University of Texas at San Antonio

Complex Variable I, mat 5223
Final, 12/07/92
Instructor: D. Gokhman
Name:

1. (30 pts.) Suppose z_{1}, z_{2}, z_{3} belong to the unit circle and $z_{1}+z_{2}+$ $z_{3}=0$. Prove that the triangle with vertices z_{1}, z_{2}, z_{3} is equilateral.
2. (20 pts.) Suppose $f(z)$ is entire. Prove that so is $\overline{f(\bar{z})}$.
3. (30 pts.) Consider the map $f(z)=1 / z$. Determine (with proof) the images of the lines $\operatorname{Re} z=0$ and $\operatorname{Re} z=1$. Sketch.
4. (40 pts.) Consider the power series

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} .
$$

(a) Find the radius of convergence.
(b) Prove that convergence is uniform within the radius of convergence.
5. (40 pts.)
(a) Find a parametrization for the straight line segment from 0 to $2+i$.
(b) Integrate $\operatorname{Im} z$ along this segment.
6. (40 pts.) Calculate the following curve integrals:
(a) $\int_{\gamma} \frac{d z}{\left(z^{2}-1\right)^{3}}$, where γ is circle of radius 5 centered at 0 .
(b) $\int_{\gamma} \frac{\sin z d z}{z^{4}}$, where γ is:

