University of Texas at San Antonio

Real Analysis I, MAT 4213 Final, 12/09/92 Instructor: D. Gokhman

Name: ____

- 1. (60 pts.) Find examples of series $\sum a_n$, $\sum b_n$ such that
 - (a) $\sum a_n$ diverges, $\sum b_n$ diverges, $\sum a_n b_n$ diverges.
 - (b) $\sum a_n$ diverges, $\sum b_n$ diverges, $\sum a_n b_n$ converges.
 - (c) $\sum a_n$ converges, $\sum b_n$ diverges, $\sum a_n b_n$ diverges.
 - (d) $\sum a_n$ converges, $\sum b_n$ diverges, $\sum a_n b_n$ converges.
 - (e) $\sum a_n$ converges, $\sum b_n$ converges, $\sum a_n b_n$ diverges.
 - (f) $\sum a_n$ converges, $\sum b_n$ converges, $\sum a_n b_n$ converges.
- 2. (30 pts.) Determine (with proof) the divergence or convergence of the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$$
 (b) $\sum_{n=1}^{\infty} \frac{n^2}{n^3+1}$ (c) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$

- 3. (20 pts.) Prove that $\mathbf{R} \setminus \{0\}$ is not connected.
- 4. (30 pts.) Let $\mathcal{G} = \{(a, b): b a = 1\}.$
 - (a) Prove that \mathcal{G} is a cover of [0, 10].
 - (b) Exhibit a finite subcover of [0, 10] from \mathcal{G} .
 - (c) What is the smallest possible cardinality of such a subcover?
- 5. (30 pts.) Suppose $f, g: \mathbf{R} \to \mathbf{R}$ are continuous functions.
 - (a) Prove that $Z(f) = \{x \in \mathbf{R}: f(x) = 0\}$ is closed.
 - (b) Suppose $E \subseteq \mathbf{R}$ is dense and f(x) = g(x) for all $x \in E$. Prove that f(x) = g(x) for all $x \in \mathbf{R}$. (Hint: use part (a))
- 6. (30 pts.) Suppose $f: E \to E$ is a continuous function, where E = [0, 1].
 - (a) Prove that f has a fixed point, i.e. $\exists x \in E \ f(x) = x$. (Hint: draw a picture and consider what happens at the endpoints)
 - (b) Find a counter example for part (a) if E = (0, 1).