 7.1: The hyperbola y? — 2? = 1 is denoted- in the text as T. Infinity is the
point where the two branches of.T meet. The complement of the unit disc is E1, and
the union of T and its interior is E, therefore the figure eight T is the boundary of
Ey. Points z such that ¢3(z) remains interior to T' for alln form a TDP set.

the details will be skipped, the diameters of these figure eights approach 0 as n
approaches infinity, and the set J can therefore be shown to be a TDP set.

This construction is reminiscent of the construction of the Cantor middle-thirds
set. Just as the Cantor set is what remains in [0, 1] after the successive remova) of
the intervals (3, £), (%, 2), (%,8) and so forth, the set J is what is left in E, after
the removal of the sets E,, — 'm+1 for m > 1.

Fatou’s theorem is a significant result. Many functions behave under iteration
as does the function @3(z). For example, if |¢c| > 2 the function g.(z) = 22 + ¢
satisfies the hypotheses of Fatou’s theorem, although the fixed point is at oo not 0:
its critical values are ¢ and oo, and it can be shown that for |z| > lel > 2, ¢7(2)
converges to oo (see, for example, [Devaney 1989:270]).11 It is because Fatou’s
result describes a behavior shared by a class of functions more extensive than either
the set of linear fractional transformations or the Newton’s method function for an
arbitrary quadratic that it is the first general result of a global nature.

The techniques Fatou used in the proof of the above theorem rely, Bowever, on
the fact that there is a unique attracting orbit, namely, the fixed point at 0, and
therefore do not readily extend to a more general setting. In fact, the set J can
only be a TDP set if there is a unique attracting orbit consisting of a fixed point.

1The function #2(z) behaves similarly to the quadratic qc(2) = 2% + ¢, where ¢ is in the
complement of the Mandelbrot set.
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Figure 7.2: The preimage of I' under ¢2(z) consists of two figure eights, 11 an‘d 72,
‘one inside each branch of T, which form the boundary of Es. The set E3 is the
union of closures of the regions interior to the ;. The region E; — E3 is the area
bounded by I' and the gamma;.

If there is more than one attracting orbit then the preimages of a neighborhood.D
of a fixed point will instead limit on a closed curve whose structure can be. quite
complicated. Lest I leave the impression that Fatou gave no thought to this l.a,st
situation in [1906a], the reader is reminded that, as was noted at the end of S(?CthIl
7.2, Fatou closed his note with a brief and somewhat unsatisfactory discussion of
an éxample of a function with two attracting fixed points. o

In any event, due to the relative simplicity of the class of functions he' cons1de'red,
Fatou’s exploration did not lead immediately to a global theory regarding the iter-

ation of arbitrary rational functions. Such a development did not occur for another . -

ten years, and it relied heavily on a body of theory that was only just beginning to
make itself known, Montel’s theory of normal families.

7.6 Fatou and Functional Equations

After sketching his proof of Theorem 7.1, Fatou related his work to Koenigs’ study of
functional equations. He observed that if in addition to satisfying the hypothese.s of
the above theorem, a function ¢(z) also satisfies 0 < |¢'(0)} < 1, then the canonical
Schroder equation

B(4(2)) = ¢'(0)B(2) (7.1)
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has a solution B(z) which is analytic on € — J.12

Although Fatou did not justify this observation in his note (1906a], he indicated
in his paper [1920b] a general method to extend the solutions of functional equations.
Applied to the canonical Schroder equation, where 0 < [¢(0)] < 1, this method is
as follows: _

Koenigs’ solution B(z) to the Schroder equation (7.1) is defined on a neighbor-

hood D of the origin. Let D be the preimage of D under #(2). Define B*(z) for z
on D as

B(2) = 5757 B(6(0)

This definition agrees with the original definition of B(z) on D because if  in DND,
then 1 ]

#(0) B(¢(2)) = #(0)

thus the notation B*(z) is unnecessary. Then since ¢(Z) is in D,

B(¢(2)) = (¢'(0))" B(#((2)))

1, 3

= m¢ (0)B(¢(2))

R

O
For the functions covered by Fatou’s Theorem 7.1, the domain of definition of B(z)
can therefore be extended via a continuation of the above process throughout the
domain of attraction of the fixed point 0, that is, throughout C — J, where J is a
TDP set.

As Fatou noted during his discussion of Koenigs’ work in [1929], Koenigs sug-
gested in [1884] a similar means to extend his solution to the Schrdder equation and
remarked that his theorems—including his solution to the Schréder equation—ecan
be extended to any disc [} in the set of points A which converge under iteration to
the fixed point, but that “one knows nothing of the general manner in which this
region [A] is limited ... [1884:540].” Without a theory of sets Koenigs would have
had no idea just how far the preimages of D could have been extended.

Fatou’s technique of extending the local solution of the canonical Schréder equa-
tion to a global solution foreshadows the strides he and Julia would make in their
studies ten years hence when Montel’s theory of normal families would allow a more
general extension of Koenigs’ local theory.

B* (%)= ¢'(0)B(%) = B(2),

121t is interesting that, after noting that functions which satisfy the hypotheses of Theorem
7.1, as well as the condition 0 < [¢(0)| < 1, also satisfy the Schrder equation (7.1), the only
examples Fatou gave of functions which satisfy the hypotheses of Theorem 7.1 were the functions

¢n(z) = 2" /(2" +2). Since ¢,,(0) = 0, the Schréder equation at (7.1) has no relevance for these
functions.




Chapter 8

Montel’s Theory of Normal
Families

8.1 Introduction

The key to understanding the behavior under iteration of an arbitrary point in the
complex plane lies in understanding the set of points whose orbits do not converge
to an attracting or neutral orbit. Fatou’s note [1906a] described this set, often
denoted J, in detail for a class of complex rational functions possessing a unique
attracting fixed point. Although his technique of examining the intersection of the
preimages under ¢”(z) of the complement of a neighborhood of an attracting fixed
point led to his discovery that when ¢(z) has a unique attracting fixed point the
set J can be a totally disconnected perfect set, this technique did not reveal enough
about J when ¢(z) has more than one attracting orbit.

Another possible way of investigating J would be via direct calculation, but
before the advent of the computer, the difficulties in this approach were imposing,
since for large n and arbitrary z the calculations involved in directly computing
¢"(z) are daunting. Given this resistance to frontal assault, some sort of heavy
machinery was called for. Fortunately, it was provided by a young French mathe-
matician, Paul Montel, who, during the fallow period in the development of complex
dynamics which followed Fatou’s 1906 note put the finishing touches on his theory
of normal families.

A normal family of complex analytic functions may be defined as follows:

Definition 8.1 A family of functions F which is analytic in the interior of a do-
main D is normal in D if all infinite sequences of functions from F -contain a
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subsequence which converges uniformly on all compact sets D' interior to D.} This
limit function is either analytic or identically infinite.> Normal families of mero-
morphic functions are defined analogously, as are families of real functions.

Montel’s theory of normal families was quite powerful. In the first two decades
of the twentieth century Montel applied his theory of normal families to a variety
of subjects within complex function theory. He did not, however, apply this theory
to the study of complex iteration—that was first done independently by Fatou and
Julia around 1917. Montel perhaps wished that he had done so, for not only did
the theory of normal families have a profound effect on the study of iteration, but
Montel himself seemed quite taken with the role that his theory played in the studies
of Fatou and Julia. In his 1927 book Familles Normales, he made the following
comment about the use of his theories in what he termed the “remarkable works”
of Fatou and Julia:

One of the most important applications of the theory of normal families
is found in the study of iteration of analytic functions and the solutions
of the functional equations to which they are related [1927:213].3

After showing that for an arbitrary complex rational function ¢(z) the family
of functions

{¢"},

where n is a non-negative integer, is generally not normal on neighborhoods of points
from the set J described above, Fatou and Julia were able to prove several important
results regarding the iteration of complex functions. Their use of Montel’s theory of
normal families is important for another reason as well, since it also represents the
introduction of sophisticated theorems from complex function theory into complex
dynamics. Prior to their work, the study of complex iteration stood curiously
apart from complex function theory in the sense that it relied principally on results
developed internally, such as fixed point theorems and theorems pertaining to the
solution of various functional equations. Exceptions to this were Schroder’s initial
analysis of Newton’s method from the point of view of elementary complex function
theory, and Fatou’s application of set theory in 1906.

Before beginning my discussion of the work of Fatou and Julia in Chapter 11, I
will describe the events and ideas which led to the development of Montel’s theory
of normal families, and briefly outline the subjects to which he applied his theory.

1A domain is an open, connected subset of the complex plane. A function is meromorphic on
D if it has a pole on D.

2A sequence {fn} converges uniformly to infinity on a domain D if for any ¢ > 0 there exists
an N such that |fs| > € for n > N on any compact set D' interior to D.

$Montel’s treatment of the theory of iteration in this book is self-contained and serves as an
excellent introduction to the subject.
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8.2 Paul Montel and Normal Families -

Paul Montel was born in Nice in 1876 and died in Paris 99 years later. He com-
pleted his studies at the Ecole Normale Supérieure in 1897 and evidently did not
commence work on his doctorate for several years. Instead, he divided his time

between travel, literature and the teaching of mathematics at various provincial.

secondary schools His friends apparently felt that he was wasting his considerable
mathematical gifts and urged him to return to the study of mathematics [Dieudonné
1990:649). Apparently they prevailed, and he finally turned his attention full time
to mathematics. In 1907 he received his doctorate from the- Umversxty of Paris,
although notes concerning topics he treated in his thesis appeared in the Comptes
rendus of the French Academy of Sciences as early as 1903.

Like Fatou, Montel was intrigued by the new generation of French mathemati-
cians, including Baire, Borel and Lebesgue, and again like Fatou, Montel completed
his dissertation [1907] under Lebesgue’s direction. His dissertation concerned infi-
nite sequences of both real and complex functions, and although he did not explicitly
use the term “normal families” he used the concept throughout his thesis. After
earning his doctorate, he taught at various secondary schools including the Lycée
Buffon in Paris.

Montel’s mathematical prowess quickly brought him renown. He published two
mathematical texts in 1910, Algébra, co-authored by Borel, and Legons sur les séries
de polynomes, which was part of the Collection de monographs sur la théorie des
fonctions published under the direction of Borel. He became maitre de conferences
at the University of Paris in 1911, and, in 1913 his work in the theory of analytic
functions won him the French Academy of Sciences’ Priz Gustave Rouz, a prize
whose purpose was to honor young French mathematicians of exceptional talent. In
1918 the Academy awarded him a second prize, its Priz Franceur for his work con-
cerning “sets of analytic functions.” Montel was promoted in 1922 to full professor
at the University of Paris. During World War IT he served as Dean of the Faculty
of Science, where, according to Diendonné, he upheld the dignity of the university
in spite of the German occupation.

He retired in 1946 and was subsequently honored with several honorary positions
and degrees, both in France and abroad. He was elected to the French Academy
of Sciences- in 1937 and was named its president in 1958. Throughout his career
Montel evidently aided in the development of many French mathematicians, and in
his necrology of Montel, Szolem Mandelbrojt observed that “at least a quarter of
our present confréres” ha.d Montel as rapporteur of their thesis {1975:186).

Montel worked principally in complex function theory, and it is his theory of
normal families for which he is most famous. Although Montel was the first to
develop a cohesive theory around the concept of a normal family, there had been
interest in such families long before Montel. What marked Montel’s use of normal
families was his application of the concept in areas where it had not been used
previously. In particular he extended the notion of a normal family to complex
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function theory where he applied it with great success to such topics as convergence
of sequences and series, Picard theory and conformal mapping.?

Montel’s first mature works on normal families are the papers [1912], [1916]
and [1917]. The results from these papers are also presented in his book Familles
normales, first published in 1927. In both [1912] and [1916] he treated Picard
theory, and in [1917] he proved the Riemann mapping theorem as well as several
other theorems related to conformal mapping.

8.3 The Influence of Ascoli and Arzela

Although Montel was the first to use the phrase “normal family,” the concept was
in use well before Montel defined it. In an attempt to avoid anachronistic use of the
term, the phrase “Property N” will be used to indicate the use of the concept of
normality prior to Montel’s first use of the term. The nineteenth century conception
of Property N was a little different than the definition of normality given at the
beginning of this chapter since the limit function usually was not allowed to be
infinite.

Principal among those who studied families with Property N in the nineteenth
century were Cesare Ascoli (1843-1896) and Giulio Arzeld (1847-1912). Each of
these mathematicians offered early proofs of what is nowadays a central theorem in
the study of normal families, the so-called Ascoli-Arzeld Theorem, which is stated
below for complex functions of a single variable.

Theorem 8.2 (Ascoli-Arzela Theorem) Let F be an equicontinuous family of
complez functions defined on a domain D with the property that for each z € D the
set {f: f € F} is bounded.5 Then F is a normal family.

It should be emphasized that Ascoli and Arzeld each proved this theorem only for
real functions; in addition, both mathematicians were apparently working under the
implicit assumption that the families of functions they considered were uniformly
bounded.

