Calculus for Applications / MAT 3243.001 Midterm 2 / November 25, 1998 / Instructor: D. Gokhman

Name: ____

Please show all work and box the answers.

- 1. (10 pts.) Let $F = xy\hat{j} + z\hat{k}$. Compute div F and curl F.
- 2. (15 pts.) Compute $d\omega$
 - (a) $\omega = x^2 e^{yz}$ (b) $\omega = -y \, dx + x \, dy$ (c) $\omega = x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy$
- 3. (10 pts.) Find an equation for the plane tangent to the surface given by $ze^y \cos x = 1$ at the point $\pi \hat{i} \hat{k}$.
- 4. (20 pts.) Evaluate the following integrals
 - (a) $\int_M x \, dx + y \, dy z \, dz$, where M is the curve $\left\{ t\hat{\imath} + 3t^2\hat{\jmath} + 2t^3\hat{k}: -1 \le t \le 1 \right\}$
 - (b) $\int_M x \, dy \, dz + y \, dz \, dx$, where M is the cylinder $x^2 + y^2 = 4, -1 \le z \le 1$
 - (c) $\int_M z \, dx \, dy \, dz$, where M is the dowel $x^2 + y^2 \le 4, -1 \le z \le 1$
 - (d) Surface area: $\int_M |dS|$, where M is $\left\{s\hat{\imath} + (s+t)\hat{\jmath} + t\hat{k}: 0 \le s \le 1, 0 \le t \le 2\right\}$

1	2	3	4	total (55)	%

THE UNIVERSITY OF TEXAS AT SAN ANTONIO