Category: Escape-time Fractal
This function available in FRACTINT and ported to Maple V here depicts an escape-time fractal. It is initialized by assigning
meaning that the calculation is done for each value in the complex plane (on the screen). The iteration sequence is
with func being any function (e.g. a trigonometric or hyperbolic function, or exp, ln, or sqrt). p1 is a constant complex value representing a point in the plane.
LAMBDAFN is a variant of the Julia set.
> # LAMBDAFN > lambdafn_sin := proc(x, y) > local z, m, p1; > z := evalf(x+y*I); > p1 := evalf(1+I*0.4); > for m from 0 to 100 while abs(z) < 4 do > z := sin(z) * p1 > od; > m > end: > plot3d(0, -4 .. 4, -3 .. 3, orientation=[-90,0], > grid=[250, 250], style=patchnogrid, > scaling=constrained, color=lambdafn_sin);
> plot3d(0, -1.5 .. 1.5, -1.1 .. 1.1, orientation=[-90,0], > grid=[250, 250], style=patchnogrid, scaling=constrained, > color=lambdafn_sin);
Here is a faster version that uses the hardware's co-processor:
> # LAMBDAFN_FAST > # Using hardware coprocessor > lambdafn_sinfast := proc(x, y) > local xn, xnold, yn, m; > xn := x; > yn := y; > for m from 0 to 100 while evalhf(sqrt(xn^2+yn^2)) < 4 do > xnold := xn; > xn := evalhf(sin(xn)*cosh(yn) - cos(xn)*sinh(yn)*0.4); > yn := evalhf(cos(xnold)*sinh(yn) + sin(xnold)*cosh(yn)*0.4) > od; > m > end: > plot3d(lambdafn_sinfast, -2 .. 2, -2 .. 2, grid=[200, 200], > style=patchnogrid, shading=zhue, orientation=[65, 6]);
MAPLE V FRACTALS LAMBDAFN #1.01 current as of May 23, 1999
Author: Alexander F. Walz, alexander.f.walz@t-online.de
Original file location: http://www.math.utsa.edu/mirrors/maple/mfrlbdfn.htm