The interest of both Ascoli and Arzela in the above theorem was evidently
stimulated by the Dirichlet principle which in turn relates to the Dirichlet problem,

_ named after the German mathematician Peter Gustave Lejeune-Dirichlet (1805-

1859) The Dirichlet problem had its origins in the study of potential theory and was
an extremely important problem throughout the nineteenth century. The Dirichlet

4The so-called Big and Little Picard Theorems, first proved by Emile Picard (1856-1941) in
1879, spawned a number of papers beginning with Borel's paper [1896]. This body of work is
sometimes collectively referred to as Picard theory. A discussion of the role of Picard theory in
the development of Montel's theory of normal families will be given below in section 8.7.

5The family F is equicontinuous on D if for every ¢ > O there exists a corresponding § > 0
such that for f(z) € F and for any z,y in D, |z — y| < 6§ implies that |f(x) — f(y)| < e.
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-problem is stated below for R™, but in the 1800’s interest was Zentered in the R?
and R? cases:

Dirichlet Problem Let D be an open set in R™. Let f(z) be a continuous real
function which is defined on 3D. Find a function F(z) which is harmonic on D
and which equals f(z) on 8D.8

The Dirichlet problem was considered by many nineteenth century mathemati-
cians including Dirichlet himself, Carl Gauss (1777-1855) and George Green (1793-
1841).7 In the first two-thirds of the nineteenth century, solutions to the Dirichlet
problem genera.lly relied on the Dirichlet principle:

Dirichlet Principle Among all the real-valued funcizons f(z) whick are C? o
D and which can be extended continuously to 8D, there exisis a set of functwns
A, often called the set of admissible functions, which contains a function F(z)

minimizing the Dirichlet integral
2
+ ( 6f> ]dx, (3.1)
Oz,

o= [, |(3)

where f(z) € A. Moreover, the minimizing function F () satisfies DI(F) = 0.

In R? the Dirichlet principle was extremely important to the study of complex
analysis since Riemann based his proof of the Riemann Mapping Theorem, and

consequently his theory of complex functions, on his acceptance without proof of ‘

the Dirichlet principle. Such faith in the Dirichlet principle, which evidently rested
on intuition, was the norm among mathematicians well into the second half of
the nineteenth century and is reflective of a widespread lack of concern regarding
existence proofs. The Dirichlet principle is tantamount to the assumption that if

I(f)=/1;f(z)dz

has a greatest lower bound L for a particular admissible set of functions A; then
there exists a function ¥ in A satisfying I(F) =

In 1870 Weierstrass offered the following example which undermined confidence
in the Dirichlet principle, and hence in the Dirichlet problem itself:

Example 8.3 (Weierstrass) Let A be the set of C! real functions defined on the
interval [—-1,1] such that f(~1) # f(1). The infimum teken over A of

1 df 2
/_1 (ﬁ) dv

8 A C? function F(z) is harmonic on D if Z" 8°F =0 on D.

"For a lively and more detailed treatment of the Dmchlet problem see Monna's book Dirichlet’s
Principle.
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15 the function f(z) =0, yet the zero function is not in A.

Weierstrass thus showed that the existence of the inf I(f) taken over a particu-
lar admissible set A does not guarantee the existence of a function F(z) from A
satisfying I(F') = inf I(f).

Various attempts were made throughout the remainder of the century to solve
the Dirichlet problem. Both Hermann Amandus Schwarz (1843-1921), in 1870, and
Poincaré, in the late 1880’s, solved versions of the Dirichlet problem which did not
rely on the Dirichlet prmc1ple In 1900 David Hilbert (1862-1943) rehabilitated the
Dirichlet principle by proving it in the R? case, subject to certain conditions on the
boundary of D, the function f(z) and the set of admissible functions 4. In the
1930’s the Dirichlet principle was proved for R® under quite general conditions via
theorems from functional analysis.

The relevance of the Ascoli-Arzeld Theorem, stated above as Theorem 8.2, to the
Dirichlet principle is evident: if the set of admissible functions A is equicontinuous,
and if there exists a sequence of functions {f,} from A such that DI(f,,) converges
to 0, then there exists some subsequence of {f,} which converges uniformly to a
function F(z) satisfying DI(F) = 0.

8.4 Montel’s Early Work

Montel’s first published version of the Ascoli-Arzela Theorem appeared in his Comptes
rendusnote [1904] where he claimed that uniform boundedness was a sufficient con-
dition for Property N to hold. As indicated in the above discussion there was quite
a bit of use of Property N in the theory of real functions long before 1904. Indeed,
as the following quotation suggests, Montel’s thesis [1907] was evidently stimulated
by his observation that a thorough investigation into Property N was warranted
since ‘this property had proven so useful in a variety of situations:

. a great number of properties pertaining to the theory of functions
are found in an equivalent form in the functional calculus. The demon-
strations of these theorems concerning continuity, maximums, and min-
imums, demand only that the set £ and the law of correspondence [i.e.,
the functional] are subject to certain conditions: 1) that from all infinite
sequences one can extract at least one other infinite sequence having a
limit element; 2) that these limit elements belong to E, in other words,
that the set is closed. For the law of correspondence it is necessary, in
general, to suppose that it is continuous.

The principal difficulty in approaching the functional calculus from
this point of view lies in verifying that the sets £ have the properties
mentioned above: I cite in this instance the works of Arzela on the series
of functions, that of Hilbert on the Dirichlet problem treated in the
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manner of Riemann, and that of Lebesgue on the problem of Plateau.®
It seems thus desirable to extend our knowledge of sets of functions
possessing the properties required for the set £.

In this work I have assayed to study two families of continuous func-
tions, those which satisfy the following conditions: families of equicon-
tinuous real functions, and families of [uniformly] bounded complex func-
tions [1907:1-2). '

Despite his mention of the Dirichlet problem, the problem of Plateau and Mau-
rice Fréchet’s (1865-1963) innovative study of function spaces, Montel did not focus
upon these subjects in his thesis [1907]. Rather, he concentrated his efforts on the
theory of real and complex functions.

The time between Montel’s thesis [1907] and his book [1910], in many senses
. comprises the developmental period of his theory of normal families. In comparing
these early works to [1912] and [1916] one gets the impression that in both [1907)
and [1910] he was still in the process of sorting out the components of his theory
of normal families. Suggestive of this, is the fact that he did not begin to use the
term normal families until his paper [1912]. Although he used Property N to study
complex function theory in [1907], something which had not been done previously,
his application of Property N tended to be in areas where its efficacy had already
been established in the theory of real functions.®

For example, one of the primary applications of Property N in both [1907] and
[1910] was to the convergence of series and sequences of functions, an area in which
Arzeld in his paper [1899] had already profitably used Property N. Although Mon-
tel’s extension of Property N to complex families in [1907] and [1910] was certainly
novel, he did not yet apply it to either Picard theory or conformal mappings.

In [1907] Montel also offered proofs of the Ascoli-Arzela Theorem for both real
and complex functions, which he then used to prove what is often called Montel’s
Theorem. Although he proved this theorem in [1907], the following statement is
from [1910:21]:

Theorem 8.4 (Montel’s Theorem) If ¢ family of complex analytic functions F
is uniformly bounded on a domain D, then “from any infinite sequence of functions
from the family, o new sequence can be extracted which converges uniformly in the
domain D.-to an analytic limit function.”

The first step of Montel’s proof of this theorem involved a very simple application
of the Cauchy integral theorem which proves that uniformly bounded families of

8The problem of Plateau involved finding a minimal surface bounded by a given Jordan curve
in R3. Like the Dirichlet principle, the problem of Plateau involves the problem of determining
whether or not a function exists which minimizes a particular integral. The problem was finally
solved in the 1930’s. = ) )

2Contemporaneous with Montel's extension of Property N to complex anal'yms, Fréchet used
Property N to study spaces of functions. As an example of his ideas, he applied Prope}'ty N to
sets of complex polynomials in his paper [1906]. Whether or not Montel inﬂuen'ced Fréchet, or
vice versa, is uncertain, in part because Montel and Fréchet used Property N to different ends.
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analytic functions are equicontinuous. His theorem follows immediately from the
Ascoli-Arzela Theorem.

8.5 Montel’s Study of Convergence Issues

Montel’s investigations into the convergence properties of sequences and series of
analytic functions, which Julia and Fatou both used in their study of domains of
attraction, relied in large measure on the Ascoli-Arzelad Theorem. Montel’s interest
was evidently motivated by his desire to find sufficient conditions that a series
or sequence of analytic functions is analytic. In [1907] he asked, “In what case
can it be assumed that the limit of a sequence of functions be an analytic function
[1907:98]?” Later he remarked that “a problem which is linked inextricably to [series
of analytic functions] is the search for the conditions which a function F(z) must
satisfy if it is the sum of a series of analytic functions [1907:100].” )

This interest in convergence issues reflected a general interest among mathe-
maticians of the time, in particular those involved in integration theory. Through
the efforts of Weierstrass, Darboux, Koenigs and others, the usefulness of uniform
convergence was well-established. It was, for example, well-known that a uniformly
convergent sequence or series of analytic functions converged to an analytic limit,
and that a sufficient condition that

/abnlif?ozf" =Ji:r;/ab2fm (8.2)

where the f, are real-valued functions, was the uniform convergence of the se-
ries 3 fn. There were therefore attempts to find other sufficient conditions that
equation (8.2) hold or that the limit of a series or sequence of analytic functions
was analytic. For example, in 1902 the American mathematician William Osgood
(1863-1943) proved the following theorem [1902:25f]:

Theorem 8.5 (Osgood) Let{fn} be a sequence of comples analytic functions de-
fined on a domain D, and let Su(2) = 3 fo. Suppose that {S,)} is uniformly
bounded on D and that the series Y f, converges pointwise on a dense subset T of
D. Then Yy fn converges on D to an analytic function.

Osgood did not apply Property N in his proof; rather, he showed that the se-
ries 3_ un(x,y) and 3 v, (z,y) converge uniformly on D where fn(2) = un(z,y) +
vn(z,y)i. At the conclusion of his proof he remarked that his theorem generalizes
a result of Thomas Jan Stieltjes, who in his paper [1894] showed that if a series
of complex analytic functions with uniformly bounded partial sums converges uni-
formly on a subdomain D’ of D, it converges uniformly on the entire domain D
[Stieltjes 1894:451ff]. Osgood’s result shows that Stieltjes’ condition of uniform
convergence on the sub-domain D’ could be replaced by pointwise convergence on
a dense subset 7" of D',
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Montel cited Stieltjes’ and Osgood’s results and generalized them by showing
that Osgood’s condition that the subset T' be dense in D can be replaced by the
weaker condition that T be an infinite subset of D with a limit point in D [1907:76-
77). In his paper [1912] he generalized Osgood’s theorem again by the following
result, a result used later by both Fatou and Julia [1912:531):

Theorem 8.6 (Montel) Let {f.} be a sequence of functions from a meromorphic

family F which is normal on @ domain A. Suppose that the f, converge 1o a function
G(z) on an infindte set of points which has a limit point in A. Then the f, converge
uniformly to G(z) on A.

8.6 An Important Result from [1912]

In his papers [1912] and [1916] Montel focused exclusively on normal families of com-
plex analytic functions. He explicitly defined the concept of normality by name and
precisely delineated the interrelationships among normal families, equicontinuous
families and bounded families. He in addition proved several theorems concerning
normal families, some of which had their genesis in [1907) and [1910]. For example,
in [1912] he proved that if a family of analytic functions defined on a domain D is
bounded away from a point « in the complex plane then it is normal.!® He proved
an identical result in both {1907] and [1910}], but stated only that such families were
equicontinuous.

‘One of the most important results from [1912] is the so-called Montel normality
criterion which Fatou and Julia both used extensively in their studies of complex
iteration. This result involves what is called an exceptional value for a family F.

Definition 8.7 A compler quantity wo is an exceptional value of a family F 0!
analytic or meromorphic functions defined on a domain D if

wo ¢ | J £ID.

terF
Using this definition Montel proved the following:

Theorem 8.8 (Montel’s Normality Criterion) Let F be a family of analytic
functions on D. If F has at least two exceptional values on D then it is no»rmal.
If F instead consists of meromorphic functions, then a sufficient criterion of its
normality 1s that there be at least three exceptional values.

104 family F defined on a domain D is bounded away from a point o if there exists an ¢ > 0
such that for all f € £ and all z € D, |f(2) — a| > e
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By considering the family

g={919(2)=&-);aandf€f},
b—a

it can be assumed without loss of generality in the analytic case that the exceptional
values a,b are 0,1 since if f(z) can not take on a, then g(z) can not equal 0;
analogously, if f(z) has b for an exceptional value, then 1 is an exceptional value of
9(2).

As will be indicated, Theorem 8.8 was crucial to Montel’s study of the body of
work stemming from the Picard Theorems. In [1912] he gave a very involved proof
of Theorem 8.8 using a modular function from elliptic function theory, and then
sketched a simple elementary proof of Theorem 8.8, that is, a proof which did not
use a modular function, but was instead based on the following theorem proved by
Friedrich Schottky (1851-1935) [1904:1255ff] and later modified by Edmund Landau
(1877-1938) [1906:265-67]:

Theorem 8.9 (Schottky) If f(z) is an analytic function on a closed disc D cen-
tered at zp with ezceptional values 0 and 1, then f(2) is bounded on D by a constant
M which depends only on o, where

1 1
1f(20)]" |f(20) — ll}'

= min {|f(a)l,

This remarkable theorem implies that the bound on a function with two exceptional
values on a closed disc depends only on the value of the function at the center and
is quite useful in the study of Picard’s Theorems.

