Linear Algebra / MAT2233

Midterm 2 / December 1, 1999 / Instructor: D. Gokhman

Name:
Please show all work and box the answers, where appropriate.

1. (10 pts.) Determine whether each of the following subsets is a vector subspace. If yes, express it as a span or a null space. If not, explain why not by giving an explicit example of how an axiom fails.
(a) Polynomials of the form $a+b t^{2}$ in the space of all polynomials in t.
(b) $\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: \begin{array}{c}a-2 b+c=0 \\ \text { and } b-c=0\end{array}\right\}$ in \mathbf{R}^{3}
(c) $\left\{\left[\begin{array}{c}s+1 \\ t \\ s\end{array}\right]: s, t\right.$ in $\left.\mathbf{R}\right\}$ in \mathbf{R}^{3}
2. (10 pts.) Find a basis for: (a) null $\left[\begin{array}{rrr}-1 & 0 & 2 \\ 1 & 1 & 1\end{array}\right]$,
(b) col $\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Sketch both spaces.
3. (10 pts.) Let $\mathcal{B}=\{1+t, t\}$ be a basis for \mathbf{P}_{1} and let $p=t-1$. Find $[p]_{\mathcal{B}}$.
4. (10 pts.) Is the sequence $\left\{(t+1)^{2}, t^{2}+1, t^{2}\right\}$ linearly independent in \mathbf{P}_{2} ?
5. (10 pts.) Let $A=\left[\begin{array}{rr}3 & 5 \\ 1 & -1\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the spectrum (the set of all eigenvalues) of A.
(c) Find eigenvectors corresponding to each eigenvalue of A.
(d) Find an invertible 2×2 matrix P and a diagonal 2×2 matrix D such that $A=P D P^{-1}$.
(e) Compute P^{-1} and verify that $A=P D P^{-1}$.

1	2	3	4	5	total (50)	$\%$

