Calculus for Applications, MAT 3243 (Extra)

Final, Fall, 1995

Instructor: D. Gokhman

Name: ______ Pseudonym: _____

Show all work. Answers alone are not sufficient.

- 1. (40 pts.) Let $\omega = 3x^2y dx + (x^3 + 3y^2e^z) dy + y^3e^z dz$
 - (a) Show that $d\omega = 0$ (i.e. $\text{curl}(3x^2y, x^3 + 3y^2e^z, y^3e^z) = 0$).
 - (b) Find f(x, y, z) such that $df = \omega$ (i.e. grad $f = (3x^2y, x^3 + 3y^2e^z, y^3e^z)$). [Hint: guess/check or integrate along a straight line $(0, 0, 0) \rightarrow (x, y, z)$]
 - (c) Evaluate $\int_{(1,2,-2)}^{(0,-1,2)} \omega = \int_{(1,2,-2)}^{(0,-1,2)} 3x^2y \, dx + \left(x^3 + 3y^2e^z\right) \, dy + y^3e^z \, dz$ [Hint: you may use part (b) and the Fundamental Theorem of Calculus.]
 - (d) What is the integral of ω around a closed curve? Explain.
- 2. (40 pts.) Let F(x, y, z) = (2x, 2y, -5z). Find the flux $\int F \cdot dS$ through:
 - (a) the cylinder $\Phi(\theta, z) = (\cos \theta, \sin \theta, z), 0 \le \theta < 2\pi, -3 \le z \le 3$
 - (b) the disc $\Phi(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta, 6), 0 \le \rho \le 3, 0 \le \theta < 2\pi$
- 3. (40 pts.) Evaluate the following integrals:

(a)
$$\int_S 3x^2y^4z^2 dx + 4x^3y^3z^2 dy + 2x^3y^4z dz$$
,

where S is the unit circle in the x-y plane $(S = \{(x, y, z): x^2 + y^2 = 1, z = 0\}).$

(b)
$$\int_D \cos(y)z^2 dy dz - (z^4 + 1)^x dz dx + e^{xy} dx dy$$
,

where *D* is the unit sphere $(D = \{(x, y, z): x^2 + y^2 + z^2 = 1\}).$

[Hint: S and D are boundaries.]

1a	1b	1c	1d	2a	2b	3a	3b	total (120)