Although Montel’s normality criterion, Theorem 8.8, was not presented as a
theorem until [1912], Montel was aware of it as early as 1907 as is indicated by his
observation in a footnote included in [1907] that Schottky’s Theorem can be used
to show that “a family of functions which takes, in a domain D, neither the value 0
or 1 is an equicontinuous family (1907:74].” Although the proof is not too difficult,
Montel gave no proof, nor did he make any use of this result in [1907).

8.7 Applications of Montel’s Theory to Picard The-
ory

Judging by the amount of space he devoted to the body of work stemming from the
theorems of Picard in both [1912] and [1916], Montel considered his study of Picard
theory to be one of the most important applications of his theory of normal families.
Previous to the appearance of Montel’s paper [1912], the Picard Theorems had
generated quite a number of papers by prominent mathematicians such as Borel,
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Schottky, Landau, Paul Lévy, Constantin Carathéodory (1873=1950), and Ernst
Lindelof (1870-1946).1

The Little Picard Theorem states that any non-constant, entire complex analytic
function must take on all values of the complex plane with the possible exception of
one. Picard presented this result in his note [1879a) and proved it using a modular
function. Picard’s statement and proof of the Big Picard Theorem appeared shortly
thereafter in his note [1879¢]. The Big Picard Theorem states that on a neighbor-
hood of an isolated essential singularity, an analytic function takes on all values of
the plane with the exception of at most one. Picard’s proof of this theorem also
relied on a modular function. '

A good deal of the early work in Picard theory was devoted to either the gen-
eralization of Picard’s Theorems or the discovery of elementary proofs for them,
that is, proofs which do not rely on a modular function or elliptic function theory,
and Schottky’s Theorem is useful in both of these endeavors. Borel gave the first
elementary proof of the Little Picard Theorem in his note [1896]. In his paper
{1904] Schottky drew an Borel’s proof and used Theorem 8.9 to produce the first
elementary proof of the Big Picard Theorem. Landau in his paper [1904] indepen-
dently proved a less general version of Schottky’s Theorem and modified it again
in his paper [1906] while summarizing the existing literature concerning the Picard
Theorems. Lindeldf simplified Schottky’s elementary proof of the Big Picard The-
orem in his paper [1909] and proved several new theorems concerning the behavior
of functions in neighborhoods of isolated essential singularities. He also presented
a paper on Picard theory, the paper [1910], to the 1909 International Congress of
Mathematicians. .

_A common thread in the Picard Theorems, as well as in the subsequent theorems
they generated, is an interest in analytic functions f(z) which have two exceptional
values on a disc D centered at the origin. Viewed in this light the Little Picard
Theorem states that for any non-constant entire function f(z) there is an R for
which no disc D of radius greater than R has two exceptional values. The Big Picard
Theorem states that there is no disc surrounding an isolated essential singularity on
which f(z) has two exceptional values. Typical of the results concerning exceptional
values on a disc of radius R is Schottky’s Theorem. '

In addition to its importance to Picard theory, Schottky’s Theorem was also very
important to Montel. In [1912] he remarked that his normality criterion, Theorem
8.8, is a simple consequence of Schottky’s Theorem and then proceeded to give
new proofs of ‘both Picard Theorems using his normality criterion. ‘This suggested
that the Picard Theorems might actually be a consequence of the theory of normal
families. However, in the paper [1912] it was only a suggestion, since Montel needed
to go beyond the theory of normal families and appeal to either elliptic function
theory or Schottky’s Theorem to prove his normality criterion.

All this was to change with Montel’s paper [1916] in which he used the theory

1 For a nice discussion of the mathematics involved in this body of work, see Chapter II of
Sanford Segal's Nine Introductions in. Complex Analysis. :
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of normal families to prove Schottky’s Theorem, thus showing that his normality
criterion, and all that followed from it, including the Picard Theorems, are in fact
consequences of the theory of normal families. In addition, Montel’s proof of Schot-
tky’s Theorem implies that any result which followed from Schottky’s Theorem is in
turn implied by the theory of normal families. This had tremendous implications to
P.ica.rd theory since many results therein, including the Picard Theorems, formerly
viewed as consequences of Schottky’s Theorem, were actually revealed to be conse-
quences of Montel’s theory of normal families. Thus, not only did Montel provide a
new elementary proof of the Picard Theorems, he also effectively embedded Picard
theory in the theory of normal families.




Chapter 9

The Contest

9.1 Overview

In 1915 the French Academy of Sciences announced that it would award its 1918
Grand Priz des Sciences mathémeatiqgues—and 3000 francs—for the study of itera-
tion. This announcement evidently motivated both Julia’s Mémoire sur l'iteration
des fonctions rationnelles, referred to as [1918)], and Fatou’s Sur les équations fonc-
tionnelles, published in three parts as [1919], [1920a] and [1920b], as well as a third
effort by Samuel Lattés.

9.2 Biographical Sketches of Lattes and Julia

Lattés was born in Nice in 1873 and died of typhoid fever in the summer of 1918.
He was a professor at the University of Toulouse for most of his mathematical career
and published several papers on function theory and the iteration of multi-variable
functions. Lattés’ entry to the contest was never published but some indication of
its concerns can be gleaned from three notes which appeared in the Comptes rendus
of the Academy of Sciences in 1918, the notes [1918a), [1918b] and [1918¢], as well
as from a summary of the results of the contest which appeared in the Compte
rendu of December 2, 1918, Although Lattés’ entry included a discussion of the
iteration of rational functions of one complex variable, its principal interest was
the iteration of meromorphic functions of two complex variables, a subject he had
discussed earlier in several papers, including his papers {1907] and [1908]. Lattes’
work differed significantly from that of Fatou and Julia in two respects. Not-only did
Fatou and Julia focus exclusively on the iteration of functions of a single complex
variable, but, unlike Lattés, their approaches were rooted in Montel’s theory of
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normal families. Because the concern of this book is the work of Fatou and J ulia,
I will not discuss Lattés’ work involving the iteration of multi-variable functions. I
will, however, discuss Lattés’ approach to the iteration of single variable functions
in Chapter 10.

Julia was born in 1893 in Algeria and died in Paris in 1978. Although his father
was an uneducated craftsman, Julia’s mathematical gifts were in evidence at a young
age. He was educated by friars, and in 1911 placed first on the entrance exams to
both the Ecole Polytechnique and the Ecole Normale Supérieure, as did Gaston
Darboux in 1861, and, like Darboux, entered the latter. In 1913 Julia published his
first mathematical paper in the Bulletin de la Societe mathématique.

Julia served in the French military as a sub-lieutenant during World War I, and
in 1915, in the face of a furious German attack, he exhibited uncommon bravery
and was awarded the French Legion of Honor. The price of Julia’s bravery was
extreme: he suffered a terrible wound to his face and was left with a disfigured nose
which in future years he customarily covered with a patch. According to his medal
citation, his wounds left him almost blinded and unable to speak, yet-he issued a
written directive that he was not to be evacuated until after the German attack was
repulsed. .

During his recuperation he was buoyed by visits from both George Humbert
(1859-1921), from whom more will be heard shortly, and Emile Picard, as well
as by the ministrations of his future wife, the daughter of the composer Ernest
Chausson [Garnier 1978).

Julia quickly established himself as a prominent mathematician. He received his
doctorate from the University of Paris in 1917, and soon afterwards won a major
mathematical prize, the French Academy’s Priz Bordin in 1917. In addition to
his work involving the iteration of complex functions, Julia also made important
contributions in number theory, analysis and the theory of Hilbert operators. Julia
was honored with membership in the French Academy of Sciences in 1934 at the
age of 41.

9.3 The 1918 Grand Priz

Mathematical contests such as the one soliciting works on iteration were quite com-
mon throughout the nineteenth century and into the early twentieth century, as was
the awarding of prizes to worthy mathematical endeavors. Each year the Academy
presented several prizes in mathematics, each accompanied by monetary awards.
For example, in 1918 the French Academy awarded prizes worth at least 1000 francs
to Fatou, Julia, Montel and Lattes.

The full text of the Academy’s announcement that it would award its 1918 Grand
Priz des Sciences mathématigues for the study of iteration is as follows:

The iteration of a substitution of one or many variables, that is to
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say, the construction of a system of successive points Py, P2,".. Pn,...,
where each is deduced from the preceding by a given operation

Po=¢(Pac1) (n=1,2,...,00)

(where ¢ depends rationally, for example, on the point P, _;) and where
the initial point P is also given, rises in many classical theories as well
as in some of the most celebrated memoirs of Poincaré.

Until now, the most well known works have been devoted totally to
the “local” point of view. :

The Academy wishes that the study pass to the examination of the
entire domain of the values which the variable can take on. In this spirit,
it has, for the year 1918, put forth the following question:

To perfect in a meaningful way the study of the successive powers of
o given substitution, when the exponent of the power grows indefinitely.

One should consider the influence of the initial value Py, the given
substitution, and one may limit oneself to the most simple cases, such
as the rational substitution of one variable [Comptes rendus, December
27, 1915:921].

The above quotation indicates that the Academy felt that the time was ripfe to
stimulate the global study of iteration, and the reference to Henri Poiqcaré certau.lly
suggests that his studies in celestial mechanics may have had something to fio w1't.h
the Academy’s decision to offer the prize. However, it is doubtful that Poincaré’s
work was the primary motivating factor.

Poincaré did indeed iterate real variable functions with his so-called return map
which he used to study the solutions to differential equations involving the planar,
restricted three body problem, in which the largest body, for example the sun, is
fixed and the effect of the second body on the motion of a third, smaller body is
studied. He related the stability of the third body to the character of the set of
limit points of the forward orbit of certain points under iteration by the return map.
Poincaré was an extremely influential mathematician and had been a member of
the Academy until his death in 1912. It is therefore possible that the A(fademy-
thought that a general study of the kind it suggested might shed further light on
Poincaré’s work.

Yet while Poincaré’s influence may have played a role in the Academy’s decision
there were also several other compelling reasons for the Academy to consider the
question of iteration of complex functions. As has already been documentfzd, t}}e
iteration of complex functions was a well-studied subject in France, especially in
the late nineteenth century. By 1915 there was a coherent corpus regarding the
local behavior of the iterates of a complex function, as well as the beginping‘ of a
global study. The chief figure in the field, Gabriel Koenigs, was by 1915 a p.romment
French mathematician and scientist. He was a professor at the Sorbonne with scores
of publications to his credit and had founded an important laboratory which played
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a major role in the French war effort. He was, in addition, on familiar terms with
many members of the Academy, including Paul Appell and Emile Picard.

The study of iteration of complex functions had also been applied to other
fields. As noted in Chapter 4.3, Appell in his paper [1891] wrote a solution to
the Hill differential equation (4.1) which relied heavily on Koenigs’ paper {1884].
Picard had also shown the utility of iteration in the parameterization of algebraic
surfaces in his paper [1900], when he in effect iterated a complex function until it
converged to an attracting fixed point [1900:21]. The iteration of complex functions
also played an important role in the study of functional equations, a fact which
has been discussed several times already. Salvatore Pincherle (1853-1936) devoted
a significant portion of his discussion of functional equations in both the German
Encyklopidie der Mathematischen Wissenschafien, as well as in the French edition,
Encyclopédie des Sciences mathématiques pures et appliquées to the iteration of
complex functions (see, respectively, Pincherle [1907] and [1912)).

At the time of the Academy’s prize announcement in 1915, nothing new re-
garding the global iteration of complex functions had appeared since Fatou’s 1906
note. However, the climate had become very hospitable to the development of a
global theory of iteration. This was due primarily to two recent trends in French
.mathematics. The first of these was the recognition by many of the younger French
mathematicians that set theory was a vital element of function theory, a develop-
ment which had begun slowly with the importation of set theory into France in the
1890’s. Set theory had by 1915 proven useful in a number of areas of mathematics,
including the theory of complex iteration, as Fatou’s note made abundantly clear.
The second was Montel’s theory of normal families, which he had successfully ap-
plied to the study of the convergence properties of series and sequences of complex
functions, as well as to the body of work which grew out of the Picard Theorems.

Although Fatou and Julia were the first to apply the theory of normal fami-
lies to the iteration of complex functions, it is entirely possible that members of
the Academy’s mathematical section felt that the theory of normal families might
provide the means to advance the study of iteration. Indeed, it is not too difficult
to see a connection between normal families and iteration, as is indicated in the
following examples, which would have been familiar to anyone well-versed in the
existing studies of iteration.

Example 9.1 Let ¢(z) = 22, and let
G={¢":neZf}

where Z¢ denotes the non-negative integers. Also let D be the open unit disc, J the
unit circle and E the region |z| > 1.

The attracting fixed points of ¢(z) are 0 and co. Since ¢"(2) = 22", it is evident
that points in the open unit disc D converge to 0 under iteration by ¢(z), while
points in E converge to co. ‘All points z on the unit circle J satisfy |¢"(2)| = 1,
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hence they remain in J under iteration by ¢(z) and therefore do not converge to
either of the attracting fixed points.

