Name:

Please show all work and box the answers, where appropriate.

- 1. (10 pts.) Let f(x, y, z) = xyz, a = (-1, 2, 0), u = (1, 2, -2). Find $D_u(f)(a)$ — the directional derivative of f at a along u.
- 2. (10 pts.) Find an equation for the plane tangent to $yz x^2 = 1$ at (1, 2, 1).
- 3. (10 pts.) Let $g(x,y) = \cos(x^2) + xy^2$ and $f(u) = \begin{bmatrix} u^2 + 1 \\ e^u \end{bmatrix}$. Find $f \circ g, g \circ f, D(f), D(g), D(f \circ g)$, and $D(g \circ f)$.
- 4. (10 pts.) Consider a curved segment $s(t) = (t^{3/2}, t), 0 \le t \le 1$.
 - (a) Find vectors tangent to the curve at each of the endpoints.
 - (b) Sketch.
 - (c) Find the arclength.
- 5. (10 pts.) Let $F(x,y) = (y^2, xy)$. Integrate $F \cdot ds$ along the straight line segment from (1,1) to (3,2).
- 6. (10 pts.) Let F(x, y, z) = (x + z, z, x + y). Find a function f(x, y, z) such that D(f) = F and use it to integrate $F \cdot ds$ along an arbitrary path from the origin to (1, -1, 2).

1	2	3	4	5	6	total (60)	%