| Name: | | | | | |-------|---------------|--|--|--| | Name. | N I a 199 a . | | | | | | name. | | | | Throughout, suppose (x_n) and (y_n) are sequences of real numbers, $x, y \in [-\infty, \infty]$, x is a partial limit of (x_n) and y is a partial limit of (y_n) . - 1. (30 pts.) Determine whether each of the following statements is true in general. If true, prove it. If false, give a specific counterexample. - (a) If $\exists m \ \forall n \geq m \ x_n \geq 0$, then $x \geq 0$. - (b) If $\forall m \ \exists n \geq m \ x_n \geq 0$, then $x \geq 0$. - (c) If $\exists m \ \forall n \geq m \ y_n > 0$, then y > 0. - (d) If 0 is a partial limit of $x_n y_n$, then x is a partial limit of (y_n) . - (e) If $x_n y_n \to 0$, then x is a partial limit of (y_n) . - (f) x + y is a partial limit of the sequence $(x_n + y_n)$. - 2. (10 pts.) Suppose $A \subseteq \mathbf{R}$ and a is a limit point of A. Prove that there exists a sequence in $A \setminus \{a\}$ that converges to a. - 3. (10 pts.) Let $a = \liminf x_n$ and $b = \limsup x_n$. Suppose U is an open interval containing the closed interval [a, b]. Prove that $\exists m \ \forall n \geq m \ x_n \in U$. | 1(a-c) | 1(d-f) | 2 | 3 | total (50) | % | |--------|--------|---|---|------------|---| |