Let S be any subsequence from the iterative family G and let z be any point
in C not on J. Since all points not on J converge to either 0 or oo, S converges
uniformly to either the constant function G(z) = 0 or to G(z) = oo, depending on

whether z is in D or in F. Thus the family G is normal in some neighborhood of .

all points not in the unit circle.

However, if N is any neighborhood of a point z on the unit circle J, then the
family G is not normal on N, since a subsequence S of functions from ¢ does not
converge uniformly on N to a meromorphic function. This can be seen directly as
follows. Let S be a subsequence of G restricted to N. Since G is normal on D, the
subsequence S converges uniformly to 0 on N N D which implies that if S converges
uniformly to a meromorphic function, this function must be G(z) = 0. On the
other hand, G is normal on F and a similar argument implies that the sequence S
converges uniformly on N N E to the meromorphic function G(z) = co. Thus § is
not normal on any neighborhood of points from J. In other words, the family G is
normal on neighborhoods of points which converge to the attracting fixed points 0
and 0o, and non-normal on neighborhoods of points which do not converge to either
of the attracting fixed points.

The Newton’s method function N(z) = (2% +1)/2z for the quadratic ¢(z) =
2% —1, which was studied by Schréder in his papers [1870] and [1871] and Cayley in
his paper [1879a] (see Chapter 1) has identical dynamics to the map #(2) = 2% since
it is analytically conjugate to ¢(z). The fixed points 0 and oo of ¢(z) correspond
to the fixed points &1 of N(z), and the sets D, J and E correspond respectively to
the left half-plane, the imaginary axis and the right half-plane.

Example 9.2 Let ¢(z) = 22/(22 + 2). Let G be as in the previous ezample.

As was shown in the éhapter concerning Fatou’s 1906 note, ¢(z) converges to the
attracting fixed point 0 on the entire Riemann sphere except on a totally discon-
nected set J. Let Ag be the set C— J. On a sufficiently small neighborhood of any
point z in Ay, all subsequences from G converge uniformly to the constant functic?n
G(z) = 0. On a neighborhood N of points z from J the same behavior seen in
the above example is evident: no subsequence S from G can converge on N to a
meromorphic function G(z) because on discs contained in N — J-the sequence §
converges to G(z) = 0. However, since points in J do not converge to 0 under iter-
ation by ¢(z), the sequence S does not even converge pointwise to G(2) =0 on N.
Thus S converges uniformly to no meromorphic function on N, and G is therefore
not normal on neighborhoods of points in J. »

These examples suggest a dichotomy thiat anyone interested in the study of itera-
tion might think worth exploring: the iterative family G is normal on a neighborhood
of any point which converges to an attracting fixed point under iteration by ¢(z),
but is not normal on any neighborhood of a point from the set of non-convergence
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J.

At least two members of the Academy, Appell and Picard, had enough famil-
iarity with both the study of complex iteration and Montel’s work to be aware
of the potential application of the theory of normal families to the theory of it-
eration. Montel’s work in normal families had earned him the French Academy’s
Priz Gustave Rouz in 1913, a prize whose purpose it was to reward young French
mathematicians of exceptional promise. As members of the mathematics section of
the Academy, both Appell and Picard would have had a hand in the awarding of
this prize. Moreover, both Appell and Picard were also familiar with the study of
iteration since they served with Koenigs on the thesis examination committees for
both Auguste Grévy and Leopold Leau.

Given both the existence of a French body of work which concerned the it-
eration of complex functions and the familiarity on the part of members of the
Academy with recent developments which might prove useful in the study of it-
eration, Poincaré’s work in celestial mechanics would by no means be.the only
motivation for the Academy’s decision to solicit papers on iteration. Further indi-
cation of this is the Academy’s explicit suggestion that entrants confine themselves
to the study of rational substitutions, which had been linked to the study of com-
plex iteration in Fatou’s note [1906a). Finally, it is perhaps significant that, as was
the case with Koenigs, neither Julia or Fatou attempted to link their studies to
Poincaré’s return map, despite the fact that both referred to Poincaré’s work in
areas not directly related to iteration, such as automorphic functions. Fatou and
Julia, in contrast, each made frequent reference to their predecessors in the study

" of iteration, especially to the work of Koenigs.

Julia, in fact, never mentioned Poincaré’s work on iteration in his paper [1918].
Fatou’s only reference to it was to include Poincaré’s paper [1890] in a listing of
previous works which utilized iteration in one form or another. This paper did not
concern Poincaré’s study of mechanics, nor did it have much to do with iteration.
It did, however, treat a functional equation, often called the Poincaré functional
equation, which can be used in the study of repelling periodic points. Poincars,
however, did not use it in this fashion. Both Poincaré’s paper and the Poincaré
functional equation are discussed briefly in Chapter 10.

9.4 The Awarding of the Prize

The Academy announced at its December 2, 1918 meeting that Julia’s paper [1918]
was the winning paper. It announced also that two other mathematicians entered
papers, one of whom, Lattés, was awarded honorable mention posthumously. Cu-
riously, the Academy did not name the third entrant, and its sole reference to this
entry was to note that it had retained only the manuscripts of Julia and Lattes.
The third entrant was the Italian mathematician Salvatore Pincherle, who, as
was noted earlier in this chapter, wrote on functional equations in the Encyklopidie
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der Mathematischen Wissenschaften. His entry to the contest concerned the iter-
ation of the function p(z) = #? — a, and based on several notes that he published
on the subject around the same time, including [1917], [1918a] and [1918b}, he fo-
cused on the case where a is positive, although he considered the case where a is
complex in [1920a}, and expanded his interests to include polynomials as well. His
interest in this particular equation was motivated by his interest in investigating

the expression
:i:\/a:t\/a:}:---i\/az z,

where a may appear infinitely many times. If, for example, a appears n times, z
would be a root of p”(z). If the number of a’s were infinite, and the expression were
to converge, it would converge towards a fixed point of p(z).

In awarding Julia the prize, the prize commission of the Academy noted the
following:

Julia’s memoir bears the mark of a mathematical spirit of the highest
order, which with vigor understands problems in the fullest generality
and pursues the consequences as far as necessary; it shows equally a
profound knowledge of the results and methods of modern analysis with
a remarkable aptitude to utilize them. ...

Thus, the commission unanimously advised that the Grand Priz des
Sciences mathématiques be awarded to Gaston Julia; it proposes as well
to give the work of Lattés, a most honorable mention.

The Academy has adopted the propositions of the commission [Comptes
rendus, December 2, 1918:814].

In a'separate notice from the same meeting, the Academy announced that Lattes
had been awarded 2000 francs for his work in analysis and that Fatou had also
been awarded 2000 francs for his contributions in both the theory of series and the
iteration of rational functions. Perhaps not coincidentally, the Academy at this
time also presented Montel with a prize of 1000 francs for his work concerning sets
of analytic functions. .

The prize announcement also contained a brief but interesting comparison of
Fatou’s work to that of Julia:

At various points.during his research, Julia had consigned his results
in sealed letters, deposited at the Academy; after the deposit of these
iettets, on December 17, a well-known geometer, Fatou, who had already
made interesting progress on his own in the study of iteration, announced
a large portion of these results in Comptes rendus, which he obtained
on his own but in the same manner [as Julia], in utilizing the properties
of the normal sets of Montel: this is not the first time in the history of

1Members of the commission included Appell, Picard, Jacques Hadamard and Humbert.
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the Science that two worthy investigators arrived at the same time, by
the same march, at the same discoveries [Comptes rendus, December 2,
1918:814].

As the quotation directly above indicates, on December 17, 1917 Fatou an-
nounced several results which he had discovered in the course of his investigations
into the iteration of rational functions. Matters became complicated two weeks later
when Julia announced that prior to the appearance of Fatou’s note, he had estab-
lished identical results, and offered proof of the matter in the form of the following
letter, which appeared in the Compte rendu of December 31, 1917:

I read with interest the note of Fatou published in the Compte rendu
of December 17, 1917. The essential results which it contained, I had
previously entered in a series of four sealed letters which I have de-
posited with the Secretary of the [Academy] and which were registered
with numbers 8401, 8431, 8438, 8466, dated, respectively, June 4, 1917,
August 17, 1917, September 17, 1917 {and] December 10, 1917. The
Academy can judge, upon opening these letters, whether they contain

the results given by Fatou ... The Academy can assess, at the same
time, whose methods and whose results ought to be given priority [Julia
1917: 105].

The Academy heeded Julia’s request that it open these letters and judge pri-
ority, for immediately following Julia’s letter was a response entitled “On a Com-
munication of Gaston Julia” written by Humbert. He reported that in response
to “questions raised [by Julia] concerning a question of priority,” he had opened
Julia’s sealed letters, and that “the assertions of Julia are founded” since the let-
ters do indeed contain “all the results for which he has claimed priority [Humbert
1917:107).” -

In the folk history of mathematics this incident has grown to epic proportions,
and it is sometimes said that Julia publicly accused Fatou of stealing his results.
Although Julia made no such claims in his letter, he referred to the similarity of
Fatou’s approach as a “curious coincidence.” And although it would be an exagger-
ation to term this note a personal attack on Fatou, Julia did take a rather superior
tone, and observed, with some justification, that his approach was both more precise
and more general. .

Fatou’s longstanding interest in the iteration of rational functions, and the fact
that at the time he was at work on an extensive treatise on the subject, suggest that
he had intended to enter the contest. Perhaps Humbert’s comments regarding Ju- .
lia’s priority dissuaded him. I do not mean to suggest that the Academy displayed
any favoritism towards Julia—after all, it is important to keep in mind a character-
ization of Julia’s work already quoted from the Academy’s announcement: “Julia’s
memoir is marked by a mathematical spirit of the highest order.” Nonetheless, it
is interesting to speculate whether patriotic sentiments or personal contacts would
have had any influence on the prize deliberations had Fatou decided to enter his
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paper. As the reader will recall Julia was a war hero, and was visited from time to
time by both Picard and Humbert during his recuperation from his battle wounds.

Before turning to the work of Fatou and Julia, I will in the next chapter briefly
discuss Lattés’ approach, as well as that of the American mathematician Joseph Fels
Ritt (1893-1951), who wrote several papers on iteration around 1918, and whose
view of iteration was quite similar to that held by Lattés. Although the studies of
these mathematicians represent an alternative to the approach of Fatou and Julia,
it is in one sense a rather impoverished one, since neither came close to duplicating
the elegance or the accomplishments of Fatou and Julia.

Chapter 10

Lattés and Ritt

10.1 Biographical Sketch of Ritt

Joseph Fels Ritt was born six months after Julia in 1893. He received his doctorate
from Columbia University in 1917 for his work on differential operators, written
under the supervision of Edward Kasner (1878-1955). Following World War I, Ritt
taught at Columbia until his death in 1951. Although he wrote several articles
on iteration in the late teens and early twenties, his chief interests involved the
study of differential equations, and both he and his students made many important
contributions to the field of algebraic differential equations.

The results summarized in-Ritt’s note [1918] are rather modest, as is the paper
(1920] in which he detailed the results presented in this note. Together they illumi-
nate a small portion of the problem posed by the Academy, namely, the behavior
of iterates in the neighborhood of a repelling fixed point.

Ritt’s work is of interest for two reasons. His approach is virtually identical
to the one Lattés took in studying the iteration of complex functions of a single
variable, and together their work gives us a glimpse of what the study of com-
plex dynamics might look like without the application of Montel’s theory of normal
families. Secondly, Ritt’s note is indicative of an emerging American interest in
iteration. In the second decade of the twentieth century, several Americans, includ-
ing Ritt’s thesis advisor Kasner, touched upon several issues relating toiteration
and functional equations. Some of this work appeared prior to the Academy’s an-
nouncement, so the contest alone was not responsible for Ritt’s interest. However,
as was the case with Ritt’s work, their approach to the subject had much more in
common with the Koenigs school than with the work of Fatou and Julia.
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10.2 The Approach of Lattés and Ritt

For both Ritt and Lattés the study of the iteration of complex functions of one
complex variable revolved around the functional equation

F(su) = ¢(F(u)), (10.1)

where u is a complex variable, s is a complex constant satisfying |s| > 1, and ¢(z)
is a given rational function. They found this equation particularly useful to study
iteration on a neighborhood of a repelling fixed point of ¢(z), that is a fixed point
whose multiplier s is strictly greater than one in modulus.

This equation is a special case of the following system of functional equations,
discussed by Poincaré in his paper [1890]:

Fi(su) = ¢u[Fi(n), ..., Fa(w)]

Fn(su)‘ = @n[Filu),. .., Fr(u)].

