Name: .

Please show all work and box the answers.

1. (20 pts.) Determine whether the following series converge. Do 4 out of 5.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{1+2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{1+2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ (c) $\sum_{n=1}^{\infty} \frac{\ln(n)}{\sqrt{n}}$

(d)
$$\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!}$$
 (e) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$

2. (10 pts.) Evaluate the following sums.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{2^n}$$
 (b) $\sum_{n=0}^{\infty} \frac{2^n}{3^{n+1}}$

(b)
$$\sum_{n=0}^{\infty} \frac{2^n}{3^{n+1}}$$

3. (10 pts.) Find the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \left(2x+3\right)^n$$

4. (15 pts.) Find the first k nontrivial terms of the Taylor series for f(x) at x = a.

(a)
$$f(x) = \ln\left(2 + \frac{x}{2}\right)$$
, $a = -2$, $k = 2$,

(b)
$$f(x) = \frac{1}{1-x}$$
, $a = 0$, $k = 4$,

(c)
$$f(x) = \frac{x}{1+x^2}$$
, $a = 0$, $k = 4$.

1	2	3	4	total (55)	%