
MAT 5173.001 Fall 2003 / Solutions to midterm 1

1 (cf. II.13a, II.3.2, II.3.9) Since Z4 is generated by 1, an endomorphism f is uniquely determined by f(1). The relation
satisfied by 1 is 1+1+1+1 = 0, so since f(0) = 0 we must have f(1)+f(1)+f(1)+f(1) = 0. This is automatically satisfied
by any element of Z4. Thus, we may choose f(1) to be any element of Z4. This means that there are 4 possible choices for
f(1) and, therefore, 4 endomorphisms of Z4.

In order for f to be an automorphism, f(1) must be a generator of Z4. Since neither 0 nor 2 generate all of Z4, we must have
f(1) = 1 or f(1) = 3. Thus, there are 2 automorphisms of Z4: the identity and the permutation (1, 3). Any group generated
by an element of order 2 is isomorphic to Z2, so since Aut(Z4) is generated by the 2-cycle (1, 3), we have Aut(Z4)∼=Z2.

2 (cf. II.8.4) H = {(n, 2n): n ∈ Z} and its cosets are of the form (x, y) +H = {(n+ x, 2n+ y): n ∈ Z}, where (x, y) ∈ R2.
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(0.5, 1) +H

3 (a) Let a ∈ ker f and x ∈ G. Then f(xax−1) = f(x)f(a)f(x−1) = f(x)f(x−1) = f(xx−1) = f(1) = 1, so xax−1 ∈ ker f .

(b) Let H = S3, G = S2, and f : S2→S3 the inclusion morphism.
The image of f contains (1, 2), but not (2, 3)(1, 2)(2, 3)−1 = (2, 3)(1, 2)(2, 3) = (1, 3).

4 (cf. III.1.5) If f : Z2→Z is a group morphism, then f(1) = 1 and 0 = f(0) = f(1 + 1) = f(1)+ f(1), so f(1) = 0, so f = 0.
Ring morphisms must preserve 1, so there are no ring morphisms and only the zero group morphism Z2 → Z.

5 (cf. III.7.3) If f is a ring morphism Z2[x] → Z2[x], we have f(0) = 0 and f(1) = 1, so f preserves constants.
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In other words, f is evaluation at f(x). In order for f to be invertible, f(x) must have degree 1. The only two polynomials
of degree 1 in Z2[x] are x and x+ 1. Therefore, there are 2 automorphisms of Z2[x].

6 (cf. III.13.10, III.7.5) A ring morphism f : Q[x]→Q, must preserve constants (therefore onto) and is uniquely determined
by f(x). In light of the main theorem on quotient rings (domain/kernel∼= image), it suffices to find f with kernel J . In
particular, we want 0 = f(x + 1) = f(x) + 1, so choose f(x) = −1. In other words, let f be evaluation at −1, i.e.
f(a0 + a1x+ a2x

2 + ...) = a0 − a1 + a2 − ...

To prove that ker f = J let p ∈ J . Then p(x) = (x + 1)q(x) for some q ∈ Q[x], so f(p) = f((x + 1)q) = f(x + 1)f(q) =
0 · f(q) = 0, so p ∈ ker f . Conversely, suppose p ∈ ker f . Then f(p(x)) = p(−1) = 0, so x+1 divides p [proof: by the division
algorithm p(x) = (x+ 1)q(x) + r for some q(x) ∈ Q[x] and r ∈ Q; substituting x = −1 gives r = 0], so p ∈ J .