The ¢;(u1,....u,) are rational functions from C* to C, and the F;(u) are entire or
meromorphic functions on C. Poincaré’s interest in this system of equations was
motivated by his study of Cremona substitutions, which are bi-rational transforma-
tions on €. _

Because equation (10.1) is a special case of the system of equations Poincaré
introduced, it is generally referred to as the Poincaré functional equation, even
though Poincaré did not use it to study iteration, and Ritt and Lattés used it in a
manner he evidently did not foresee. :

Ritt and Lattés found the Poincaré equation a useful tool to study of iteration
for several reasons. For example, if ¢(z) = = and s = ¢'(z), with |s| > 1, then a
solution F'(u) to (10.1) exists in a neighborhood of «, and the function F(u) can be
extended to a meromorphic function on the complex plane. Therefore, by Picard’s
Little Theorem, F(u) has at most two exceptional values, that is, there are at most
two points zg and 2; such that there is no u which satisfies either F(u) = 2z or
F(u) = z;. If exceptional points exist, they are attracting periodic points of qS(z)
The fact that F'(u) is defined globally also makes the Poincaré equation a potentially
handy means to study the iteration of arbitrary points in the plane. As long as z
is not an exceptional value of F(u), there exists a u such that F(u) = z. Since

¢(2) = $(F(w)) = F(su),

it follows that

¢*(2) = $(F(su)) = F(su),

and consequently,

¢"(2) = F(s"u). (10.2)
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Thus the Poincaré equation reduces iteration by #(z) to repeated multiplication of
u by s.

The reader may recall that the canonical Schréder equation
B(¢(2)) = ¢'(z)B(z), (10.3)

considered in the neighborhood of a fixed point z of ¢(z), also reduces iteration to
repeated multiplication by a constant, but it should be kept in mind that, at the
time of Lattés’ writing, B(z) was generally defined only on a neighborhood of a
fixed point.

Lattés noted as well in [1918a] that the Poincaré functional equation is the
inverse of the Schréder functional equation in the sense that, if s = ¢'(z) and
Is| > 1, then the solution F(u) to equation (10.1) is the inverse of the solution
B(z) to the Schréder equation. Lattés also pointed out that B(z) is generally
one element of a multi-valued function, while F(z) is a single-valued, meromorphic
function, and therefore B(z) generally can not be extended to a globally defined,
single-valued function. Thus the solution B(z) to the Schréder equation is the
multi-valued inverse of F(u). That B(z) is multi-valued when |¢'(z)| > 1 follows
from Koenigs’ solution of the Schréder equation discussed in Section 3.6, which he
solved by inverting the solution to the canonical Schréder equation for 1(z), where
¥(2) is an inverse of ¢(z) satisfying ¢¥(z) = z.

As the following quotation indicates, Lattés believed that F'(u), being a globally
defined function, gave the Poincaré equation a clear edge over the Schroder equation
since it could be used to study both local and global questions:

The advantage of substituting the Poincaré equation for the Schréder
equation is that [except for the exceptional values of F(u)] one can study
the iteration of any initial value z in the plane. ...

The problem relating to iteration of a given substitution is thus trans-
formed to the problem relative to the growth f[i.e., the iteration] of F(u).
... This problem, in its general form, can be stated thusly:

Determine the [derived] set E' of the set E of the consequents z, of
a point z arbitrarily given {1918a:27).

The italics are Lattes’.

" An interesting example which neither man gave but which sheds some light on
the approach favored by Ritt and Lattés involves Schréder’s proof of the convergence
of Newton’s method for the quadratic, discussed in Section 1.7. As the reader will
recall, Schréder demonstrated the convergence of the Newton’s method function
N (z) for the quadratic ¢(z) = 22 — 1 to the roots of £1 of ¢(z) by demonstrating
that the function M(2) = 2z/(2? + 1), which is conjugate to N(z), converges to —1
under the iteration of arbitrary points in the left half-plane and to 1 for points in
the right half-plane.
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Schréder accomplished this by exploiting the identity =~ -
M(z) = 222-7- 7= —itan(2arctan(iz)), (10.4)

from which it follows that
M™(z) = —itan(2" arctan(iz)). (10.5)

He also noted that (10.4) is equivalent to the functional equation

B(M(2) = 2B(2), ' (10.6)

where, fixing a branch of the arctangent, B(z) = arctan(iz). . '

As this book has progressed, the reader has perkxaps notlcgd that functional
equation (10.6) is not at all like the canonica%l Schrode.r equation (10.3) used. to
investigate iteration near an attracting fixed point z. Unlike the usual local solution
to the canonical equation, Schroder’s solution to (10.6) was not generated on a
neighborhood of an attracting fixed point of M (z) but was rather defined globally,
enabling him to evaluate (10.5) for arbitrary points on the Pla:ne. Moreover, F.he-
constant 2, having a modulus greater than 1, is not the multiplier of an attracting
ﬁxei f:cl)ll:tat a particular Poincaré equation for M (z), wl}ich can Pe ez’asily gen.erated
from equation (10.6), reveals what is rea..lly going on with Schroder’s equa}tlon fsr
M(z), at least from the vantage point Ritt and Lattés developed. Replacing z by
F(u) = —itan(u) in equation (10.6) yields :

B(M(F(u))) = 2B(F(u)),
which reduces to
B(M(F(u))) = 2u \
since B(F(u)) = arctan(i(—itan(u))) = u. Applying F(u) to both sides of the above
equation, and rearranging terms, we get
F(2u) = F(B(M(F(4)))),
which for similar reasons reduces to

F(2u) = M(F(u)), (10.7)

the Poincaré equation for M(z). Moreover, it follows from a simple cgmputatlor} th}a;t
0 is a repelling fixed point of M(z) satisfying M'(0) = 2, s0 equation (10.7)is ¢ ;
canonical Poincaré equation generated afound a repelling ﬁ)fed point of M (z), and
the functional equation Schroder considered is therefore ,‘equlvalex}t to the Pomfa.ljc
equation. Consequently, from the point of view of Lattés and R¥tt what Sch_rode;
actually did was to solve the Poincaré equation around a repelling fixed point o
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M(z), and because such solutions are globally defined, was able to show that M(z)
converges to either +1 by directly evaluating F(2¥) = tan(2"v).

This utilization of a functional equation to study the global properties of iter-
ation was precisely the sort of approach Lattés advocated in the above quotation.
The irony of it all is that in showing the convergence of M (2) to its attracting fixed
points, which Schréder felt was a vindication of his theory of attracting fixed points,
he was, in fact, taking advantage of what Lattés and Ritt later revealed to be a
property of repelling fixed points.

However, there is a problem with basing the study of iteration on the derived
set B of the set

E = {6"(20)} = {F(s"u0))

as Lattés suggested in the above quotation, and it is a problem which Schréder
faced as well, namely, that the set £’ can, depending on the nature of the function
F(u), be quite difficult to determine. It should come as no surprise, then, that
neither Lattés nor Ritt developed a satisfactory method of determining the set E
for arbitrary functions. In fact, the only general result they proved regarding the set
E’ is that, being closed, £’ can be decomposed into a perfect set and a denumerable
set, either of which may be empty.

Lattés, however, indicated he was aware of the difficulties involved in determin-
ing E’ and suggested in (1918a] that one approach to the Poincaré equation is to
choose as F(u) functions for which F(mu), for integer m, is a rational function
of F(u). In this manner he hoped to find a rational function ¢(z) which satisfies
the Poincaré functional equation F(mu) = ¢(F(u)) for that particular F(u). For
example; he noted in [1918a] that if F(u) = tan(u), the fact that

2tan(u)

tan(2u) = m,

implies that

F(2u) = ¢(F(u)),
where ¢(z) = 22/(1 - 22). From here, the form of #"(2) would presumably be
deduced via evaluation of F(2"u) = tan(2"v).

If this approach seems vaguely familiar it is because Schréder used a similar
means in discovering the relationship at (10.4). It also echoes Schréder’s suggestion,
discussed in Section 1.6, to turn things around and rather than solve the Schréder
equation B(¢(z)} = sB(2) directly for B(z), to instead treat B(z) as known and
¢(z) as unknown, and search for functions é(z) satisfying B(¢(z)) = sB(z) via
consideration of the family

B-Y(sB(z)),

as B(z) varies.
These parallels with the work of Schréder serve to emphasize the fact that the
approaches of Lattes and Ritt did not represent a truly fresh approach but instead
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were a continuation of the nineteenth century tradition of studying iteration by
seeking the right functional equation. What Lattés and Ritt in essence did was to
substitute for the Schréder equation what they felt was a more suitable functional
equation. Without doubt their work served as an interesting coda to the theory set
forth by the Koenigs school, and had the studies of Fatou and Julia not appeared,
their contributions to the study of the iteration of rational functions of a single
variable would have been quite valuable.

However, Ritt and Lattés were unable to answer the basic questions which vexed
Koenigs and his successors: How is the plane partitioned into regions of attraction?
What does the boundary of adjacent regions of attraction look like? The failurs
of Ritt and Lattés to answer these questions is not surprising in light of the fact
that they did not take advantage of Paul Montel’s theory of normal families, which
served as the cornerstone of the studies of Fatou and Julia.

It is actually a little curious that neither Ritt nor Lattés thought to examine
iteration from the point of view of normral families since one of their discoveries
readily suggests it. - Both men recognized that the function F(u) satisfying the
Poincaré equation is either an entire or meromorphic function, and explicitly rioted
that Picard’s Little Theorem implies that F(u) has at most two exceptional values.
This in turn implies that for a given z, the set of iterates of ¢(z), namely, the
set {¢"(z)}, which both men studied, also has at most two exceptional values. It
therefore follows immediately from Montel’s normality criterion, proved in 1912 and
stated above as Theorem 8.8, that the set of iterates, viewed as a family of functions
defined on neighborhoods of repelling fixed points, is not a normal family.

* If one were familiar with Montel’s theory, which by 1918 had been proven useful
in a wide variety of situations within complex function theory, particularly in con-
nection with the exceptional values given by Picard’s Theorems, it would not have
been an extraordinary leap to connect the exceptional values of F'(u) to the theory
of normal families. One wonders if perhaps either Fatou or Julia first investigated
iteration from the point of view of the Poincaré functional equation and, in the
manner suggested above, thought to apply Montel’s theory.

It seems, however, that neither Ritt nor Lattés made this connection, at least not
prior to the appearance of normal families in the work of Fatou and Julia. Lattés
briefly mentioned the theory of normal families in his third note, {1918c¢], but it was
in reaction to the presence of this theory in the publications of Fatou and Julia.

That Ritt did not use the theory of normal families is in keeping with his math-
ematical tastes, which ran to the classic. According to Lorch [1951], Ritt’s mathe-
matical style was rather conservative, and despite his considerable accomplishments
he was surprisingly resistant to recent advances in mathematics. Indeed, it appears
that Ritt might have had much more in common with the Hermitian old guard than
with Fatou, Julia or Montel, despite the fact that he was younger than any of them.
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Lorch notes that Ritt “begrudgingly recognized” the Lebesgue integral “but that
fields of characteristic p were special objects of scorn [1951:310].” Ritt was evidently
quite bothered that such fields were crucial to the study of his favorite subjects,
number theory.




Chapter 11

Fatou and Julia

11.1 Iﬁtroduction to the Studies of Fatou and Julia

Although the mathematical content of the respective approaches of Fatou and Julia
to the iteration of rational functions is quite similar, there are considerable differ-
ences in both style and emphasis. Julia on the whole argued more precisely than
Fatou. He presented his results in a more organized fashion, and he did-a better
job of utilizing important theorems from the theory of complex functions. Their
works differ on another more subtle level which has as much to do with aesthetics
as with mathematics. Fatou wrote in a gently meandering style, reminiscent of a
certain nineteenth century style of mathematics, while Julia’s paper is closer to the
axiomatic style which predominates in contemporary mathematics.

Fatou’s paper also recalls the nineteenth century in its emphasis on functional
equations. While Fatou’s major concern was certainly iteration, he by no means
neglected the study of functional equations in his three-part work [1919], [1920a} and
{1920b)], as its title Sur les équations fonciionnelles indicates. Fatou used arguments
involving functional equations throughout his work, and the last chapter of the final
installment, [1920b], is devoted entirely to the study of functional equations.

Although Julia studied functional equations extensively in subsequent papers,
he rarely used them in [1918] and clearly subordinated the study of functional
equations to that of iteration, as the following quotation from his introduction to
[1918] indicates:

There remain, as has already been indicated, many other questions to
treat. I could apply the results obtained herein to the well-known func-
tional equations from the work of Koenigs and his successors. That
study does not fall within the purview of this memoir, which is the study
of iteration in and of itself: I may well ultimately return to questions

11.2. ITERATION AND THE THEORY OF NORMAL FAMILIES 125

thus left suspended [1918:128].

I do not mean to leave the impression that Fatou’s work is not first rate, for
it is. Not only is his study of iteration remarkably similar in content to Julia’s,
but in some instances, he anticipated contemporary interests in ways Julia did not,
such as his use of symbolic dynamics to investigate totally disconnected perfect sets
{1919:257ff] and his tantalizing initial exploration of parameter space [1919:258fF].

11.2 TIteration and the Theory of Normal Families

Despite the differences in approach and style, the mathematical content of Julia
[1918] and Fatou [1919], [1920a] and [1920b] is remarkably similar. Much of this
similarity stems from the fact that each based his approach on Montel’s theory of
normal families.

