Note Title 4/23/2010

1. Let $A = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$. Prove that A is an additive subgroup of \mathbb{R}^2 . Sketch A and two different nontrivial cosets of A in \mathbb{R}^2 .

Since 0 + 0 = 0 $[0,0] \in A$ if (x,y), $[x',y'] \in A$, then x+y=x'+y'=0So (x-x')+(y-y')=0 So $[x,y]-[x',y'] \in A$

 Suppose G is a group with 81 elements. Prove that G has an element of order 3. Provide an explicit example to show that G need not have an element of order 9.

Let $x \in G$, $x \neq e$, then $|x| \neq 1$ and bivides $81=3^4$ by Lagrange: theorem, so $|x| = 3^{k}$ for some $|x| \leq 4$ we have $e = x^{3k} = (x^{3k-1})^3$, so $|x^{3k-1}|$ divides $|x| \leq 4$ Since $|x|^{3k-1} \neq e$ by the minimality $|x| \leq 4$

Example G= Z3 @ Z3 @ Z3 @ Z3 has order 81 But no elemente of order 9. Let Gl₂(R) denote the multiplicative group of invertible 2 × 2 matrices with real coefficients and Sl₂(R) denote the subgroup of Gl₂(R) of those matrices with determinant 1.
 Prove that Sl₂(R) ⊲ Gl₂(R) and Gl₂(R)/Sl₂(R) ≅ R*.

Define
$$\varphi: Gl_2(\mathbb{R}) \to \mathbb{R}$$

By $\varphi(A) = \det A$
Then since $\det(A\mathbb{S}) = \det A \cdot \det \mathbb{S}$, φ is group hom.
Here $\varphi = Sl_2(\mathbb{R})$ so $Sl_2(\mathbb{R}) \to Gl_2(\mathbb{R})$ (hernels are always normal subgroups)
 $groups = groups$ is so than: $\frac{Gl_2(\mathbb{R})}{Sl_2(\mathbb{R})} \cong \varphi(Gl_2(\mathbb{R})) = \mathbb{R}^*$

4. Find the isomorphism class of U(5) as a finite abelian group. Explain your reasoning.

$$U(5) = \{1,2,3,4\}$$
 so $U(5) \subseteq \mathbb{Z}_4 \approx \mathbb{Z}_2 \oplus \mathbb{Z}_2$
 $2^2 = 4$: $|2| \neq 2$: $U(5) \subseteq \mathbb{Z}_4$
(so must be 4)

Prove that a finite integral domain must be a field.

Let R be a finite integral domain and let
$$x \in R$$
, $x \neq 0$.
Since R is finite not all powers $\int x$ are distinct.
So $\exists n > m$ $x^n = x^m$, i.e. $x^n - x^m = 0$
 $x^m (x^{n-m} - 1) = 0$
Since R is an integral error and $x \neq 0$, $x^{n-m} = 1$
So $x \cdot x^{n-m-1} = 1$, so x is a conit (x^{n-m-1})

6. Prove or disprove that $\mathbb{Z}_2[x]$ has infinitely many ideals.

(x), (x2), (x3),... are distinct ideals.

7. Let $A = \{p \in \mathbf{Z}_m[x]: p(0) = 0\}$. Prove that A is an ideal of $\mathbf{Z}_m[x]$ and $\mathbf{Z}_m[x]/A \cong \mathbf{Z}_m$.

Define $\varphi: \mathbb{Z}_m[x] \to \mathbb{Z}_m$ by $\varphi(p(x)) = p(0)$ By inspection φ is an onto viny homomorphism with leer $\varphi = A$. By the 1^{st} isomorphism therm $\mathbb{Z}_m(x) \cong \varphi(\mathbb{Z}_m(x)) = \mathbb{Z}_m$ "

8. Let A be as in the preceding problem. Prove that A is a principal ideal, i.e. can be generated by just one polynomial. For which m is A a prime ideal of $\mathbf{Z}_m[x]$. For which m is A maximal? Explain.

Since Zm is a field for my prime and not an integral domain for composite m (if m=rs, then rs=0 mod m)

A in prime (A in maximal () on is prime 2 in a field

Zm is an istegral domain 2 in a field