Remainder of the geometric series:
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Let Sy (z) = Z 2 be the n-th partial sum of the geometric series.
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Multiplying and cancelling we obtain (1 — 2)S,(2) =1 — 2", s0 S, (2) = 172
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If |z| < 1, then 2" — 0 as n — oo, s0 Sy, (2) — :
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Writing 5= Sn(2) + Rp(z) we see that the remainder is R, (z) = 0
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Taylor remainder:

Supoose f € H(2), where € is a domain in C. If a € ), we can find an open disc D of radius r centered at a with
D C Q. From the values of f on D Cauchy’s integral formula gives the values of f for all z € D
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Now use the partial geometric sum to obtain
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Successive differentiation of (1) under the integral sign with respect to z gives ¢,, = o

Cauchy’s intequalities and convergence:

Since D is compact, |f| is bounded on D. Suppose |f| < M on dD. Then
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Similarly, since [ —z| =|({ —a) — (z —a)| > |( —a| — |z — 4|
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This estimate for the remainder shows that the Taylor series converges on D. Note that the only restriction on D
is that D C €2 so the radius of convergence is the distance from a to the boundary of €.
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