In Examples 9.1 and 9.2, Montel’s theory of normal families gives a very useful
way to characterize the behav1or of the iterates of a given function ¢(z) for arbitrary
points in the extended plane C. In these examples C was partitioned into sets on
which points either converge to an attracting orbit or converge to no attracting
orbit. For example, if for all z5 € D, the sequence .{¢"(29)} converges to a fixed
point z, then the family o

{¢" :n e Zf}, (11.1)

where Z denotes the set of no)—negative integers, was shown to be normal on D,
and in fact converges uniformly/to the constant function G(z) = . If, on the other
hand, z is from the set of points J which converge to no attractmg orbit, then the
family (11.1) is normal on no neighborhood N of z because the behav1or of the
sequence {¢"(zq)}, where zy € N, varies dramatically with the choice of zg.

These examples suggest that for an arbitrary function ¢(z) it might be useful
to partition C into regions where family (11.1) is normal and non-normal. Indeed,
this dichotomy is at the core of both Fatou’s and Julia’s studies. Both mathematx-
cians divided C into regions of normality and non-normality, which are often called,
respectively, the Fatou and Julia sets. These sets are defined as follows:

Definition 11.1 Let ¢(z) be a rational function, and let G be the family
G={¢":nezf). ©(11.2)

The Julia set J is the set of points in C for which there exists no neigh})orhood on
which the family G is normal. The Fatou set F' is the sel of points for which there
ezists neighborhoods on which G is normal.l The set F is therefore the complement

1T've taken the liberty of standardizing Fatou's and Julia's notation for the Julia set. Julia
denoted the Julia set E’ and Fatou referred to it as F. I've also standardized their function
notation.
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of J in C. The sets J and F are also referred to as the domains of non-normality
and normality, respectively.

It also can be shown that both sets are completely invariant, i.e., forward and
backward invariant, under iteration by ¢(z).

Generally speaking, points in F converge under iteration to attracting orbits, -

while points in J do not.? Instead, J is generally the boundary of the various regions
of the plane which are attracted to periodic orbits, although there are functions, to
be discussed below, for which J equals C.

"Perhaps because they felt that by understanding the Julia set J, which forms
the boundary of F, they would gain insight into the structure of F, both Fatou and
Julia began their investigation of the dichotomy between the regions of normality
and non-normality with a thorough investigation of the set J.

In what follows, the function ¢(z) will be assumed to be a rational function
of degree strictly greater than one.® Fatou and Julia each made this restriction,
not only because the behavior of a linear fractional transformation (LFT) under
iteration was understood, but because many of the following theorems do not hold
for an LFT. For example, the Julia set of an LFT generally consists of a single
repelling fixed point, while this is never the case for a rational function of degree
greater than one.

11.3 The Julia Set

The following theorem, proved by both Fatou [1920a:33ff] and Julia [1918:157],
gives a precise description of the Julia set.

Theorem 11.2 Let ¢(z) be a rational function. The Julia set of ¢(z) is the closure
of

T= {z 1 ¢P(x) =z and %(z)

> 1}, (11.3)

forp=1,2,.... Moreover, the Julia set is perfect.®

2For certain rational functions which possess a fixed point ¢ whose multiplier is one in modulus
but not a root of unity, there are components of F' which do not converge under iteration to a
period p orbit. Fatou called such domains singular domains, and more will be said about them
below. However, points in J never converge to an attracting periodic orbit.

" 3The degree of a rational function ¢(z) = p(z)/g(z) is the maximum of the numbers degree

p(z) and degree g(z). h

4Julia actually started his investigation of the domain of non-normality by defining T and then
proving that its closure equals J. Fatou, on the other hand, began his formal investigation of the
Julia set, as [ have done, by first partitioning C into domains of normality and non-normality, and
then proving Theorem 11.2.
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Since period p points & for which

»
12 1> 1
are called repelling periodic points, this theorem asserts that the Julia set is the
closure of the repelling periodic points.

Julia proved that the iterative family G, defined at (11.2), is not normal on J
by first showing that G is neither normal on T nor on its closure.’ He then showed
that the set J on which G is not-normal is precisely the closure of the set 7', I will
outline the portion of the proof in which Julia showed by contradiction that the set
J contains the closure of the set T' (see [1918:163ff]).

First let @ € T satisfy ¢(z) = 2 with |[¢’(z)| > 1. Suppose as well that N is a
neighborhood of z on which G is normal. Without loss of generality assume that
z # oo and that ¢(z) has no poles on N. (If this is not the case, use the coordinate
change z — 1/2.) Let {¢™} be a subsequence of G which converges uniformly on N
to a limit function G(z). The function G(z) is either analytic or uniformly infinite
on N. Since z is a finite fixed point of G, G(z) = =z # o0, and G(z) is therefore
analytic. However, G'(z) = oo, because |¢'(z)| > 1, and, as can be shown via a
direct calculation involving the chain rule,

dgms
@)

= ¢'(=)I™,

so {¢’(z)|™ goes to oo with n;. This contradicts the analyticity of the limit function
G(z), hence the family G is not normal around points in 7. -

The extension of the argument to the case where z is a period p point in T
follows directly by applying the p = 1 case to the function ¢?(z). Moreover, since G
is not normal on T, G is not normal on the closure of T' because any neighborhood
N of points in the closure of T contains points from 7. Blending topological notions
with a normal families argument, Julia next showed that the closure of J is perfect,
and concluded his proof of Theorem- 11.2 with the demonstration that if G is not
normal around a point, then that point is in the closure of 7.

In light of the connection between Picard theory and Montel’s theory of normal
families which was discussed in a previous chapter, it is worth noting that Julia
followed his first proof that J is a perfect set with a second proof utilizing a version
of Schottky’s Theorem, presented earlier as Theorem 8.9, which he called the Picard-
Landau Theorem, and afterwards remarked

This second demonstration is not in essence different from my first, es-
pecially when one realizes that Montel deduced the theorem of Picard-
Landau from notions he introduced regarding normal families of func-
tions {1918:171].

5For the sake of brevity, I will often use the phrase “normal on X" when I really mean “normal
on neighborhoods of X” or “normal on neighborhoods of points in X .”
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11.4 Some Interesting Julia Sets = -

Fatou and Julia were both intrigued by the fact that for certain functions, the Julia
set could be quite unusual. For example, as Fatou indicated in his note [1906a),
the Julia set could be a totally disconnected perfect (TDP) set. Both Fatou and

Julia showed that the set J could also be a continuous curve v(t) for which v/(z) .

does not exist at an infinite number of points ([Julia 1918:273ff], [Fatou 1920a:91]),
a continuous curve with an infinite number of double points, that is, a curve which
crosses itself infinitely often ([Julia 1918:232ff], [Fatou 1920a:89]), a closed Jordan
curve ([Julia 1918:212ff], [Fatou 1920a:260ff]), a segment ([Julia 1918:260)), or a set
consisting of infinitely many disjoint continuous pieces ([Julia 1918:257ff], [Fatou
1920a:87]).

Examples of TDP sets, curves without tangents, and curves which have infinitely
many double points existed in the mathematical literature of the time, ‘but were
generally given by a detailed and artificial .constructive process. Moreover, as was
noted in the chapter concerning Fatou’s 1906 note, many French mathematicians
were disturbed by the existence of such things as curves without tangents and not
only regarded them as unnatural but sometimes ridiculed those who studied them.
Perhaps as a rejoinder to such sentiments, Fatou and Julia each provided several
constructions of these sorts of sets and curves, and the fact that they occurred
so frequently as boundaries of the Fatou set offered persuasive evidence that such
things were by no means unnatural.

Julia explicitly noted that the fact that J can be viewed simply as the domain
of non-normality or the closure of the repelling period p points gave him a simple
means of constructing interesting sets. In comparing Julia sets with infinitely many
undefined tangents with curves produced by Helge von Koch (1870-1924), Fatou
remarked that

These curves have many similarities with those of Helge von Koch; but
the curves he studied are defined in a constructive manner in which
properties are assigned in advance [Fatou 1920b:242].

Among the curves to which Fatou refers is the so-called Koch Snowflake which
Koch presented in his paper [1906] evidently as an example of a non-differentiable,
non-rectifiable continuous curve which encloses a finite area. It is formed recursively
from an equilateral triangle Aq of side s by first deleting the middlé third of each
side and then replacing it with an equilateral triangle of side s/3 as indicated in
figure 11.1. The resulting figure A; has twelve sides of length s/3. Next, in the same
fashion, replace the middle third of each of the twelve sides with equilateral triangles
of side 5/9. The Koch Snowflake is the limiting curve obtained if the process
is repeated indefinitely. In another example Julia noted that ideas which “arise
naturally” in the study of iteration offer the “simplest possible” [Julia’s emphasis]
illustrations of

the most subtle notions concerning the frontiers of planar, simply con-
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Figure 11.1: Sazps I and I in the construction of The Koch Snowflake.

nected domains, ideas which have been recently discussed in the intér—
esting memoirs [of Lindelsf and Montel] . ..[1918:249].

What Julia evidently refers to in these remarks is the fact that for the function
#(2) = (32 — 2%)/2, the Julia set is a simply connected curve on the Riemann spherg.
This provides a natural example of a simply connected domain whos.e bounda.ry is
a continuous curve with an infinite number of double points, ideas which he pointed
out are discussed in Lindel6f [1915] and Montel [1917]. As a schematic realization
of the curve he offered a recursive construction which he noted-was based on ideas
from Koch [1906]. Julia’s schematic is presented at figure 11.2.

Fatou also emphasized that the Julia set provides interesting examples of sets
previously thought to be somewhat abnormal. Using a technique t'ha,t both.he
and Julia sometimes employed, Fatou perturbed the coefficients of a given function
whose Julia set was a TDP set, and observed that in the perturbed function, J
remains a TDP set.® Julia likewise indicated that if J is a curve y(t) such that'y'(t)
does not exist at an infinite number of points, then this condition persists under
perturbations of the coefficients of ¢(z) [1918:292ff]. ‘ .

Fatou’s argument that under certain perturbations J remains a TDP set is par-
ticularly interesting since it anticipates the contemporary study of the Mandel;)rot
set, which is the set of points ¢ such that the Julia set of the functloq qc(z). =2z+e¢
is connected. If ¢ is not in the Mandelbrot set, the corresponding Julia set is a TDP
set.Using the function ¢(z) = 2™ +c as an example, Fatou considered the eﬁ‘t‘acf, 'that;
varying the complex parameter ¢ had on the structure of the set J. He noted initially

$Fatou claimed in his note {1906a] that the Julia set for certain functions did not have a we.ll
défined tangent at an infinite number of points. However, the justification he provided for t‘lus
statement in [1906a] was rather vague. In [1920b] he proved that if the Julia set of a function
#(z) is a curve 4(t) and if z is a period p point of ¢(z) with v(te) = z, then ~(to) does not have a
well-defined tangent whenever %(z) is non-real.
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.-

Figure 11.2: Julia’s schematic of the Julia set for the function ¢(z) = (3z — 23)/2
[Julia 1918:244].

that if |c| was “sufficiently large,” then J was a TDP set [Fatou 1919:254]. He later
gave more precise estimates on |c| in the more general case where ¢(z) = zP(2) + ¢
where P(z) is a polynomial [1919:258-59]. Although he did not do so, his estimate
applied to the special case of g.(z) = 22 + ¢ implies that if |¢| > 1 + v/6/2 then J
is a TDP set. Compared with the standard contemporary estimate that |c| > 2,
Fatou’s estimate was fairly accurate.

That J remains a TDP set under such broad conditions on ¢ indicated to Fatou
that the “pathological” condition that J be a TDP set was actually quite normal,
as the following quotation by Fatou suggests:

Another remark that I’d like to make is that the existence of domains of
convergence whose frontiers [i.e., J] are totally disconnected sets is not a
singular case, that is, this condition can be produced without particular
relationships among the coefficients of the function ¢(z); it suffices that
the coefficients vary in a convenient domain [1919:258].
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11.5 Further Properties of the Julia Set

Recall from Definition 8.7 that if F is a family of meromorphic functions on a
domain D, then a point wp is called an exceptional value of the family F on D if

U £[D]

JeF

does not contain wg. Montel’s normality criterion, Theorem 8.8, states that if a
meromorphic family F has at least three exceptional values, then it is normal, hence
a non-normal family of meromorphic functions can have at most two exceptional
values. Julia [1918:167] and Fatou [1920a:35] used both Montel’s normality criterion
and the fact that G was not normal on neighborhoods of the Julia set to prove the
following fact about J:

Theorem 11.3 Let ¢(z) be a rational function of degree strictly greater than one.
With the ezception of at most two points, given any point z in C, J 1s contained in
the closure of the set O~ (z), where O~ (2).denotes the set of preimages of z under
¢‘7

The proof I will offer is based on Fatou’s proof. It uses the fact, which I will
not prove, that because the family G consists of the itérates of ¢(z), the set of
exceptional values £ of the family G for a given point z € J is the same for all
sufficiently small neighborhoods of z. Since it can also be shown that the set of
exceptional values is independent of the choice of z € J, it is-appropriate to refer
to the exceptional set £ of a given rational function ¢(z).

With these facts in mind, let 2 be a point in J, and let N, be a neighborhood of
z which contains no exceptional points. As noted above, the family G is not normal
on N,. Let w be a point on the sphere which is not in £. Then, since G is not
normal on N,, and w is not an exceptional point,

weE U #"[N,].
n=1

Therefore, there is a point w’ in N, and an integer n such that ¢”(w’) = w. Since
w' is by construction not an exceptional point, the argument applied to w can now
be applied to w’, hence there is a point w” in N, which is the preimage of w'.
Continuing in this manner, N, contains an infinite number of preimages of w under
{¢™(2)}. Since this holds even if the neighborhood N, is made arbitrarily small, z
is in the closure of O~ (w). This argument can be repeated for any point z in J,
hence J is a subset of the closure of O~ (w).

