Name: \qquad
Please show all work and justify your answers.

1. Apply Euclid's algorithm to 70 and 27 to show that they are co-prime. Find the Bézout coefficients.
2. Suppose $m \geq 2$. Show that if $a \equiv a^{\prime} \bmod m$ and $b \equiv b^{\prime} \bmod m$, then $a+b \equiv a^{\prime}+b^{\prime} \bmod m$.
3. Use the Chinese remainder theorem to solve the following system of congruences: $x \equiv 2 \bmod 5,2 x \equiv 5 \bmod 7,3 x \equiv 7 \bmod 11$.
4. For which integers $n \geq 0$ is $n^{2} \leq n$!? Prove your assertion.
5. Suppose f is a function given recursively by $f(0)=2$ and $f(n)=-3 f(n-1)$ for $n \geq 1$. Find a formula for f and prove its validity by induction.
6. Convert to matrix notation the system of linear equations $x_{3}+2 x_{2}=4, x_{3}+3 x_{1}=2$, $4 x_{1}+3 x_{2}=3$. Use Gauss-Jordan elimination to solve this system (show intermediate steps). Find the determinant of the coefficient matrix. Explain.
7. Let $A=\left[\begin{array}{ll}4 & 5 \\ 6 & 2\end{array}\right]$. Find the eigenvalues of A. Find corresponding eigenvectors. Sketch the eigenspaces. In a few words give a geometric description of the linear transformation of the plane $v \mapsto A v$.
8. Rudolph is out with a cold, so Santa harnesses his other eight reindeer in pairs (::::). How many ways can Santa harness the reindeer if he doesn't break up the pairs? Generalize to $2 n$ reindeer.
9. What's the probability of rolling an eight with four dice?

Hint: k-combinations out of n with repeats: $C(n+k-1, k)$, where $C(r, k)=\frac{r!}{(r-k)!k!}$.
10. Express the probability of being within ± 2 of the mean in terms of the error function, if the probability density is normal with standard deviation 3 .
Hint: $P(0<z<Z)=\frac{1}{2} \operatorname{erf}\left(\frac{Z}{\sqrt{2}}\right)$, where $z=\frac{x-\mu}{\sigma}$.

1	2	3	4	5	6	7	8	9	10	total (100)

