Name:

Please show all work and box the answers, where appropriate.

- 1. (10 pts.) Determine whether each of the following subsets is a vector subspace. If yes, express it as a span or a null space. If not, explain why not by giving an explicit example of how an axiom fails.
 - (a) Polynomials of the form $a + bt^2$ in the space of all polynomials in t.

(b)
$$\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : \begin{array}{c} a-2b+c=0 \\ and \ b-c=0 \end{array} \right\}$$
 in \mathbf{R}^3 (c) $\left\{ \begin{bmatrix} s+1 \\ t \\ s \end{bmatrix} : s,t \text{ in } \mathbf{R} \right\}$ in \mathbf{R}^3

- 2. (10 pts.) Find a basis for: (a) null $\begin{bmatrix} -1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$, (b) col $\begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Sketch both spaces.
- 3. (10 pts.) Let $\mathcal{B} = \{1 + t, t\}$ be a basis for \mathbf{P}_1 and let p = t 1. Find $[p]_{\mathcal{B}}$.
- 4. (10 pts.) Is the sequence $\{(t+1)^2, t^2+1, t^2\}$ linearly independent in \mathbf{P}_2 ?
- 5. (10 pts.) Let $A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find the spectrum (the set of all eigenvalues) of A.
 - (c) Find eigenvectors corresponding to each eigenvalue of A.
 - (d) Find an invertible 2×2 matrix P and a diagonal 2×2 matrix D such that $A = PDP^{-1}$.
 - (e) Compute P^{-1} and verify that $A = PDP^{-1}$.

1	2	3	4	5	total (50)	%