Theory of Functions of a Complex Variable II, MAT 5233 Final, May 5, 1997 Instructor: D. Gokhman

_____ Pseudonym: _

Throughout, unless otherwise indicated, assume that \mathbf{C} is the complex plane; Ω is a lattice in \mathbf{C} ; D is a domain in \mathbf{C} ; and Σ is the Riemann sphere. Show all work.

- 1. (20 pts.) Suppose $f: \mathbf{C}/\Omega \to \Sigma$ is a nonconstant elliptic function. Prove that
 - (a) f has at least one pole.

Name: _

- (b) If f has exactly one pole, then it cannot be a simple pole. (Hint: Integrate df/f around a fundamental parallelogram of Ω .)
- 2. (30 pts.) Let $f(z) = \sum_{\omega \in \Omega} (z \omega)^{-5}$.
 - (a) Show that the above series for f(z) converges normally on $\mathbf{C} \setminus \Omega$. You may use the fact that $\sum_{\omega \in \Omega \setminus \{0\}} |\omega|^{-5}$ converges.
 - (b) What are the poles of f(z) and what is their multiplicity?
 - (c) Prove that f(z) is elliptic.

3. (10 pts.) Let
$$\mathcal{P}(z) = z^{-2} + \sum_{\omega \in \Omega \setminus \{0\}} \left((z - \omega)^{-2} - \omega^{-2} \right)$$

Suppose $\mathcal{P}(z_1) = \mathcal{P}(z_2)$. Prove that $z_1 \pm z_2 \in \Omega$.

- 4. (10 pts.) Prove that the unit circle is the natural boundary for $\sum_{k=0}^{\infty} z^{k!}$.
- 5. (10 pts.) Find two paths in $\mathbb{C} \setminus \{0\}$ with the same endpoints such that the meromorphic continuations of $\log z$ along these paths differ by $4\pi i$.
- 6. (20 pts.) True or false circle your choice. No justification necessary.
- T F (a) A series cannot be meromorphically continued through at least one point on the boundary of its disk of convergence.
- T F (b) The Riemann surface of $\sqrt{z^2 1}$ is a torus.
- T F (c) The Riemann surface of $\sqrt[3]{z}$ is compact.
- T F (d) $1/\log z$ is holomorphic at 0.

1	2	3	4	5	6	total (100)