Name: _

Please show all work. Supply brief narration with your solutions and draw conclusions.

- 1. An exponentially growing yeast culture doubles in 5 days starting from 2 million *saccaromyces cerevisiæ*. How long would it take it to reach a population of 10 million?
- 2. During treatment viral load decreases exponentially according to $v(t) = e^{-t}$. Find and illustrate on a graph
 - (a) Load at t = 0 and t = 1.
 - (b) The average rate of change between t = 0 and t = 1.
 - (c) The instantaneous rates of change at t = 0 and t = 1.
- 3. Find the derivatives of

(a)
$$e^{1+\cos(2x)}$$
 (b) $\frac{\ln(\ln x)}{x}$

- 4. Find the second derivative of $x/(1 + x^2)$ and use it to describe the curvature of the function's graph.
- 5. For the Ricker model for fish population $x_{t+1} = rx_t e^{-x_t}$ find the equilibria. For which values of r is each equilibrium stable? Unstable?
- 6. Let $f(t) = t^2 t^3$. Find all the critical points of f on the interval $0 \le x \le 2$. Use the second derivative to determine concavity at the critical points. Find the global minimum and the global maximum of f on the interval. Where do they occur?
- 7. Find indefinite integrals of the following functions

(a)
$$\sin(3t)[1 + \cos(3t)]^7$$
 (b) $t\sin(5t)$

8. Show that the improper integral $\int_1^\infty \frac{1}{x - \sqrt{x}} dx$ diverges.

- 9. For the autonomous differential equation $dx/dt = ax x^3$, where a is a constant, draw the phase-line diagram, find the equilibria, and determine their stability. What happens if a = 0?
- 10. Solve the Torricelli equation $dh/dt = -\sqrt{2h}$ with initial condition h(0) = 3. When is h = 0?

1	2	3	4	5	6	7	8	9	10	total (100)