Theorem 11.3 was not only useful for Fatou and Julia, but has provided the
means for contemporary researchers to construct computer representations of Julia

"The set O~(z) is often called the backward orbit of z under ¢(z).
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sets: taking an arbitrary point w in the plane, the Julia set is approximated by

N

U ¥ (w),

n=J
yvhere I and N are conveniently chosen, and where a different inverse P(z) of ¢(z)
i8 chosen a,f: random for each n. Choosing an appropriate I gets rid of what are
called transients, that is, preimages of #(w) which are relatively far from the Julia
set.

Fatc)u. ax.ld .?ulia were also intrigued by what a present day observer might call

the self-similarity or fractal properties of the Julia set, which they studied via the
following extension of Theorem 11.3:

Theorem 11.4 Let ¢(z) be a rational function of degree strictly greater than one.
Letz € J an‘d let N be a neighborhood of z which is bounded away from the set £
of the exceptional values of G. Let S be any closed set in C. There ezists n and &
such that

N C "[N) C ¢ [N] C - C 4*"[N] . (11.4)
with § C ¢¥*[N]. '

Fatou and Julia used Theorem 11.4 to demonstrate what Fatow. called the ho-
mogeneity of J. The set A is said to be homogeneous if given any neighborhood N
of a point in A there exists a continuous map ®(z) such that ®[N N A} = A. That
such a map exists for the set J follows directly from Theorem 11.4: choose z and N
as in the statement of the theorem and let J be a closed set S. There then exists
k and = such that ¢*”[N N J] contains J. The invariance of #(z) on both F and J
implies that ¢(z) € J if and only if z € J, hence the last sentence of the theorem
implies that ¢*"[N N J] = J. The interest that homogeneous sets held for Fatou
and Julia was expressed succinctly by Fatou: “The set J has the same structure in
all of its parts [Fatou 1920a:40].” Julia noted that the homogeneous character of J
implied that

One can say that from any small portion of J, one can generate J in its

entirety in a finite number of iterations [via the map ¢*"(z)]. ... The
structure of J in its entirety is the same as in any of its parts [Julia
1918:173n).

Especially interesting to these men was the fact that the global topological
structure of J is mirrored in its local structure. Both mathematicians pointed out
that the homogeneity of J implies that if N N J is totally disconnected, then so is
J. Likewise, if N N J is continuous, J is as well, hence the structure of J can be
deduced from a small part of it. Along these same lines, Theorem 11.4 can be used
to prove a surprising result about the set J:

Theorem 11.5 The set J for a given rational function ¢(z) contains an open disc
D if and only if J = C.
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One way to see this is as follows.® Let D be an open disc contained in the
Julia set of a function ¢(z). Since it is also a neighborhood of a point z in J, it
corresponds to the neighborhood N in the statement of Theorem 11.4. Any point
w € € — £ is a closed set, thus Theorem 11.4 asserts the existence of a positive
integer M such that w € ¢M[D]. Since D C J the invariance of J under ¢(z)
implies that ¢ [D] C J, hence the point w is in J. This argument can be applied
to all non-exceptional points, and it therefore follows that C — £ C J. Since the
exceptional set £ contains at most two points, this implies that J equals the sphere
except for at most two points. But J is perfect, and therefore closed, so J = C.

An example where the Julia set is the entire extended plane occurs with the

function (2 4 1)
z¢ 41
I(Z) - 42(22 _ 1): (115)
which was discussed by Lattés in his note [19183.] dated January 7, 1918, and is
known as Lattés’ function. .

Latteés’ discovery of the function I(z) was prompted by his plan, discussed in
the previous chapter, to examine the Poincaré equation F(su) = ¢(F(u)) via the
investigation of functions F(u) for which F(su) is a rational function of F(u). For
s = 2 the Weierstrass p-function is one such function, and Lattés observed that if
the standard p-function coefficients g; and g3 are fixed as g3 = 4 and g3 = 0, p(u)
satisfies the Poincaré equation

p(2u) = I(p(u)), 4

where I(z) is Lattés’ function.

Both Fatou and Julia later showed that the Julia set of I(z) is the extended
plane, but the peculiarities of this function were first noticed by Lattés, who took
note of what he considered strange behavior, namely, that for fixed z, the perfect
component of the closure of the set

{p(2"u)} = {I"(p(w))},

which is the forward orbit of a point z satisfying z = p(u), is generally a particular
closed curve which varies with the choice of z.

Julia, however, quickly realized the significance of Lattés’ function. Writing
three weeks later in the Compte rendu of January 28, 1918, he observed that the
Julia set of I(z) is the entire extended plane, and therefore I(z) had no attracting
periodic orbits. Thus, the curves Lattés noticed are explained by the fact that for
arbitrary z, {I®(z)} never converges to an attracting orbit but rather meanders
through the plane. As Julia observed, “The oddities Lattés noticed thus seem less
surprising ... [1918b:153].”

8 Julia and Fatou proved this theorem directly from Theorem 11.3.
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11.6 Iteration on the Fatou Set -

As in the examples described in the previous sections, the Julia set J partitions its
complement, the Fatou set F', into a number of connected components on which
the family

G={¢":neZf}

is normal. Consequently, the structure of F can be inferred from that of J. For
example, if J is a TDP set, an infinite number of discrete continuous arcs, or a
line segment, then F' consists of a single component which is simply connected in
the last case and infinitely connected in the first two. If the Julia set for ¢(z) is a
simple, closed curve then F consists of two simply connected components. If J = C,
then F is empty. Finally, if J is a closed continuous curve with an infinite number
of double points, then F' consists of infinitely many simply connected components.

Montel’s theory of normality is no less useful on the Fatou set than it was on
the Julia set. In a manner that will be made precise over the next few paragraphs,
Julia used Montel’s theory of normal families to show that all points in a particular
component of F' exhibit similar behavior under iteration. In the process of doing
this he extended Koenigs’ local theory of iteration, which heretofore only described
iteration on a disc D surrounding an attracting ﬁxed point &, to the entire compo-
nent of F' which contained z. Although I will be outlining J uha s characterization
of F, Fatou’s view of F did not differ in any substantive way. However, Julia’s
conception of the Fatou set was expressed with greater clarity and precision.

The key to Julia’s description of F is that the limit functions of the family G on
F correspond to the limit points in the forward orbit of points 2o in F under ¢(z),

that is, the set
0% (20) = {¢"(20)}.

For example, suppose that wo is a subsequential limit point of the sequence
O*(z) for some zp in F. There then exists a subsequence of points {¢"i(z0)}
which converges to wp. At the same time, the normality of G on F implies that the
" corresponding sequence of functions {¢""} converges uniformly on a neighborhood
D of z to a function G(z) satisfying G(z) = wp.

Conversely, given a point zp from a subdomain D of F and a limit function G(z)
from G which is defined on D, infinitely many iterates ¢™(z,) are arbitrarily close
to the point G(z).

The following theorem of Montel enabled Julia to use this correspondence be-
tween the limit functions of G and the limit points of O (zp) to characterize iteration
on F (Theorem 8.6 above):

Theorem 11.6 (Montel) Let {f;} be a sequence of functions from a meromorphic
family F which is normal on a domain A. Suppose that the f; converge to a function
G(z) on an infinite set of points which has a limil point in A. Then the f; converge
uniformly to G(z) on A.
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Theorem 11.6 is particularly useful in the event that a component A of F' con-
tains an attracting fixed point of = of ¢(z). Koenigs showed in his paper [1884] that
there exists a disc D surrounding « on which the iterates of ¢(z) converge uniformly
on D to z, that is, for all zin D

lim ¢"(z) = z.

n—oo
Viewed from the perspective of normal families, this implies that ¢ has a unique
limit function G(2) = z on D. The above theorem of Montel’s in turn implies that
the convergence of G to G(z) = = can be extended from D throughout A, since G is
normal on A. Consequently, due to the correspondence between limit functions of
G and limit points of the sequence of {¢"(z)}, all points in A converge to z under
iteration. This behavior is summarized in the following theorem.

Theorem 11.7 Let ¢(z) have a fized point z satisfying |¢'(z)| < 1. Let A be the
component of F' which contains z. Then all z in A converge 1o z under iteration

by ¢(2).

The preceding extends easily to components of F' which do not contain an at-
tracting fixed point. For example, if instead of converging to a fixed point z on
D, ¢™(zo) converges to a period p orbit {zq, ..., 2p_1}, then the limit functions on
D of the family G are the functions G;(z) = z;, corresponding to subsequences of
{#"(20)} which converge to z;. The convergence of the limit functfons Gi(z) on D
can then be extended to the entire component of F' which contains D. Likewise, if
all points in an attracting petal A; given by the Flower Theorem (see Theorem 5.1)
converge to a fixed point z of a function ¢(z) satisfying ¢'(z) = 1, this behavior
extends to the component of the Fatou set F' which contains A4;. Julia thus showed
that on any component A from the Fatou set, iterates of ¢(z) exhibit the same
behavior throughout A.

Julia summed up his discussion by observing that Montel’s Theorem provides
a concise means of extending Koenigs’ local results to the entire component of F
which contains z:

To say that if in A the behavior of the sequence ¢(z), $%(z2), .. ., " (2),
. is the same, is to say that any subsequence converges on all areas
interior to A or on none of these areas.

This is the manner in which the perfect set J delimits the diverse
regions of convergence of the plane: in all connected regions bounded by
J, the character of the sequence ¢(z), ¢%(2),...,4"(2),.. . is the same.

The preceding theorem [i.e., Theorem 11.6] makes a genuine bridge
between the general study of iteration in the entire plane and the local
study, which has been the sole enterprise [of the study of iteration] up
to.this point [1918:195-96].
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- Julia and Fatou also studied the limit functions of G on components of F' which
have the odd property that there exists no open disc D on which the iterates con-
verge to a period p orbit, where p > 1. Fatou called such components singular
domains. Examples of singular domains are very difficult to construct, so much
so, that neither Julia nor Fatou were able to construct one, or even prove their

existence. Nonetheless, if a singular domain S exists, and if it contains a disc D on .

which the sequence {¢"¢} converges to a limit function G(z), Julia observed that
Theorem 11.6 implies that the convergence to G(z) can be extended to A. Subse-
quent to these works of Fatou and Julia singular domains have been shown to exist.
More will be said about this subject below.

11.7 A Limit on the Number of Attracting Orbits

After successfully using Montel’s theory of normal families to partition the sphere
into a number of components such that on each component the iterates of é(2)
exhibit the same behavior, Fatou and Julia inspected this behavior more closely.
One of the most important results they proved was that the number of attracting
and neutral periodic points is finite.®

This result resolved a long-standing question of Koenigs’, which he posed at the
end of his paper [1884], as to whether there were infinitely many attracting periodic
points. Koenigs feared that there might be, in which case there would be infinitely
many attracting domains. This would in turn make his proposed division of the
plane into regions of attraction, which he already suspected might be an impossible
task, all the more difficult.To a certain extent, Koenigs’ fears were justified because
although the number of attracting domains is finite, the number of components of
the Fatou set need not be. In this section, I will discuss the discovery that the
number of attracting periodic points is finite; in the next I will show how Fatou and
Julia demonstrated that the Fatou set frequently has infinitely many components.

The discovery that the number of attracting orbits is finite was achieved by
paying careful attention to a set that previous to Fatou’s 1906 note had been largely
ignored, namely, the behavior of the forward orbit of the critical points of ¢(z).
Actually, Fatou looked at a related set in Theorem 7.1 from his note [1906a], the
orbit of the critical values. A critical point ¢ of ¢(z) satisfies ¢’(c) = 0, perhaps
under a local coordinate change, and a critical value is the image of a critical point.
In order to discuss these results with precision, it will be helpful to distinguish the
components of F which contain an attracting orbit from those which do not.

Definition 11.8 The immediate domain of attraction for an attracting fized point
z of the function ¢(2) is the component of F which contains x. This set is also

9 A neutral periodic point is one in which the multiplier is equal to one in modulus. A rationally
neutral periodic point is one in which the multiplier is a root of unity, and an irrationally neutral
periodic point is one in which the multiplier is one in modulus but is not a root of unity.
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sometimes ¢alled the immediate basin of attraction of . It is denoted A,, and
components of F which also converge to z under iteration but do not contain z are
called preperiodic. The complete set of points in C which converge to z under iter-
ation by #{z) is called the total domain of attraction of z or the basin of attraction
of . More generally, the immediate domain of attraction of a periodic orbit is the
union of the p components A; of F which contain an z;. Preperiodic domains are
those components which converge o the periodic orbit but which do not contain any
of the z;. The total domain of convergence is the totalily of points which converge
to the periodic orbit {zo,...,2p_1}.

Fatou [1920:61] and Julia [1918:203] each proved the following theorem and
corollary which serves to limit the number of attracting periodic orbits.

