Final exam / 2019.12.9 / MAT 4233.001 / Modern Abstract Algebra

1. Suppose z is an element of a finite group G. Show that

(a) z has finite order (denote it k),
(b) ™ = e if and only if k divides n,

(c) zl¢l =e.
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2. Sketch the subgroup lattice for Z12. For each subgroup, list all the elements and indicate
all possible generators of the subgroup.
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3. Define a function from the integers to the multiplicative group of nonzero complex num-
bers ¢: Z— C* by (k) = e2kmi/5,

(a) Prove that ¢ is a group homomorphism.
(b) What subgroup of Z is the kernel of ¢?
()
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(d) What does the first isomorphism theorem tell you about fifth roots of unity?

Sketch the image of ¢.
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4. Suppose an element x of the dihedral group D,, is a composition (in an arbitrary order)
of j rotations and k reflections (flips). [Example: z = r3farirafi with j = 3 and k = 2]
Under what conditions on j and k is x a rotation? A reflection? Explain.
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5. Let o = (1,2,5,4)(2,6,3)(5,6,3,2,1) be a permutation (in cycle notation). Express « as
a product of disjoint cycles. What is the order of a? Simplify aS!.
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6. Prove that the set A, of all even permutations in the symmetric group S,, is a normal
subgroup. What can you say about the quotient group S,,/A,? Give a concrete example
of a subgroup of S3 that is not normal. Explain.
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7. How many group homomorphisms from Zi2 to Zs @ Z4 are there? How many of them
are isomorphisms? If ¢ is such an isomorphism with ¢(2) = [1, 3], what is ¢(1)?
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8. Suppose R is a commutative ring with unity. Show that the set of all units (elements that
have a mutliplicative identity) in R is a multiplicative group under the same multiplication
as R.

et U(R)=§ xe R s a wnik]
Sine 1=t 1e U(RrR)

\

Sr\nr}owj-(. )C)") e U (K) , hew XVC)-]U"X—\

4

o ox9Tle W(R) &

THE UNIVERSITY OF TEXAS AT SAN ANTONIO



