Theory of Functions of a Complex Variable I / MAT 5223.001 Final / December 9, 1998 / Instructor: D. Gokhman

Name:	Pseudonym:

Please show all work.

- 1. (5 pts.) Find and sketch all $z \in \mathbf{C}$ such that $z^3 = 8i$.
- 2. (10 pts.) Prove that $\{z \in \mathbb{C}: 1 < |z| < 2\}$ is open in \mathbb{C} . Sketch this set.
- 3. (10 pts.) Given $z, w \in \mathbf{C} \setminus \{0\}$, construct a path $\gamma : [a, b] \to \mathbf{C} \setminus \{0\}$ such that $\gamma(a) = z, \gamma(b) = w$. What can you conclude about $\mathbf{C} \setminus \{0\}$?
- 4. (10 pts.) Suppose $U \subseteq \mathbf{C}$ is open and $K \subseteq U$ is compact. Prove that $\exists \varepsilon > 0$ and $z_k \in K, 1 \le k \le n$ such that $K \subseteq \bigcup_{k=1}^n \{z: |z z_k| < \varepsilon\} \subseteq U$.
- 5. (10 pts.) For each of the following $f: \mathbf{C} \to \mathbf{C}$ find the set where f is complex differentiable and the set where f is analytic.

(a)
$$f(z) = \frac{1}{\sin z}$$
 (b) $f(z) = \cos^2 \overline{z}$

- 6. (10 pts.) Let $f(z) = z^8/(2-z)^2$.
 - (a) Expand f(z) in a power series at the origin.
 - (b) Find the radius of convergence of this power series.
- 7. (20 pts.) Evaluate the following integrals. (You may use the Cauchy Integral Formula, where applicable.)
 - (a) $\int_{\gamma} \frac{dz}{2iz-1}$, where γ is the unit circle traversed counterclockwise,
 - (b) $\int_{\gamma} \frac{dz}{\overline{z}}$, where γ is the unit circle traversed counterclockwise,
 - (c) $\int_{\gamma} \frac{dz}{z^3 + 2iz^2}$, where γ is the unit circle traversed counterclockwise,
 - (d) $\int_{\gamma} \operatorname{Im} z \, dz$, where γ is the segment from -i to -1.
- 8. (10 pts.) Suppose $f: \mathbf{C} \to \mathbf{C}$ is analytic and $\exists a \in \mathbf{R} \quad \forall z \in \mathbf{C} \quad |f(z)| \leq a |z|^2$. Prove that $\exists c \in \mathbf{C}$ such that $\forall z \in \mathbf{C} \ f(z) = cz^2$.

1	2	3	4	5	6	7	8	total (85)	%