Remainder of the geometric series:

Let $S_n(z) = \sum_{k=0}^n z^k$ be the *n*-th partial sum of the geometric series.

Multiplying and cancelling we obtain $(1-z)S_n(z) = 1-z^{n+1}$, so $S_n(z) = \frac{1-z^{n+1}}{1-z}$

If
$$|z| < 1$$
, then $z^{n+1} \to 0$ as $n \to \infty$, so $S_n(z) \to \frac{1}{1-z}$

Writing $\frac{1}{1-z} = S_n(z) + R_n(z)$ we see that the remainder is $R_n(z) = \frac{z^{n+1}}{1-z}$

Taylor remainder:

Suppose $f \in \mathcal{H}(\Omega)$, where Ω is a domain in \mathbf{C} . If $a \in \Omega$, we can find an open disc D of radius r centered at a with $\overline{D} \subseteq \Omega$. From the values of f on ∂D Cauchy's integral formula gives the values of f for all $z \in D$

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta) \, d\zeta}{\zeta - z} \tag{1}$$

Now use the partial geometric sum to obtain

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - a)\left(1 - \frac{z - a}{\zeta - a}\right)} = \frac{1}{\zeta - a}\left(\sum_{k=0}^{n} \left[\frac{z - a}{\zeta - a}\right]^{k} + \frac{\left[\frac{z - a}{\zeta - a}\right]^{n+1}}{1 - \frac{z - a}{\zeta - a}}\right) = \sum_{k=0}^{n} \frac{(z - a)^{k}}{(\zeta - a)^{k+1}} + \frac{\left[\frac{z - a}{\zeta - a}\right]^{n+1}}{\zeta - z}$$

Substitute this finite sum into Cauchy's integral formula to obtain $f(z) = \sum_{k=0}^{n} c_k(z-a)^k + R_n(z)$ where

$$c_k = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta) d\zeta}{(\zeta - a)^{k+1}}, \qquad R_n(z) = \left[\frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta) d\zeta}{(\zeta - a)^{n+1} (\zeta - z)} \right] (z - a)^{n+1}$$

Successive differentiation of (1) under the integral sign with respect to z gives $c_n = \frac{f^{(n)}(a)}{n!}$

Cauchy's intequalities and convergence:

Since \overline{D} is compact, |f| is bounded on \overline{D} . Suppose $|f| \leq M$ on ∂D . Then

$$|c_k| \le \frac{1}{2\pi} \int_{\partial D} \frac{|f(\zeta)|}{r^{k+1}} |d\zeta| \le \frac{M}{2\pi r^{k+1}} \int_{\partial D} |d\zeta| = \frac{M}{2\pi r^{k+1}} \cdot 2\pi r = \frac{M}{r^k}$$

Similarly, since $|\zeta - z| = |(\zeta - a) - (z - a)| \ge |\zeta - a| - |z - a|$

$$|R_n(z)| \le \frac{M}{r^n} \cdot \frac{(z-a)^{n+1}}{r-|z-a|} = \frac{M|z-a|}{r-|z-a|} \left| \frac{z-a}{r} \right|^n \to 0 \text{ as } n \to \infty$$

This estimate for the remainder shows that the Taylor series converges on D. Note that the only restriction on D is that $\overline{D} \subset \Omega$ so the radius of convergence is the distance from a to the boundary of Ω .