Calc ulus for Applic ations / MAT3243

Midterm 2 / December 1, 1999 / Instructor: D. Gokhman

Name:
Please show all work and box the answers, where appropriate.

1. (10 pts.) Let $f(x, y, z)=x y z, a=(-1,2,0), u=(1,2,-2)$.

Find $D_{u}(f)(a)$ - the directional derivative of f at a along u.
2. (10 pts.) Find an equation for the plane tangent to $y z-x^{2}=1$ at $(1,2,1)$.
3. (10 pts.) Let $g(x, y)=\cos \left(x^{2}\right)+x y^{2}$ and $f(u)=\left[\begin{array}{c}u^{2}+1 \\ e^{u}\end{array}\right]$.

Find $f \circ g, g \circ f, D(f), D(g), D(f \circ g)$, and $D(g \circ f)$.
4. (10 pts .) Consider a curved segment $s(t)=\left(t^{3 / 2}, t\right), 0 \leq t \leq 1$.
(a) Find vectors tangent to the curve at each of the endpoints.
(b) Sketch.
(c) Find the arclength.
5. (10 pts.) Let $F(x, y)=\left(y^{2}, x y\right)$. Integrate $F \cdot d s$ along the straight line segment from $(1,1)$ to $(3,2)$.
6. (10 pts.) Let $F(x, y, z)=(x+z, z, x+y)$. Find a function $f(x, y, z)$ such that $D(f)=F$ and use it to integrate $F \cdot d s$ along an arbitrary path from the origin to $(1,-1,2)$.

1	2	3	4	5	6	total (60)	$\%$

