Theory of Functions of a Complex Variable II, mat 5233

Final, May 5, 1997
Instructor: D. Gokhman

Name:
Pseudonym:
Throughout, unless otherwise indicated, assume that \mathbf{C} is the complex plane; Ω is a lattice in $\mathbf{C} ; D$ is a domain in \mathbf{C}; and Σ is the Riemann sphere. Show all work.

1. (20 pts.) Suppose $f: \mathbf{C} / \Omega \rightarrow \Sigma$ is a nonconstant elliptic function. Prove that
(a) f has at least one pole.
(b) If f has exactly one pole, then it cannot be a simple pole.
(Hint: Integrate $d f / f$ around a fundamental parallelogram of Ω.)
2. (30 pts.) Let $f(z)=\sum_{\omega \in \Omega}(z-\omega)^{-5}$.
(a) Show that the above series for $f(z)$ converges normally on $\mathbf{C} \backslash \Omega$.

You may use the fact that $\sum_{\omega \in \Omega \backslash\{0\}}|\omega|^{-5}$ converges.
(b) What are the poles of $f(z)$ and what is their multiplicity?
(c) Prove that $f(z)$ is elliptic.
3. (10 pts.) Let $\mathcal{P}(z)=z^{-2}+\sum_{\omega \in \Omega \backslash\{0\}}\left((z-\omega)^{-2}-\omega^{-2}\right)$.

Suppose $\mathcal{P}\left(z_{1}\right)=\mathcal{P}\left(z_{2}\right)$. Prove that $z_{1} \pm z_{2} \in \Omega$.
4. (10 pts.) Prove that the unit circle is the natural boundary for $\sum_{k=0}^{\infty} z^{k!}$.
5. (10 pts.) Find two paths in $\mathbf{C} \backslash\{0\}$ with the same endpoints such that the meromorphic continuations of $\log z$ along these paths differ by $4 \pi i$.
6. (20 pts.) True or false - circle your choice. No justification necessary.

T F (a) A series cannot be meromorphically continued through at least one point on the boundary of its disk of convergence.
T F (b) The Riemann surface of $\sqrt{z^{2}-1}$ is a torus.
T F (c) The Riemann surface of $\sqrt[3]{z}$ is compact.
T F (d) $1 / \log z$ is holomorphic at 0 .

1	2	3	4	5	6	total (100)

