University of Texas at San Antonio

Real Analysis I, mat 4213
Final, 12/09/92
Instructor: D. Gokhman
Name:

1. (60 pts .) Find examples of series $\sum a_{n}, \sum b_{n}$ such that
(a) $\sum a_{n}$ diverges, $\sum b_{n}$ diverges, $\sum a_{n} b_{n}$ diverges.
(b) $\sum a_{n}$ diverges, $\sum b_{n}$ diverges, $\sum a_{n} b_{n}$ converges.
(c) $\sum a_{n}$ converges, $\sum b_{n}$ diverges, $\sum a_{n} b_{n}$ diverges.
(d) $\sum a_{n}$ converges, $\sum b_{n}$ diverges, $\sum a_{n} b_{n}$ converges.
(e) $\sum a_{n}$ converges, $\sum b_{n}$ converges, $\sum a_{n} b_{n}$ diverges.
(f) $\sum a_{n}$ converges, $\sum b_{n}$ converges, $\sum a_{n} b_{n}$ converges.
2. (30 pts.) Determine (with proof) the divergence or convergence of the following series:

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{2}+1}} \text { (b) } \sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1} \quad \text { (c) } \sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
$$

3. (20 pts.) Prove that $\mathbf{R} \backslash\{0\}$ is not connected.
4. (30 pts.) Let $\mathcal{G}=\{(a, b): b-a=1\}$.
(a) Prove that \mathcal{G} is a cover of $[0,10]$.
(b) Exhibit a finite subcover of $[0,10]$ from \mathcal{G}.
(c) What is the smallest possible cardinality of such a subcover?
5. (30 pts.) Suppose $f, g: \mathbf{R} \rightarrow \mathbf{R}$ are continuous functions.
(a) Prove that $Z(f)=\{x \in \mathbf{R}: f(x)=0\}$ is closed.
(b) Suppose $E \subseteq \mathbf{R}$ is dense and $f(x)=g(x)$ for all $x \in E$. Prove that $f(x)=g(x)$ for all $x \in \mathbf{R}$.
(Hint: use part (a))
6. (30 pts.) Suppose $f: E \rightarrow E$ is a continuous function, where $E=[0,1]$.
(a) Prove that f has a fixed point, i.e. $\exists x \in E f(x)=x$.
(Hint: draw a picture and consider what happens at the endpoints)
(b) Find a counter example for part (a) if $E=(0,1)$.