Theorem 11.9 The immediate domain of attraction for a periodic orbil contains
a critical point of the function ¢(z).

Both Fatou and Julia showed that a degree d rational function has at most 2d — 2
critical points, which makes the following immediate.

Corollary 11.10 The number of aitracting periodic orbils is less than or equal to
the number of critical points of the function ¢(z), which is at most 2d — 2, where d
is the degree of (¢(z2)). :

Both Fatou [1920a:63] and Julia [1918:211) extended Theorem 119 to rationally
neutral orbits (periodic points whose multiplier is a root of unity) and proved the
following;:

Theorem 11.11 The number of attracting orbits plus the number of rationally neu-
tral orbits is bounded by the number 2d — 2, where d is the degree of #(2).

The attempts of Fatou and Julia to find an upper bound on neutral domains
differed in one substantive aspect. Both hypothesized that singular domains S might
exist, but could not prove that they existed if the degree of #(z) was strictly greater
than one.l® Both correctly recognized that if such domains existed, then iteration
of ¢(z) in S behaves like the irrational rotation z +— to e'*z, where 8/7 ¢ Q. Only
Fatou, however, sought to find an upper bound on the number of singular domains,
and in fact proved that should singular domains exist, their number would be at
most 4d — 4 [1920a:69).

Aside from the fact that Julia did not seek a bound on the number of singular
domains, his study of these domains was quite thorough [1918:311ff]. He related
the existence of singular domains, which he called centers, to the existence of an
irrationally neutral fixed point z of ¢(z) in S satisfying ¢'(z) = *® where 8/ ¢ Q.11

19Singular domains are components of F which converge neither to attracting nor to rationally
neutral domains. Sometimes these domains are called rotation domains.

117t has been shown since that S can be annular and therefore need not contain a fixed point.
Iteration then acts like an irrational rotation of an annulus.
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In his only application of functional equations in [1918], Julia showed that if such
a singular domain S exists, then there also exists an analytic solution F(z) to the
following Schréder functional equation

F{g(2)) = &' F(2) (11.6)

throughout S, and furthermore, that z is in the Fatou set F. On the other hand,
if an irrationally neutral fixed point did not correspond to a singular domain, there
exists no neighborhood of  on which equation (11.6) could be solved, and z is a
member of the Julia set J.

Perhaps the reason that Julia sought no bound on the number of singular do-
mains in [1918] is that at the time he wrote [1918] he believed, incorrectly as it turns
out, that singular domains did not exist if the degree of ¢(2) is strictly greater than
1. That Julia thought this is indicated in his note [1919] in which he announced
that he had proved that singular domains did not exist and that all irrationally
neutral fixed points were therefore in the Julia set [1919:147].

He was mistaken in this claim, for in his paper [1942] Carl Siegel proved that
there exist simply connected components of F containing an irrationally neutral
fixed point z in which iteration of ¢(z) acts like an irrational rotation provided that
¢'(z) satisfies a certain number theoretic condition (see Theorem 5.4).

Later, Michael Herman (1942-) showed in his paper [1979] that annular domains
also exist on which iteration by ¢(z) acts like an irrational rotation. Dennis Sul-
livan (1941-) subsequently showed in his papers [1983] and [1985) that these are
the only kinds of singular domains which can exist if ¢(z) is a rational function,
and consequently components of the Fatou set are of one of the following types:
they converge either to attracting or periodic orbits, they converge to a rational
neutral periodic orbit or they are rotation domains. Mitsuhiro Shishikura (1960-)
in his paper [1987] showed that the number of attracting orbits plus the number of
rationally neutral orbits plus the number of rotation domains is at most 2d — 2.

In any event, Julia, in his Notice sur les travauz scientifiques, written in antici-
pation of his election to the French Academy of Sciences in 1934, noted that he had,
in the argument of the proof referred to in his note [1919], made false assumptions
concerning the boundary points of components in the Fatou set, which he observed
threw doubt on his earlier assertion that singular domains could not exist [1968,
Volume 1:22].

Fatou and Julia were not the first mathematicians to address the issue of the
existence or non-existence of solutions to the equation

F($(2)) = ¢'(2)F(2) )

where ¢(2) is analytic around a fixed point z satisfying ¢/(z) = ¢*, where 6 is not
commensurate with 7. In 1915 the American mathematician George Pfeiffer related
solutions to the above Schréder equation to the existence of a conformal mapping
of a curvilinear angle of angle § to a rectilinear angle of the same magnitude.
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Pfeiffer found no solutions to (11.7), but he did prove two interesting facts. The
first was the existence of analytic functions for which no solutions to (11.7) exist.
The second was that if g(2) is any analytic function with a fixed point at z satisfying
|¢'(x)] = 1, then a perturbation ¢(z) of the function g(z) exists such that equation
(11.7) has no solutions. The function ¢(z) is a perturbation of g(z) in the sense
that for a given ¢ > 0, there exists a function ¢(z) such that ¢(z) = z, ¢'(z) is
one in modulus but not a root of unity, and |¢; — g;| < ¢, where ¢; and g; are the
corresponding coefficients of the Taylor expansions for ¢(z) and g(z) about z.

Pfeiffer attributed his awareness of the connection between equation (11.7) and
the conformal mapping of curvilinear angles to a series of lectures given at Columbia
University by the American mathematician Edward Kasner, who was Ritt’s thesis
advisor.

Neither Fatou nor Julia gave any indication that they were aware of the work
of Pfeiffer, Kasner or Ritt.

11.8 The Number of Components of the Fatou Set

Julia and Fatou each offered examples of Julia sets consisting of a continuous curve
which crosses itself infinitely often. Since J can not have any interior points unless it
equals C, this implies that the curve partitions F into infinitely many components.
However, the number of attracting, neutral or singular orbits is finite, and therefore,
at least one of these orbits must have infinitely many preperiodic components (see
Definition 11.8).

This situation is not at all unusual. Indeed, the following theorem, which Julia
[1918:2211f] and Fatou [1920a:50f] each proved, justifies Koenigs’ fears that division
of the plane into regions is extremely complicated.

Theorem 11.12 If F does not have en infinite number of components it has at
most two.

To prove this theorem, both Fatou and Julia relied on two major lemmas, the first
of which, explains why F can have infinitely many components.

Lemma 11.13 If there ezists at least one component of F which is preperiodic,
then there are an infinite number of preperiodic domains.

I will sketch Fatou’s proof in the case where the domain of attraction for an
attracting fixed point ¢ has a preperiodic component. Fatou’s argument typifies a
kind of topological argument he employed repeatedly.

Let Az be the immediate domain of attraction of a fixed point z. Fatou had
previously shown that ¢(z) is forward invariant on A, that is, it satisfies ¢[4,] C
Az. This follows easily from the connectedness of A,.

To see that there cannot be a unique preperiodic component of 4., suppose one
exists. Call it A’ and pick 2’ € A’ such that ¢(z') = z € A;. Since all points in A’
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converge to Az, such a point exists. The function ¢(2) is ratiomal, thus it is also
an onto map of C, hence 2’ has a preimage z'/, which due to the forward invariance
of A; must be in A’. The point ¢(z"") = 2’ converges to z under iteration, so 2"

must as well. Both 2z’ and z are in A’, so there exists a continuous curve 7 in*

A’ connecting 2z’ to z”. Since A and A’ are distinct components of F they have

no points in common and are separated by the Julia set J. The continuity of é(z)

therefore implies that ¢(y] is either entirely in A or in A’. But ¢(2"") = 2’ is in A’,
and ¢(2') = z is in A, so this can not be. The contradiction is resolved only if
there is a second preperiodic component A" containing z”/ such that ¢[A"] c A'.
Applying the above argument to A”, there must be a third preperiodic component,
and so forth.

The second lemma used in the proof of Theorem 11.12 is the following.

Lemma 11.14 Let ¢(z) be a rational function of degree d > 2. A completely
invariant component A is defined to be one satisfying both $[A] = A and $~1[A4] = A
where ¢~1(2) is the total inverse of ¢(z), that is, $~1(z) is the complete set of
inverse images of z. A completely invariant, simply connected component A of F
has d — 1 critical points, counted with multiplicity.

Lemma 11.14 implies that there can be no more than two simply connected,
completely invariant components of F. The existence of three such components
in turn implies the existence of at least 3d — 3 critical points, which contradicts
the corollary to Theorem 11.9. Fatou and Julia also showed that there can not be
three or more completely invariant domains, since the existence of three completely
invariant domains implies that they are all simply connected.

Theorem 11.12 now follows readily: if there are three or more components then
Lemma 11.14 implies that at least one is not completely invariant, hence it is prepe-
riodic, in which case Lemma 11.13 asserts that there must be infinitely many other
preperiodic components. Therefore, if the number of components of F is finite,
there can be no more than two.

11.9 Newton’s Method Again

As recounted in the opening chapter, the study of Newton’s method for complex
functions was the principal motivation for the first important work concerning the
iteration of complex functions, Schréder’s papers [1870] and [1871]. The question of
the convergence of Newton’s method for complex polynomials also interested Cay-
ley, and he published several short works concerning Newton’s method, the most
important of which was his paper [1879a}. Although their respective approaches
were quite different, Cayley and Schréder each proved that for the complex poly-
nomial ¢(z) = z? — 1 the Newton’s method function for ¢(2), Ny(z) = (22 + 1)/2z,
converges to —1 on the left half-plane, to 1 on the right half-plane, and to neither
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root on the imaginary axis. The Newton’s method function for the general quadratic
exhibits analogous behavior, as both Schrdder and Cayley indicated.

It is important to keep in mind that the methods each man used were ad hoc
in the sense that they relied on techniquds which did not generalize to the study
of Newton’s method for higher degree polynomials. It is therefore no surprise that,
aside from Schréder’s attracting fixed point theorem which shows that the roots
of an arbitrary function f(z) are attracting fixed points of the Newton’s method
function for f(z), neither man had any success in extending their arguments from
the quadratic case to higher degree polynomials.

The work of Fatou and Julia, however, does away with many of the difficulties
which frustrated Schréder and Cayley. For example, Fatou gave an example of
Newton’s method for the cubic ¢(z) = 23— 1, in which he showed that the Julia set
was a curve which divided the plane into infinitely many components [1920a:89-90].
That the Julia set for the Newton’s method function N,(z) should be such a curve
follows immediately from the fact that, as Schréder’s fixed point theorem explains,
the three roots of ¢(2) are attracting fixed points of N.(z). Since each attracting
fixed point corresponds to at least one component of the Fatou set, there are at
least three such components. Consequently, Theorem 11.12 asserts that there are
infinitely many components to the Fatou set.

Julia discussed Newton’s method in considerable detail [1918:249ff] and gave
two reasons why those who had previously studied Newton’s method had run into
difficulties. The first has to do with the fact that the roots of a polynomial p(z) of
degree n are also critical points for the corresponding Newton’s method function,
Np(z). Since all told Np(z) has at most 2n — 2 critical points (the corollary to
Theorem 11.9), and since any completely invariant component of the Fatou set F
for Np(2) must have n — 1 critical points (Lemma 11.14), it follows that whenever
n > 2, there is at most one root for which the corresponding attracting domain
consists of a single, completely invariant component of F'. Thus, the corresponding
domains of attraction for the other n — 1 roots of p(z) must have infinitely many
preperiodic components.

After outlining these facts, Julia observed:

In general, the actual division of the plane into regions, each of which
converge to a determined root of p(2) = 0, will be an impractical prob-
lem, since at least n — 1 of the roots have a domain of convergence
consisting of infinitely many areas, hence one must divide the plane into
infinitely many regions. Here is the reason that Cayley’s attempt to ap-
ply Newton’s method to equations of degree > 3 was checked [1918:254].

The second inherent difficulty in the study of Newton’s method which Julia observed
involves the fact that the Julia set for a rational function is a subset of the closure
of the backward orbit of any non-exceptional point in C (see Theorem 11.3). This
implies that contained in any neighborhood of a point in the Julia set of Np(z)
are points which converge to each of the attracting fixed points of Np(z), which
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makes the direct calculation of the Newton’s method function very difficult, since
the behavior under iteration by N,(z) of points arbitrarily close to one another
could vary greatly.

Julia’s omission of any reference to Schroder in the above quotation is telling,
since it underscores how far Schrdder’s work in iteration had faded into obscu-

rity. Although Fatou and Julia were probably aware of Schréder, for example, both -

used the term Schroder functional equation and would have certainly heard of him
through the work of Koenigs and Leau, it is not clear how much they actually knew
about his contributions. Neither Fatou nor Julia discussed Schréder’s accomplish-
ments in any detail, much less his study of Newton’s method. Indeed, each credited
Cayley with establishing the convergence properties of Newton’s method for the
quadratic.

This is especially ironic since Cayley’s paper was conceived along narrow lines
and consequently contributed relatively little to the general study of iteration, while
Schroder’s study was founded upon the general principles. In many respects, the
basic question Schroder sought to answer is the same one which motivated Fatou
and Julia, namely, given a point in the plane, what are its properties under iteration
by a given function ¢(z2).

In any event, I hope that viewing the investigations of Cayley and Schroder from
the point of view of Fatou and Julia not only illuminates the difficulties-the former
faced, but also emphasizes the power of the theory developed by Fatou and Julia.
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